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Building Topology-Aware Overlays using Global Soft-State

Abstract
Recent peer-to-peer (P2P) networks, represented by CAN,
Chord, and Pastry, offer an administration-free and fault-
tolerant application-level overlay network. For these systems
to function efficiently, they must make effective use of the
underlying network topology.

Existing techniques for discovering network proximity
information, such as landmark clustering and expanding-ring
search, are either inaccurate or expensive. Moreover, the lack
of global proximity information in overlay construction and
maintenance results in either bad proximity approximation or
excessive communication.

To address these problems, we propose the following: (1)
Combining landmark clustering and RTT measurements to
identify the closest node, achieving both efficiency and accu-
racy. (2) Controlled placement of global proximity information
on the system itself as soft-state, such that nodes can indepen-
dently access relevant information efficiently. (3) Pub/sub
functionality that allows nodes to subscribe to the relevant
soft-state and get notified as the state changes necessitate over-
lay restructuring.

Keywords: peer-to-peer, overlay, soft-state, network proto-
col, topology, landmark, pub/sub system, heterogeneity

1 Introduction
Recent peer-to-peer (P2P) networks, represented by CAN
[11], Chord [15], and Pastry [13], offer an administration-
free and fault-tolerant application-level overlay network.
The basic functionality these systems provide is a distrib-
uted hash table (DHT). For these systems to function effi-
ciently, they must effectively take advantage of the
conditions of the underlying physical network. These condi-
tions include storage capacity, forwarding capacity, and net-
work topology. In this paper, we describe a novel approach
that effectively utilizes physical proximity information.

Effectively utilizing topology information involves two
aspects: techniques to generate proximity information and
ways to use this information. There are three ways to gener-
ate proximity information: expanding-ring search, heuris-
tics, and landmark clustering. Expanding-ring search has at
least two limitations: it has to blindly flood a large number
of nodes to obtain a reasonable result. In addition, a node
needs to measure round-trip time (RTT) to all the nodes
directly or indirectly contacted and hence has the potential
to become a bottleneck. To reduce the degree of blindness in
expanding-ring search, heuristic based approaches such as
hill climbing have been proposed [17]. A common limita-

tion of heuristic approaches is local minimum pitfalls,
which may fail the search for the closest node. Landmark
clustering is based on the intuition that nodes close to each
other are likely to have similar distances to a few selected
landmark nodes. As a coarse-grained approximation, it is
not very effective in differentiating nodes within close dis-
tance, according to our study.

Techniques to exploit topology information in overlay
routing include geographic layout, proximity routing and
proximity neighbor selection [3]. With geographic layout
such as topology-aware CAN [12], the overlay structure is
constrained by underlying network topology. This tech-
nique, unfortunately, can create uneven distribution of
nodes in the overlay, increasing the chances of overloading
nodes and rendering the maintenance cost formidable. Our
study shows that, for a typical 10,000-node topology-aware
CAN, 5% nodes occupy 85-98% of the entire Cartesian
space, and some nodes have to maintain 450-1500 neigh-
bors. In Proximity routing, physical topology is not consid-
ered when constructing the overlay. Instead, a message is
forwarded to the topologically closest node among the next
hop candidates in the routing table [15]. The choices for
each routing hop, unfortunately, are limited to entries in the
routing table. In proximity neighbor selection, routing table
entries are selected according to proximity metric among all
nodes that satisfies the constraint of the logical overlay. For
instance, in Pastry, the constraint is the nodeId prefix.

In theory, proximity neighbor selection is superior than
the other two approaches, but existing overlay construction
algorithms taking this approach have their own limits. For
instance, Pastry assumes triangle inequality in the topology.
It relies on the ability to find the physically closest node at
node join and uses expanding-ring search or heuristic for
this purpose. Studies [14] have shown that triangle inequal-
ity may not hold in Internet topology. In fact, study from
Pastry has shown that the proximity approximation is much
worse when using the Mercator topology that is based on
the real measurements of the Internet [3].

A further problem relates to the dynamism in the over-
lay. As nodes join (depart) or network conditions flux, rout-
ing tables of existing nodes need to be repaired to reflect the
changes. Finding all affected nodes is a challenging task.
Without timely fixes, the structure of the overlay will
digress from optimal as inefficient routes gradually accumu-
lates in routing tables. The main limit of existing
approaches is the lack of global state of the system when
constructing and repairing the overlay, which could result in
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either bad proximity approximation or excessive communi-
cation.

