A Toolkit for Building Dependable and Extensible Home Networ king Applications

Yi-Min Wang
Wilf Russell
Anish Arora

Feb. 14, 2000
Updated May 18, 2000

Technical Report
MSR-TR-2000-07

Microsoft Research
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052

To appear in Proc. 4" USENIX Windows Systems Symposium, August 2000.
The original publication of this paper was granted to USENIX. Copyright to thiswork is retained by
the authors. Permission is granted for the noncommercial reproduction of the complete work for
educational or research purposes.

From your laptop to your garage door,
From your flooding basement to your cell phone,
MSR Aladdin

Lets you
Connect to your house at any time, from any place,
on any device

Working scenarios:

« Automatic device discovery and location mapping
o Plug a lamp into an outlet in the kitchen and turn it on, the
system instantly knows that a new lamp is now available in the
Kitchen.

» Natural language-based home automation
o0 “Turn on the lights on the garage side of the kitchen.”

» Emalil-based remote home automation
0 Send a secure email to close your garage door.

» Cell phone-based remote notification
0 Get acel phone call when your basement is flooded.

A Toolkit for Building Dependable and Extensible Home Networ king Applications

Yi-Min Wang Wilf Russdll Anish Arora
Microsoft Research Microsoft Research Ohio State University
Redmond, WA Redmond, WA Columbus, OH
in a house with rea users, we have identified
Abstract

Dependability and extensibility are two of the key
requirements to successful home networking. In this
paper, we describe the design and implementation of a
software development toolkit for building dependable
and extensible home networking applications. A
reliable Soft-Sate Store (SSS) is implemented as a
shared infrastructure to smplify robust distributed
programming against device and object failures. SSS
supports multi-timescale refreshes and selectively uses
persistence to accommodate the battery power and
network bandwidth constraints in the home networking
environment. A publish/subscribe event system allows
any changes in the SSSto be propagated to interested
subscribers, which then perform appropriate adaptive,
corrective, alerting, or cleanup actions. An Attribute-
Based Lookup Service (ABLS) and a Name-Based
Lookup Service (NBLS), both implemented on top of the
SSS for robustness, provide a level of indirection for
supporting extensibility as well as allowing user-
friendly, natural language-based access. We
demonstrate the use of the toolkit for building a home
networking system in an actual deployment. We
describe two end-to-end remote home automation
applications, present performance results, and report
our experiences.

1. Introduction

The success of the Web has demonstrated the great
power of being connected. As the world increasingly
moves towards a fully connected one, home networking
that connects smart household appliances together and
connects them to the Internet becomes the natural next
step. The smplest form of home networking has
emerged to allow the sharing of files, printers, and
Internet connections, and to enable networked PC
games. The next wave of advanced home networking
applications will include family communications,
device automation, digital Audio/Video (A/V)
distribution, remote maintenance of household
appliances, etc.

In the Aladdin home networking project, we focus
on building end-to-end user scenarios and using those
to drive the design and implementation of the required
system infrastructure. Based on our experience in
implementing and depl oying a home networking system

dependability, extensibility, user-friendly interface, and
remote access capability as the four key requirementsto
useful and successful home networking. Dependability
ensures that failures of hardware devices and software
objects will be detected, appropriate recovery or
cleanup actions will be performed, and homeowners
will be alerted if necessary. Extensibility allows any
new device to be plugged into any of the in-home
networks (phoneline, powerline, wireless, etc.) and
become available to al existing applications. User-
friendly interface allows usersto control appliances and
retrieve information in a natural way. Remote access
capability lets homeowners connect to their homes at
any time, from any place, and on any device.

In this paper, we give an overview of the Aladdin
system and software architectures for addressing the
above issues. We then focus our attention on the system
infrastructure provided by the toolkit that we have
constructed to smplify the task of building dependable
and extensible home networking applications. Finally,
we describe two end-to-end remote home automation
applications to demonstrate the power of the toolkit and
to evaluate its performance.