In this paper, we address problems related to both gen-
erating and using proximity information. To eliminate the
blindness in expanding-ring search and heuristic-based
approaches, and also impression of landmark clustering, we
propose to use landmark clustering only as a preselection
process to locate nodes that are possibly close, and then
measure RTTs to identify the node that is actually the clos-
est, achieving both efficiency and accuracy. Our experi-
ments show that when guided by landmark clustering, 20-30
RTT measurements can be enough to locate the closest node
to a particular node in a topology with approximately
10,000 nodes.

To effectively use the proximity information generated,
we propose to store information of the system as soft-state
in the system itself, taking advantage of its self-organizing
and fault tolerant nature. In particular, we use landmark
clustering to control the placement of proximity information
such that information about nodes that are physically close
to each other are stored logically close to each other in the
overlay. Each node is assigned a landmark number that
reflects its physical position in the network. A node uses its
landmark number as the key to access relevant proximity
information in the overlay.

In this paper, we make the following contributions:

• Combining both landmark clustering and actual mea-
surement to generate proximity information, achieving
both efficiency and accuracy.

• A novel landmark clustering scheme to group nodes
close to each other, and using space-filling curve to
reduce the dimensionality of landmark cluster to gener-
ate a single landmark number.

• Use the overlay itself to store proximity information as
soft-state such that nodes in the system act as rendez-
vous points for each other to discover nodes that are
physically close.

• Pub/sub functionality that allows nodes to subscribe to
relevant soft states using its landmark number as the
key, and get notified as state changes necessitate neigh-
bor re-selection.

• Last, a quantitative breakdown of sources of perfor-
mance penalty, including those imposed by the struc-
tural constraints of the overlay, and those due to
inaccuracy of proximity generation techniques.

We evaluate our techniques using eCAN [19], a hierar-
chical variation of CAN. The remainder of the paper is
organized as follows. We discuss related work in Section 2,
and give background in Section 3. Section 4 describes our
techniques for proximity search that combines both land-
mark clustering and actual measurements. In Section 5, we
describe how global information of the system can be stored

in the overlay network in a controlled way to facilitate over-
lay construction and maintenance. We discuss in Section 6
other uses of global states. We conclude in Section 7.

2 Related Work
We compare our work with related work in proximity gener-
ation and proximity-aware overlay construction.

Several techniques have been proposed to estimate
Internet distance. IDMaps [6] places tracers at key points in
the Internet. These tracers measure the latency among them
and advertise the measurements to clients. The distance
between two clients A and B is estimated as the sum of the
following: the distance between A and its closest tracer A',
the distance between B and its closest tracer B', and the dis-
tance between tracer A' and B'. The accuracy of IDMap
improves as the number of tracers increase.

A second approach is the landmark ordering technique
used in topology-aware CAN [12], a node measures its
round-rip time to a set of landmarks and sorts the landmarks
in terms of increasing RTT. Thus, every node has an associ-
ated order of landmarks. Nodes with the same (similar)
landmark order(s) are considered close to each other. This
technique cannot differentiate nodes with the same land-
mark orders.

A third approach is coordinate-based [5]. In this
approach, landmark nodes measure the RTTs among them-
selves and use this information to compute a coordinates in
a Cartesian space for each of the landmark. These coordi-
nates are then distributed to clients, which measure RTTs to
landmark nodes and also compute a coordinates in the Car-
tesian space for itself, based on the RTT measurements and
the coordinates of landmark nodes. The Euclidian distance
between nodes in the Cartesian space is directly used as an
estimation of the network distance.

Comparing with above algorithms, our approach does
not rely on any centralized server or global knowledge, and
the landmark numbers generated using space filling curve
[1] can be mapped to points in overlays of any dimension.

Miguel Castro et al [3] divide techniques used to
exploit network proximity into three categories: geographic
layout, proximity routing and proximity neighbor selection.
Proximity neighbor selection is superior in terms of load
balancing and proximity approximation. The existing algo-
rithms that belong to this category, however, rely on
expanding-ring search or heuristics for bootstrap and a gos-
siping protocol for maintenance. Both may require exten-
sive message exchanges to achieve reasonable accuracy,
especially when the proximity information kept in the over-
lay has already digressed from optimal.

Even with proximity neighbor selection, the nearest
neighbor selection is still constrained by the logical struc-
ture of the overlay. Without this constraint, P2P routing pro-
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tocol [20] similar to the distance vector routing algorithm
can achieve efficiency comparable to IP routing, but it is not
suitable for a very dynamic environment because of the fre-
quent propagation of routing information.

In existing P2P networks, our contribution of using the
archival nature of the system to store and retrieve relevant
system information to gain performance advantage is
unique. Self-archiving of system information has been
explored in other areas, e.g., GLS [9]. However, their goal is
to assign an appropriate number of location servers for each
mobile node, rather than efficient routing.

3 Background
This section provides a short description of CAN and
eCAN. In theory, eCAN is equivalent to overlay networks
such as Pastry. The Cartesian space abstraction of CAN and
eCAN, however, makes them more attractive in places
where the application directly demands such an abstraction,
e.g., document ranking using latent semantics [16].

3.1 CAN
CAN stands for content-addressable network. It abstracts
the problem of data placement and retrieval over large scale
storage systems as hashing that maps “keys” onto “values”
[4]. CAN organizes the logical space as a d-dimensional
Cartesian space (a d-torus). The Cartesian space is parti-
tioned into zones, with one or more nodes serve as owner(s)
of a zone. An object key is a point in the space. The node,
which owns the zone that contains the point, owns the
object. Routing from a source node to a destination node
boils down to routing from one zone to another in the Carte-
sian space. Node join corresponds to picking a random point
in the Cartesian space, routing to the zone that contains the
point, and split the zone with its current owner(s). Node
departure amounts to having the owner(s) of one of the
neighboring zone take over the zone owned by the departing
node. In CAN, two zones are neighbors if they overlap in all
but one dimension along which they abut each other.

3.2 eCAN
eCAN auguments CAN’s routing capacity with routing
tables of larger span to achieve logarithmic routing perfor-
mance. Every k CAN zones represent an order-1 zone, and k
order-i zones represents an order-(i+1) zone. As a result, a
node is an owner of a CAN zone and is also a member of the
higher-order zones that encompass the CAN zone. Besides
its default routing neighbors that are CAN zones, a node
also has high-order routing neighbors that are representa-
tives of its neighbors in the high-order zones.

Figure 1 illustrates eCAN with an example. The default
CAN zones are order-1, and each of the CAN zones is 1/64
of the entire Cartesian space. In this example, four neigh-
boring CAN zones make one order-2 eCAN zone and four
order-2 zones make an order-3 zone. For example, node 1
owns a CAN zone (the zone with dark shading in the upper-
left corner), and it is also a member of the order-2 and order-
3 eCAN zones that enclose the CAN zone. The routing table
of node 1 consists of the default routing table of CAN (rep-
resented by the thin arrows) that link only to node 1’s imme-
diate CAN neighbors, and high-order routing tables
(represented by the thick arrows) that link to one node in
each of node 1’s neighboring high-order zones. Figure 1
also illustrates how node 1 can reach node 9 using eCAN
routing (1-2-5-9). Figure 2 shows that eCAN with the low-
est dimension (d=1) easily outperforms the basic CAN up to
d=5.

Introducing eCAN is not the main point of the paper,
please refer to [19] for details on eCAN construction as well
as its routing algorithm. Among the current proposals,
eCAN is probably the simplest in reaching O(logN) routing
performance by riding on the basic CAN protocols.

It should be noted that, eCAN is similar to Pastry in
that there exists flexibility in selecting the high-order neigh-
bors. When selecting a high-order neighbor, it can select the
node that is closest to the current node among all nodes that
are a member of the neighboring high-order zone.

Figure 1: An example of eCAN
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4 Generating Proximity Information
Finding an effective way to generate proximity information
is crucial for topology-aware overlay networks to work
well. The proximity information is usually used to partition
nodes into clusters [12], or to estimate the distance between
nodes directly [5].

As described in Section 1, three techniques have been
proposed to address this problem: expanding-ring search,
heuristics, and landmark clustering. With expanding-ring
search, to find a node that is closest to a particular node A,
node A first contact the nodes that it knows and then have
those contacted nodes in turn contact nodes they know until
a radius (in terms of network hops) is reached. The major
limitation of expanding-ring search is that node A has to
measure RTTs to a large number of nodes to obtain a rea-
sonable result. Heuristic based approaches are likely to con-
tact a smaller number of nodes, but they may stumble at
local minimum and fail in finding the closest node.

Landmark clustering is based on the intuition that
nodes close to each other are likely to have similar distances
to a few selected landmark nodes, although details may vary
from system to system. With landmark ordering (topology-
aware CAN), a node measures RTTs to each of these land-
marks and sorts the landmarks in terms of increasing RTTs.
Nodes with the same or similar landmark order are consid-
ered close to each other. In coordinate-based approaches[5],
the measured RTTs to landmarks are used to compute a
position in a Cartesian space for each node. The Euclidian
distance between nodes in the Cartesian space is directly
used as an estimation of network distance.

Because landmark clustering is a coarse-grain approxi-
mation, our study shows that it is not very effective in dif-
ferentiating nodes within close distance. To solve this
problem, we propose a hybrid approach that uses landmark
clustering only as a preselection process to locate relatively
close candidates, and then sorts the candidates based on the
landmark metric. Finally, it measures RTTs to a few top can-
didates to select the closest node.