Compared to traditional networked environments,
the home networking environment is more
heterogeneous and dynamic. It is heterogeneous
because consumer devices manufactured by different
vendors, connected to different networks, and running
different protocols are likely to coexist. It is dynamic
because these consumer devices tend to connect,
disconnect, move, fail, etc. more often. We propose a
Soft-Sate Sore with Publish/Subscribe eventing and
lookup services built on top of the store as a uniform
framework for robust management of diverse devices,
where soft-state is defined as volatile or nonvolatile
states that will expire if not refreshed within a pre-
determined, but configurable, amount of time. Both
hardware devices and software objects periodically
announce their existence and optionally their states to
the soft-state store, which may consist of multiple
individual stores distributed throughout the system.
When a device/object fails or gets disconnected, its
corresponding soft-states eventually time out. Such
changes to the soft-state store generate events to all
interested subscribers, which then perform appropriate
actions to adapt to the changes.

The paper is organized asfollows. Section 2 givesan
overview of the system and software architectures of
the Aladdin home networking system. Section 3
describes the design and implementation of the soft-
state store, the event system, and the lookup services.
Section 4 describes two remote home automation
applications built with the toolkit. Section 5 reports our
experiences from the actual usage of the system.
Section 6 discusses related work, and Section 7
summarizes the paper.

2. Overview of the Aladdin System

2.1. Distributed System Architecture for Home
Networking

Figure 1(a) illustrates an ideal home networking
system where the house is wired for running Ethernet
and most devices are smart, networked devices
connected directly to the Ethernet and running device
control software themselves. A home gateway machine
sts between the home network and the external
communication infrastructures including the Internet
and telephony. User Access Points (UAPs) are wall-
mounted or stand-alone flat-pand displays deployed
throughout the house to allow convenient access to in-
home information (calendars, etc.) as wel as the
Internet from anywhere in the house. UAPs al so expose
Web-based, natural language-based, and voice-based
interfaces for remotely controlling household devices
and for monitoring environmental factors through
remote sensors. Network bridges are provided for
bridging devices on other communication media such
as the powerline, Radio Frequency (RF), InfraRed (IR),
and A/V cablesto the Ethernet backbone. Such devices
do not directly connect to the Ethernet for various
reasons including legacy, cost, security, market
competition, etc.

Since smart devices are not yet generally available,
the current Aladdin system accommodates existing
devices by using multiple Windows 98 PCs and their
peripherals to serve as both User Access Points and
network bridges, as shown in Figure 1(b). (Six PCs are
used in this deployment.) The PCs also act as device
proxies by running device control software on behalf of
the devices. The system is deployed in thefirst author’s
three-story house and used by the author on a daily
basis.

The PCs are all connected by 1Mbps to 10Mbps
Ethernet over the phoneline [H98]. Since the powerline
in the house has serious signal attenuation problem that
prevents the low-cost consumer powerline devices from
reliably communicating between any two outlets,
powerline control requests arefirst routed to the PC that
is (electrically) closest to the target device and then
bridged to the powerline. Similarly, battery-operated

RF devices such as the motion sensors and door sensors
are usually short-ranged to preserve battery power. RF
signals transmitted by these sensors are recelved by PCs
within their ranges and bridged to the phoneline
network to reach other parts of the house. Although
currently most Aladdin applications do not require the
full processing power of the PCs, they will be useful in
the future for running potentially computation-intensive
smart-home software including location tracking,
person identification, voice recognition, learning, €tc.
[S+98][MO8][Es99]. In total, the current Aladdin
system consists of about 60 devices.