To evaluate the effectiveness of the various approaches
described above, we compare three approaches with simula-
tion: expanding-ring search (ERS), landmark only, and our
hybrid “landmark+RTT” approach. The evaluations in
topology-aware CAN show that its performance is compara-
ble to a variant of the coordinate-based approach. Our study
confirms this finding. For the sake of clarity, we present
only the result for landmark ordering here. For heuristic
based approaches, there exists a great diversity among them.
Since they can be viewed as a kind of guided flooding, we
can get a flavor of their performance from the simple
expanding-ring search. The metric used to evaluate the
algorithms is stretch, defined as the ratio of the distance

Figure 3: Comparison of expanding-ring search (ERS) and
our hybrid approach in finding the nearest neighbor, using

topology “ts10k-large”.
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Figure 5: The effect of our hybrid approach in finding the
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Figure 6: The effect of expanding-ring search in finding the
nearest neighbor, using topology “ts10k-small”
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between a node A and its nearest neighbor found by the
algorithms to the distance between A and its ideal nearest
neighbor.

We use GT-ITM[18] to generate two transit-stub topol-
ogies with approximately 10,000 nodes each. The first
topology, “ts10k-large”, has 228 transit domains, 5 transit
nodes per transit domain, 4 stub nodes attached to each tran-
sit node, and 2 nodes in each stub domain. The second
topology, “ts10k-small”, differs from “ts10k-large” in that it
has only 25 transit domains, but there are 20 nodes in each
stub domain. Intuitively, “ts10k-large” has a larger back-
bone and sparser edge network (stub) than “ts10k-small”.
We choose “ts10-large” to represent a situation in which the
overlay consists of nodes scattered in the entire Internet and
only very few nodes from the same edge network join the
overlay. (The effect of generating a very small stub domain
is similar to first creating a stub domain with a large number
of nodes and then choosing only a few of them to join the
overlay.)

In the landmark approaches, we randomly choose 15
nodes from the topology as the landmarks. For expanding-
ring search, we construct a 2-dimensional CAN consisting
of all nodes in the topology. We randomly pick 1000 nodes
from the topology and report their average stretch. The
results are presented in Figure 3-6, where “lmk+RTT” is the
result of our hybrid approach. The first points on the
“lmk+RTT” series—the one with one RTT measurement—
corresponds to the results for the “landmark only” approach.

Three conclusions can be drawn from the figures. First,
expanding-ring search is not effective in finding the nearest
neighbor unless a large number (thousands) of nodes have
been tested, implying that heuristic approaches are also
unlikely to work well by visiting only a small number of
nodes. Second, landmark techniques on its own is not effec-
tive in finding the nearest neighbor, but our hybrid approach
greatly improve its accuracy with only a medium amount of
RTT measurements. Finally, finding the nearest neighbor in
a dense edge network is harder than that in a sparse edge
network, but the performance of our hybrid algorithm
improves quickly while the number of RTT measurements
increases.

On the whole, finding the nearest neighbor is a difficult
problem. For the “ts10k-small” topology, even our hybrid
algorithm has to test about 150 nodes to achieve a result
close to the ideal case, because the landmark technique can-
not differentiate nodes in stubs close-by. In designing topol-
ogy-aware overlays, this property must be considered.
Taking Pastry as an example. It heavily relies on the ability
to find the nearest neighbor for bootstrap, but its expanding-
ring search or heuristic algorithm cannot work well, as is
demonstrated in our experiments. Moreover, because of the
lack of global information, the bootstrap process transitively
relies on every node on the bootstrap route to find its nearest

neighbor, resulting in routes with increasingly accumulated
inefficiency.

5 Tuning towards Network Conditions
via Global State
Our experiments have shown that combining landmark clus-
tering with actual measurement is quite effective. The chal-
lenge is to effective use this information. Although Pastry’s
algorithms utilize the proximity information that is kept in
the overlay’s routing tables, the gossiping protocol they use
for overlay maintenance may require extensive message
exchanges to achieve reasonable accuracy in proximity
approximation, especially when the proximity information
kept in the overlay has already digressed from optimal. The
major limitation of their approach, to our opinion, is the
lack of global state.

We propose an alternative approach based on controlled
placement of global state to achieve good proximity approx-
imation without excessive massaging. In particular, we use
landmark clustering to control the placement of proximity
information such that information about nodes that are
physically close to each other are stored logically close to
each other in the overlay. Each node is assigned a landmark
number that reflects its physical position in the network. A
node uses its number to access relevant proximity informa-
tion in the overlay. Nodes in the system act as rendezvous
points for each other to discover nodes that are physically
close. To allow the overlay to effectively adapt to the dyna-
mism in the network, a node subscribes to relevant soft
states using its landmark number, and get notified as the
state changes necessitate neighbor re-selection. Based on
these techniques, we have implemented a topology-aware
overlay, and a scalable simulator on Linux machines.