User Networked Networked
Access Video Thermostats
Point Cameras
(UAP)
Other
Networked Networked
Sensors Devices Ethernet
| | Backbone
]
Powerline RF IR AV
Bridge Bridge Bridge Bridge Home
l : . \ Gateway
Powerline RF IR AV
Devices Devices Devices Devices
@
Master Bedroom Bonus Room Phondine
UAP (Win98) UAP (Wing8) Ethernet
I I Backbone
Den Kitchen UAP Family Room
Garage UAP (Wing8) Home
UAP (Wing8) Gateway
(Win98) Seria USB (Win98)
Ports Ports \
AV & IR P /I Video
owerline Camera
Brcge Bridge

AN Powerline \

RF
Transceiver Sensors

(b)

Devices Devices

Figure 1. Distributed system architecture of the Aladdin
home networking system. (a) Ideal future architecture;
(b) Current architecture (only the peripherals of the

kitchen UAP are shown; all the other UAPs have
similar setup).

2.2. Softwar e Architecture

Figure 2 shows the overall software architecture of
the Aladdin system, which provides an abstraction over
the hardware devices, and connects them to external
communication infrastructure. We give a brief
overview of al three layers in this section, and will
focus on the system infrastructure layer in the
remainder of the paper.

1. System infrastructure: At the bottom layer, the
system infrastructure consists of five components. The
soft-state store manages the lifetime and replication of
soft-state variables acrossindividual data stores on each
machine. It supports a Pub/Sub eventing mechanism
that allows programs to subscribe to events related to
changesin the store. The attribute-based lookup service
maintains a database of all available devices and
supports queries based on device attributes such as
device type, physical location, etc. The name-based
lookup service maintains a table of all running object
instances and supports simple name-to-object-address
mapping. The device announcement protocol describes
how devices not connected to the main Ethernet
announce their existence to the attribute-based |ookup
service. An Aladdin Device Adapter has been built to
implement an instance of that protocol for powerline
devices. Finally, the system management daemons are
responsible for detecting the failures of PCs and
devices, and initiating recovery actions. We do not
cover thislast infrastructure component in this paper.

2. Application layer: There are two types of home
networking applications in the current Aladdin system.
In the control-type scenario, the applications receive
user requests as input, consult the lookup services to
identify the devices and device objects that should be
involved, and perform actions on them to satisfy the
request. Device objects encapsulate device- and
network-specific details and present interfaces (sets of
method calls) as the programming abstraction for
device control. Examples are camera objects for taking
snapshots and recording video clips, garage door opener
objects for operating the garage doors, €tc.

In the sensing-type scenario, the applications monitor
a list of environmental factors and take actions when
any of the monitored events happens. Through the
ABLS, the applications identify the appropriate events
to subscribe to. Independently, device daemons act as
proxies for sensors by monitoring sensor signals and
updating appropriate soft-states to trigger events. For
example, an aerting application running on every User
Access Point subscribes to al events corresponding to
critical sensors (water sensors, temperature sensors,

safe-box sensors, etc.) and will sound alerts when any
of the sensorsfires.

Most commercial home networking products for
intelligent sensing and control tend to be closed
solutions limited to a single communication medium
and are not extensible. Aladdin’s approach of relying
on the soft-state store, pub/sub eventing, and lookup
services to tie together devices connected to different
communication media provides a unique opportunity
for constructing versatile applications.

(Internet 5
I
- Cell phone 4T
Text messaging Mini browser

| Email Daemon | | Voice Recognition | | Browser Interface |

User
| Interface

| Home Networking Applications |

Application
.) Layer
Device Device
Objects Daemons
N S e
System
v Infrastructure
Name- and
Device Attribute- System
Announc. Based Management
Protocol Lookup Daemons
7y Services |
Pub/Sub Eventing
Soft-State Store
Devicesand Wingg PC Wingg PC
Sensors 10Mb/s or
(Powerline, RF, 1IMb/s
IR devices and HomePNA
PC peripherals)

Figure 2. Software architecture of the Aladdin home
networking system.