In the sections that follow, we first describe the struc-
ture and content of the global state and how nodes use the
global state to perform proximity neighbor selection. We
then describe a pub/sub system that enables efficient over-
lay maintenance. Last, we present an evaluation of our tech-
niques via simulation. (In the appendix, we show how a
landmark number that approximates its position in the phys-
ical network can be generated.)

5.1 Structure and Contents of Global State
Without loss of generality, we use eCAN as the example,
but the techniques described here can be applied directly to
other overlay networks such as Pastry and Chord.

The basic idea is to use landmarks to generate proxim-
ity information and build “maps” of the proximity informa-
tion for various “logical regions” in the overlay. For eCAN,
a region is part of the Cartesian space (e.g., a high-order
zone), whereas for overlays such as Pastry, a region is a set
of nodes sharing a particular prefix. For each region, a map
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is constructed. It contains proximity information about all
nodes in the region, and is also stored on those nodes. When
such maps are available, any node y can find its physically
closest neighbor in a particular region Z by consulting an
appropriate map.

As is described in Section 4, we can use a position p in
a coordinate space to approximate a node’s position in the
physical network. We call such coordinate space, the land-
mark space. We show a simple way to do this, although
more sophisticated techniques [5] can be used. We pick n
landmark nodes that are randomly scattered in the Internet.
These nodes can be part of the overlay itself or standalone.
Each node measures its latencies to the n landmarks. For
node A, suppose that the measured latencies are <l1, l2, …,

ln>. We then position node A in an n-dimension Cartesian
space using <l1, l2, …, ln> as its coordinates. We call the
points landmark vectors. Figure 7 shows an example with
three landmarks.

Usually, a sufficient number of landmarks are needed to
reduce the probability of false clustering where nodes that
are far away in network distance are clustered close to each
other. As a result, the dimension of p is typically higher than
the dimension of the overlay itself. To solve the dimension
mismatch problem, we introduce a hash function

p’= h(p,dp, dz, z)
where dp is the dimension of p, z is the region in which p’s
proximity information is about to be stored, dz is the dimen-
sion of region z, and p’ is a position in region z. We call p’
called the landmark number of the node. With the hash
function, if p1 and p2 are two points close in the landmark
space, they will be mapped to two points that are close in
region z. We will show an example hash function in the
appendix.

Figure 8 illustrates this using eCAN as an example. In
this example, we store the information of a node n, whose
position in the landmark space is p, onto zone Z. We first
compute n’s position in Z by invoking the hash function
p’=h(p, 3, 2, Z). We store the triple <Z, n, p> as an
object in the node that owns p’.

As describe in Section 3, any node x is an owner of a
CAN zone and is also member of all the high-order zones
that enclose its CAN zone. For other nodes that are physi-
cally close to x to select x as a high-order neighbor, x’s
information needs to be published in maps corresponding to
those high-order zones. Therefore, there is one map for each
high-order zone in the system. (For Pastry, there is a map for
nodeId prefix for each level of the routing table). It follows
that each node will appear in a maximum of logK N such

maps. Assume that the total number of nodes N is 220 and K
is 4, this number is 10. We believe that this is not a big
issue.

The original node join procedure for CAN is slightly
modified, and we refer the readers to our technical report
[19] for more details. Now, when a node is looking for can-
didates in a high-order zone Z that is close to it, it uses its
own landmark number to index into Z’s map, as is shown in
Table 1

Note the map is stored among the nodes comprise the
target region. When a node uses its own landmark to index
into the map, it’s possible that the node it reached owns a
piece of the map recording no nodes. Techniques to deal
with this are discussed in [19]. Due to space limit, we only
explain the “condensed map” idea here. Simply put, the map
is stored in a fraction of region it covers. We define the ratio
of map size to the size of the hosting zone as condense rate
of coordinate map.

Figure 9 puts everything together with an example.
Figure 9-1 depicts 8 nodes (a to h) and their positions in the

Figure 7: Landmark space for 3 landmark nodes

L a nd m a rk 1

L a n d m ark 3

L a nd m a rk 2

N o d e 1: < l1 , l2 , l3>

N o d e 2: < l’ 1, l’2 , l’3> Figure 8: Compute n’s position in a Map

Let px be x’s position in the landmark space;
Map px to px’ in Z;
Route to the node y in Z that owns px’;
If (y’s map content is not empty)

Return map content
Else

Define a TTL to search outside y’s map content range.