3. User interface: Unlike most other distributed
systems, home networking systems are to be used by
naive computer users and so providing friendly user
interface is especially important. The current Aladdin
system supports three forms of user interface: a browser
interface that allows the user to browse through al
available devices or select devices based on attributes,

and to contral devices through point-and-click; a text-
based natural language interface based on alimited but
customizable vocabulary; and a voice-based interface
that employs speech recognition technology based on
the same vocabulary. All three forms are available for
in-home use. They are aso being extended to support
remote home automation when the user is away from
home. When DSL or cable modem is available, the
same browser interface can be used from remote
locations. The text-based natural language interface has
been extended to an email-based remote home
automation interface. The user can send an email
containing a control request to an account hosted by an
Internet Service Provider (ISP). (Current deployment
uses Microsoft Network, MSN.) The Aladdin email
daemon periodically dials up the ISP, retrieves and
parses the request, performs the actions, and sends a
reply email that may optionally contain video clip(s)
confirming the actions. In addition to the standard
security mechanisms such as digital signatures and data
encryption, the home control vocabulary can be
customized to provide additional security. Through the
text messaging support provided by cell phones, the
email daemon can almost synchronously alert the users
wherever they are when, for example, any of the critical
sensors fires at home. Work on extending the voice-
based interface to work reliably over telephony is till
in progress.

3. Home Networking Toolkit

The Aladdin home networking toolkit currently
consists of seventeen thousand lines of code packaged
as several DLLs and EXEs. In this section, we describe
the motivation and design of each component, followed
by their specific implementations on Windows 98 and
the Application Programming Interfaces (APIs). The
soft-state store manages the timeouts and propagation
of soft-state variables, and provides a generic
publish/subscribe eventing mechanism that reflects any
changes to the store. The name-based lookup serviceis
implemented on top of the soft-state store, which
actually stores and maintains the table of lookup service
entries. In contrast, the attribute-based lookup service
stores the entries in a database to support queries, while
creating a soft-state variable for each entry to manage
the timeouts and eventing. Both lookup servicesregister
an event callback conversion module with the soft-state
store to convert generic events into their respective
domain-specific events. Most applications interact with
the system through higher-level lookup services APIs.
But the low-level soft-state store APIs are also
available.

3.1. Soft-State Store with Eventing

Consder the common requirements for the
following scenarios. when a battery-operated garage-
door sensor runs out of battery, the system should
detect the failure and alert the user; also, it should
discard the previous state of the sensor so that home
networking applications do not perform erroneous
actions based on stale data. When a device suddenly
gets disconnected from the system and when an object
gets terminated abruptly, their corresponding entriesin
the lookup services should eventually expire to allow
the system to reclaim the space of those entries and to
minimize the chance of client applications getting stale
information and potentially malfunctioning. When an
essential daemon process fails either due to machine
crash or process termination, the system should be able
to detect the failure and either reset the machine or
restart the daemon.

To address the above issues, either the system needs
to ping the sensor/device/object/daemon or the latter
need to send periodic heartbeats or refreshes to the
system. Traditionally, systems with homogeneous and
relatively static parts are maintained in terms of
“hard” -states that are updated upon demand by pinging
the parts. By way of contrast, in the heterogeneous and
dynamic environment of home networking, it is
preferable to maintain systemsin terms of “ soft” -states
that are updated periodically by refreshes from the
parts.

There are several reasons for preferring soft-states to
hard-statesin Aladdin. First, to keep the dollar cost low,
many consumer sensors are transmittersonly and do not
support pinging of their status. Second, since many
network protocols, object models, and programming
paradigms (distributed objects, wire protocols, etc.) are
likely to coexist in home networking systems due to
market competition, it will not be practical to require
the system to ping all devices and objects with various
protocols, models and paradigms. Third, the
devices/objects being pinged may hang the pinging
operations, thereby complicating system robustness.
Finally, hard-states complicate the recovery tasks of
daemons and protocol s upon system crashes. By relying
on the refreshes to reconstruct lost data, soft-states
greatly smplify the recovery tasks. By the same token,
they also simplify maintenance of information about
devices that leave the system spontaneously and
without announcements.

To smplify the development of home networking
applications based on soft-states, we implemented a
Soft-Sate Store (SSS) that serves as a shared
infrastructure for managing and propagating soft-states
across different applications and machines. A provider
of a soft-state variable specifies the refresh interval and

the threshold number of missing refreshes before the
variable is timed out. The SSS is responsible for
maintaining the time-to-live timers for all providers.

An event system is built on top of the SSS to allow
applications to subscribe to events related to data
changes in the SSS. Subscribers of events can be
notified, for example, of (1) the falure of a critica
system daemon so as to perform fail-over recovery, (2)
the addition of a new device so as to adapt to the new
overal device availability, (3) the failure of a device so
as to raise an aet to the users, and (4) the
disappearance of a resource-consuming entity so as to
perform cleanup actions. Subscriptions themselves are
maintained in the SSS and periodically refreshed by the
subscribers.

As will be demonstrated in the lookup service
section, some of the refreshes in the home networking
environment cannot be peformed with high
frequencies. Low-frequency refreshes ranging from a
couple of hours to a day may be necessary to
accommodate power constraints of battery-operated
commodity devices and sensors, and the bandwidth
limitations of some of the in-home networks. Thisisin
contrast to the conventional case where the refresh rate
is as high as every few seconds or minutes, as a result
of which it is adequate to store the soft-states in volatile
memory and, upon a system failure, to rely completely
on the high-frequency refreshes for recovery.

To ensure acceptable data quality for soft-states
whose refresh frequency is low, weintroduce the notion
of persstent soft-states. By maintaining these soft-
states in persistent storage, the SSS can recover them
after total system failures without waiting for a long
time until the next refresh. For example, reliableremote
operation of the garage door can be resumed
immediately after system failure without waiting for the
door sensors to refresh their statesin up to 90 minutes.
One must, however, pay special attention not to restore
potentially stale, persisted soft-states. Each persisted
soft-state variable is time-stamped with the latest
refresh time, and the number of missing refreshes is
also recorded. When the persistent file is used after a
recovery to restore part of the soft-state store, the
current time is compared with the time stamp of each
variable and the time difference divided by the refresh
interval is used to increase the number of missing
refreshes. That is, any potential refreshes that may have
happened during the system downtime are treated as
missing refreshes. Any variable with the adjusted
number of missing refreshes exceeding the threshold is
not restored.

The Aladdin system is subject to a variety of faults
that are weaker than total system failures but must be
considered as they affect the freshness and availability

of SSS data. At least one PC, typically the home
gateway machine, is connected to an Uninterruptible
Power Supply (UPS) so that short power outages do not
cause total system failures. Upon a PC reboot, SSS
maintains a leader that allows the rebooted PC to catch
up with the SSSreplicas: the leader streamsits cache of
soft-states to the rebooted PC over the phoneline
Ethernet, thus minimizing the staleness of SSS dataand
the outage period of SSS service at the latter.

| mplementation

The soft-state store implementation consists of a
COM (Component Object Modd [B98]) EXE server
and a client-side COM DLL. It supports two interfaces.
The |SoftStateStoreAdmin interface contains the
following methods:

* Register SoftSateTypes() and
RemoveSoftSateTypes() for defining and removing
custom types and sub-types of soft-state variables,

respectively; for example, the
CRITICAL_SENSOR type is registered as a
subtype of the SENSOR type.

» ChangeTimeoutOnVar() and

ChangeTimeoutOnSubscription() for manipulating
the metadata of soft-state variables and event
subscriptions. Specifically, they alow changes to
be made to the refresh intervals and the threshold
number of missing refreshes.