Table 1: Procedures for locating the closest node in a zone

(1) Position of n in landmark space (2) Position of n on Map

Landmark2

Landmark3

Landmark1

n’s position in landmark space p

p

p’
Z

h( )
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landmark space with two landmarks. These nodes are dis-
tributed in a 2-d eCAN as shown in Figure 9-2, where a-d
and e-h correspond to two neighboring high-order zones.
Each node’s CAN zone are those small squares with
owner’s ID in shaded box. Without using the global state,
each node simply randomly pick one node from the neigh-
boring zone as its high-order neighbor. For instance, a can
select either e, f, g or h, without considering physical local-
ity. With the global state in place and with a map condense
rate of 1/4, we can do much better. In this case, a-d publish
their positions in the grid owned by a, where e-h publish in
the grid owned by e. Now when a selects its high-order
neighbor, it uses its own network coordinate and consults
the global state of its neighbor which is stored in e, and find
that e is physically closest. Thus a uses e as its representa-
tive for the zone that comprise e-h. Likewise, c will select f.

5.2 Overlay Maintenance using Pub/Sub
Because of the dynamic nature of the network, a node
should periodically check the target high-order zone’s map
to see whether more favorable nodes are available. The fre-
quency of the checking ideally should be conducted in a
demand-driven fashion when the network condition has
changed to an extent that necessitates a node to make a re-
selection of the neighbors. To accomplish this goal, we pro-
pose to introduce pub/sub functionality to the global state. A
node specifies the conditions under which it should get noti-
fied. This condition could be “notify me when 5 more nodes
have joined the zone”, etc. With the overlay already in
place, when the conditions are triggered, the notifications
can be efficiently disseminated to all subscribers through
distribution trees embedded in the overlay itself.

The accuracy of the global state can be lazily main-
tained. In the most reactive case, departed nodes are deleted
from the global state only when they are selected as high-
order replacements and later found un-reachable. Alterna-
tively, each owner of the map information can periodically
poll the liveliness of the nodes. The most proactive measure
is to update the map when a node is about to depart.

5.3 Evaluation of Algorithms
We use the topologies described in Section 3 to evaluate our
algorithms. With a given topology, “ts10k-large” or “to10k-
small”, we experiment with two ways to set latency for links
in the graph. The first one uses the default latency generated
by GT-ITM. In the second setting, the latency is set manu-
ally according to the following rules: 100ms for cross transit
links, 20ms for links connecting nodes inside a single tran-
sit, 5ms for links connecting a transit node and a stub node,
2ms for links connecting nodes inside a single stub.

We choose CAN with d=2 to give a reasonable fault-
tolerance capability. We conduct several sets of experi-
ments. Table 2 summarizes the parameters that we vary, and
default values we use throughout the experiments. The only
metric that we use is stretch defined as the ratio of accumu-
lated latency in the actual routing path to the shortest path
latency from the source to destination. Unless otherwise
stated, measurements are made for twice the number of
nodes in the overlay.

In the first set of experiments, we study the effective-
ness of varying the number of landmarks and number of
RTTs. In Figures 10-13, we show the results for landmarks
number 5 and 15, and varying the number of RTT measure-
ments from 0-30.

Figures 10 and 11 compares the difference between
topologies with latencies set by GT-ITM and manually. The
optimal value corresponds to the results when the number of
RTT measurements is infinity, meaning that the routing
neighbor is the closest one in the target zone. As we can
observe from the figures, increasing the number of land-
marks is more effective for topology with latencies set man-
ually. This is because the landmarks can better cluster the
nodes when the latencies are more regular. When latencies
are more regular, the distances to different landmarks can
better differentiate the positions of nodes in the system. For
the same reason, the stretch better approximates the optimal
for the topology with link latencies set manually.

Figures 12 and 13 shows the stretches when varying
number of landmarks and RTT measurements for the topol-
ogies with small transits. As we can see from the figures,

Figure 9: Storing and retrieving coordinate maps

a
b d

e

f

g

h

c

c a

d b

g e

h f

e
f

g
h

a b d

c

(1) (2)

Parameters Default Range

# nodes 4096 512-8192

# landmarks 15 5-15

# RTTs 20 0-30

landmark vector index 5 5

Map condense rate 0.1 0.1

Table 2: Parameters for the experiments
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varying the number of landmarks is not as effective for
topology with small transits as for topology with large tran-
sits. This is because the distance variation in a small net-
work is smaller than that in a large network, requiring
smaller number of landmarks to differentiate nodes at a
coarse grain. Because the penalty of choosing a suboptimal
route in a small network is less severe than that in a large
network, its performance is also closer to optimal. Same as

topologies with a larger transit, topology with latencies set
manually tend to perform better.

In the second set of experiments, while fixing the num-
ber of landmarks to 15, and the number of RTT measure-
ments to 20, we vary the number of nodes in the system and
compare the performance improvement over the default
case where routing neighbor is selected randomly from the
target zone. The results are shown in Figure 14 and
Figure 15.

Figure 10: 10k nodes with large transits. Number of nodes in
the overlay is 4096. Latencies set by GT-ITM

Figure 11: 10k nodes with large transits. Number of nodes in
the overlay is 4096. Latencies set manually

Figure 12: 10k nodes with small transits. Number of nodes in
the overlay is 4096. Latencies set by GT-ITM
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Figure 13: 10k nodes with large transits. Number of nodes in
the overlay is 4096. Latencies set manually

Figure 14: Topology with latencies set by GT-ITM.

Figure 15: Topology with latencies set manually.
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We can observe the following from the two figures: (1)
introducing global state via landmark clustering improves
the stretch by 50~75%. (2) The improvement is more signif-
icant for topologies with small transit and large stub graphs.
This is because the less severe penalty for choosing a subop-
timal route. (3) The performance difference between topolo-
gies with small and large transit is more prominent when the
latencies are set manually. This is because the distance
among nodes in a stub graph is more regular.

We also studied the effect of map condense rate and
found that as long as there are about 30 entries on each
node, the performance impact is negligible. To give the
reader a flavour, Figure 16 shows an example for the topol-
ogy ts10k-large with latency set by GT-ITM. In the figure,
the dashed line shows the number of map entries per node
and the solid line shows the corresponding stretch. Because
landmark clustering tend to cluster nodes together in the
landmark space, we have to set map reduction rate larger
than 1 to actually enlarge the map to cut down number of
map entries per node.

We have planned to quantitatively compare our results
with other topology-aware overlays such as Pastry. Unfortu-
nately, the simulator that we downloaded from the Pastry
site ran out of memory when running configurations compa-
rable to those used in our experiments. The readers may
notice that some of the Pastry numbers are better than ours.
This is mainly because of two reasons: First, the backbone
sizes of the topologies we have used are perhaps the largest
in most studies, which is closer to the real Internet. Compar-
ing the results for large and small transits in Figure 14 and
Figure 15 conforms that it is easier to achieve good
stretches with smaller backbones. Second, the optimal num-
bers reported in Pastry assumes that a node is always able to
find the physically closest node at node join, and the net-
work is able to completely repair itself as nodes join and
depart. This requires excessive message exchanges without
a global state.

5.4 Pushing Limits of Overlay Performance
In an ideal world, the performance of a topology-aware
overlay should be able to approximate that of IP routing. In
reality, we can observe two performance gaps in Figure 10
to Figure 13.

The first gap is between shortest paths and the optimal
cases where eCAN can always find the nearest high-order
neighbor that satisfies the prefix constraint. This is the value
of the stretch curve corresponds to the “optimal.” The
increase is about 100~150%. This is the price for meeting
prefix constraint in selecting neighbors. Without this con-
straint, P2P routing stretch can be reduced to 1, using a pro-
tocol [20] similar to the distance vector algorithm, but it has
limitations as described in Section 2. This gap is the price
for the DHT abstraction and tolerance for network dyna-
mism.

The “landmark+RTT” approach we used adds the sec-
ond performance gap on top of the “optimal” stretch
imposed by overlay constraint. The good news is that our
technique cuts down 50~75% latency when compared with
random neighbor selection, and approaches the “optimal”
for topology with smaller backbones. Additional optimiza-
tions can only improve this second gap. We include some of
the ideas below.

The first approach is to divide a large number of land-
marks into groups, and each node computes a set of land-
mark positions. All these positions are then joined together
to eliminate false clustering. A second approach is to per-
form hierarchical measurements, a small widely scattered
landmarks are used to do a preselection, and localized land-
marks are then selected to refine the result.

Our third approach is more radical. We propose to use a
large number of randomly selected landmarks and rely on
classical data analysis techniques such as Principal Compo-
nent Analysis and Singular Value Decomposition to auto-
matically extract useful information from the large number
of RTTs and to suppress noise. Given the preprocessed land-
mark information, we use artificial neural network to auto-
matically learn an optimal function to estimate Internet
distance. Our preliminary results on this approach has
shown one order of magnitude improvement in the accuracy
of distance estimation. We are currently working on inte-
grating it into our topology-aware overlay and expect its
performance to approximate that of the optimal case.