The second interface, | SoftStateStore, consists of ;

* RegisterSoftSateVars() and RemoveSoftStateVars()
for creating and deleting individua soft-state
variables of particular types, respectively.
Register SoftSateVars() also takes as input a flag
indicating whether auto-refreshes are requested. If
the flag is set to true, the client-side SSS DLL
automatically sends periodic refreshes on the
client's behalf. When the client application
terminates without removing itsvariables, the DLL
also dies and the variables will eventually time out.

e SetValug() and GetValue() for setting and
retrieving the values of variables, respectivey;
GetValue() can optionaly return the current
number of missing refreshes and time to next
planned refresh. Applications can use such
information on potential data staleness to perform
different actions, if desirable.

* GetVarsOfType() returns the names and values of
all soft-state variables and optionally subtypes of a
particular type.

* SubscribeEvents() and UnsubscribeEvents() for
subscribing and unsubscribing events related to the
changes of individual soft-state variables or all
variables of certain types. The subscriptions

themselves are soft-states as well so that the system
can remove sale subscriptions when the
subscribers terminate without performing proper
cleanup. The subscriptions, however, are only local
and not replicated to other machines.

The callback address supplied as part of the input
parameters to a SubscribeEvents() call isin the form of
a unique NBLS name, to be described shortly, to allow
late binding. When the SSS needs to fire an event to a
subscriber, it resolves the name at that time through the
NBLS to obtain the subscriber’'s up-to-date addresses.
This late-binding model is essential for coping with
failures, recoveries, and mobility of the subscribers, and
is particularly important for subscriptionsto rare events.
If asubscriber usesthe COM programming paradigm, it
must support the |SSSNotify interface and announce the
(marshaled) interface pointer to NBLS. |SSSNotify
consists of four methods:

* Added() is invoked when a new soft-state variable
is added to a subscribed type;

e Changed() and Deleted() are invoked when a
variadble or type is updated and deleted,
respectively. A flag in the Deleted() call indicates
if the deletion was the result of an explicit removal
operation or expiration due to missing refreshes.

* MetaUpdate() notifies the subscriber that metadata
associated with the variables or types have been
changed. This is especialy useful should the
system need to change the timeout parameters
when demand for a particular soft-state variable
decreases, SSS load increases, or A/V applications
demanding high bandwidth are being started.

3.2. Lookup Services

Lookup services are the key to extenshility. By
providing one level of indirection, lookup services
allow devices and objects to dynamicaly join the
system and be available to client applications. In the
home networking environment, we have found it useful
to divide the lookup services into two layers. At the
upper layer, the Attribute-Based Lookup Service (ABLS)
maintains a database of available devices, sensors,
installed software modules, etc. It supports queries
based on a combination of attributes and returns alist of
unique names (called NBLS names) identifying the
matching items. For example, the query
“device=curtain and floor=1" returns the names of all
first-floor curtains. At the lower layer, the Name-Based
Lookup Service (NBLS) maintains a table of available
software objects. It takes a unique name as input and
returns a list of “addresses’ that can be used to contact
the target object. For example, the unique name
“living_room_curtain” may generate an NBL S response

that contains two addresses for reaching the curtain
object: one can be unmarshaled into a DCOM pointer
for making synchronous calls, and another one can be
unmarshaled into a handle to a message queue for
making asynchronous calls. Both ABLS and NBLSrely
on the soft-state store for robustness against sudden
disappearances of devices and objects.

3.2.1. Attribute-Based L ookup Service (ABLS)

Attribute-based lookup service provides the
foundation for user-friendly naming of devices. Instead
of identifying each device by its low-leve
communication address, an Aladdin user identifies each
device by its physical location in the house, which isa
notion most familiar to the user and especialy useful
for remote automation; for example, “the lamp on the
garage side of the kitchen” or “the VCR on the second
floor”. Since most of the devicesin the current Aladdin
system are ordinary, non-Ethernet devices, the main
challenge is to devise a mechanism that would allow
such devices to announce their attributesintothe ABLS
and to automatically include their physical location
information in the announcement.

To address the above issue, we introduce the concept
of an Aladdin Device Adapter (ADA), which serves as
the representative of an attaching device to participate
in the Aladdin lookup service-based system. To make
the presentation more concrete, we will describe the
ADA in the specific context of the X10 powerline
control protocol [S98]. The general concept is
applicable to other communication media and protocols
aswell.