6 Other Uses of Global States
The advantage of global state can be explored in other areas
as well. Examples include congestion control, meeting qual-
ity of service (QoS) guarantee, taking advantage of hetero-
geneity in storage capacity and forwarding capacity, etc.

Nodes that are situated close to routers and gateways
tend to have better forwarding capacity than other nodes in

Figure 16: Effect of varying number of map entries / node.
4096 measurements are made for 4096 nodes in the overlay

0

50

100

150

200

250

0 0.1 0.2 0.4 0.8 1.6 2.4
Map reduction rate

M
ap

en
tr

ie
s

/
n

o
d

e

0

1

2

3

4

S
tr

et
ch

map entries / node

stretch



10

the system. The dynamic nature of the Internet traffic also
causes the load at nodes to flux, which may cause tempo-
rarily congested bottleneck for the system. To better balance
the traffic based on each node's capacity and current load, a
node periodically publishes these statistics along with its
proximity information. Nodes can trade off network dis-
tance with forwarding capacity and current load while
selecting neighbors. A full set of algorithms balancing for-
warding capacity with traffic is offered elsewhere [21].

If a node concerns QoS, it can subscribe not only to
proximity information but also to the load statistics, specify-
ing the conditions under which it should be notified, e.g.,
“the selected neighbor is handling 80% of its maximum load
capacity”. When such a condition is triggered, the node
starts a new round of neighbor selection in order to find bet-
ter routes.

7 Conclusion
The central concepts of our proposals include the following:

1. Combining landmark clustering and RTT measurement
for proximity information generation.

2. Controlled placement of system information (such as
proximity and load information) as objects stored on
the system itself, in a way that is easy to update and
retrieve.

3. Pub/sub functionality that allows nodes to subscribe to
the relevant soft-state using its landmark number as the
key, and get notified as the state changes necessitate
neighbor re-selection.

Our techniques are essential in exploiting the underly-
ing conditions for overlay network construction and mainte-
nance. The techniques are generic for overlay networks
such as Pastry, Chord, and eCAN, where there exists flexi-
bility in selecting routing neighbors, and for constructing
unconstrained auxiliary network as described by Xu et al
which can deliver optimal routing performance [20].
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APPENDIX: Space-Filling Curves as
Hash Function

As we mentioned earlier, the difficulty in storing the posi-
tion in landmark space of the nodes is that the landmark
space is of relatively high dimension, whereas the overlay
itself can be of a relatively low dimension. We show an
example of how to solve this problem using space-filling
curves.

Space-filling curves map points in the domain R1 (the

domain of real numbers) into Rd (a d-dimension Cartesian
space) such that the closeness relationship among the points

is preserved. If two points are close to each other in R1, they

will also be close to each other in Rd. One example of
space-filling curves is the Hilbert Curve [1]. The Hilbert
curve is defined recursively. For an approximation level
equal to 1 it is a point. For an approximation level equal to
3, it looks similar to Figure 17-2. For each higher approxi-
mation level, we subdivide the entire space into four sub-
zones and copy a shrunken and possibly rotated version of
the current approximation into each sub-zone.

We partition the landmark space into 2nx grids of equal
size (where n refers to number of landmarks and x controls
the number of grids used to partition the landmark space),
and number each expressway node according to the grid
into which it falls. We call this number the landmark num-
ber of the node. Closeness in landmark number indicates
physical closeness. The smaller the x, the larger the likeli-
hood that two nodes will have the same numbering, and the
finer grain the physical proximity information.

Given the landmark numbers, they can be used as keys
to store information of nodes such that information about
nodes that are physically close are stored logically close to
each other on the overlay. For CAN, we can partition a zone

into grids, and store the information about a node in a grid
depending on its landmark number, again using a space-fill-
ing curve (see Figure 17-2). In the case of Chord, we can
simply use the landmark number as the key to store the
information of an expressway node on a node whose ID is
equal to or greater than the landmark number. In the case of
Pastry, we can use a prefix of the node IDs to partition the
logical space into grids.

Using space-filling curve to reduce a high dimension
landmark vector can introduce inaccuracy. As an optimiza-
tion, in stead of using the entire landmark vector to generate
the corresponding landmark number, we use only a few
components of it (say 5) to compute a landmark number. We
call this subset the landmark vector index. A node uses its
landmark number as key to access a map. Once it a map
lookup request reached the destination node, the full land-
mark vector of the requesting node is used to sort the infor-
mation of nodes published on that node. A maximum of X
nodes that are closest to the requesting node is sent back.
The requesting node then measure RTTs to this X nodes and
record the node that has the smallest RTT value.

Figure 17: Mapping 3-dimensional landmark space to 2-
dimension using space curve filling
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