The X10 protocol alows for 256 unigque addresses,
each of which is specified by a house code (A through
P) and a unit code (1 through 16). To allow a device to
announce its physical location, we perform a one-time
configuration task by assigning a unique X10 address
to every outlet that the user would like to control, and
storing in ABLSthe mapping of the addressto the set of
physical location attributes associated with the outlet.
For example, the address K3 may be assigned to an
outlet on the garage side of the kitchen. To connect an
ordinary device to an outlet, the device is plugged into
an Aladdin Device Adapter and the Adapter is plugged
into the outlet. Similar to the common X10 receiver
modules, the Adapter has two dials for setting its X10
address, which in our scheme must be set to the address
assigned to the outlet. The Adapter also has athird dia
for selecting a device code among a pre-defined set of
codes (“1” for lamps, “2” for fans, etc.) to indicate the
type of the attaching device.

The Aladdin Device Adapter performs three tasks:
announce, revoke, and refresh. When the device is
switched on (and hence available for remote contral),

the Adapter detects that through an AC current sensor
and announces the device code and the X10 address
over the powerline in the form of an extended X10
code. Device daemons running on a subset of PCs
receive such an announcement and register with the
ABLS (see Figure 2) the received device code and X10
address, which getstrandated into the device' s physical
location information. The PCs also register themselves
as the proxy controllers that can be contacted to
instantiate appropriate device objects to control the
device. When the device is broken or unplugged from
the Adapter, the Adapter detects that through the
current sensor and sends out another extended X10
code to indicate that the device has | €ft the system. The
receiving PCs then contact the ABLS to remove the
device entry. The Adapter is aso responsible for
sending periodic announcements so that the proxy
controllers can refresh the soft-state ABLS entry for the
device. When the Adapter itself is unplugged from the
outlet, the periodic refreshes stop and the device's
ABLS entry will eventually be timed out to reflect the
fact. Since powerline has limited bandwidth and
devices do not join and leave very often, the refresh
rates used by the Adapters are typically in the order of
hours.

Sensors refresh their ABLS entries through a similar
bridging process performed by the device daemon.
Some existing low-cost consumer sensors already
follow the soft-state model by sending periodic
announcements approximately every 90 minutes. To
participate in the ADA protocol, they need to be
enhanced with a third dia for selecting the sensor type
code. Since many consumer Sensors operate on batteries
to alow flexible installation, such low-frequency soft-
state refreshes are particularly important for conserving
battery power. Sensor refreshes in fact announce more
than just the existence of a sensor; they also provide the
current state of the sensor since most consumer sensors
do not support palling of their states. Such state
information also residesin ABLS and will expire at the
same time the associated lookup service entry expiresto
prevent any client applications from accessing the stale
state of a broken sensor.

| mplementation

We took the wire protocol approach in the design of
ABLS. Any smart device that plugs into the phoneline
Ethernet can interact with the ABLS directly by
generating messages conforming to the wire protocol. A
COM API layer is defined on top of the wire protocol
to simplify ABLS programming on PCs, currently the
only Ethernet devicesin the system.

The ABLS wire protocol specifiesthe XML tags for
the request and response of two groups of operations:
administrative operations and service operations. The

first group includes operations involving the definition
of the vocabulary for physical location attributes, the
mapping of location namesto sets of location attributes,
the assignment of device type codes, the registration of
ABLS data types for event subscriptions, etc. The
second group consists of operations for
announcing/refreshing and removing device entries, for
submitting device queries in the form of attribute-value
pairs, and for subscribing and unsubscribing events
related to changesin ABLS.

ABLS requests are multicast to all ABLS daemon
replicas running on a subset of PCs and listening on a
well-known multicast address and port. All active
daemons perform updates if necessary, but only the
leader sends a response. The current Aladdin
implementation uses the Jet database engine [HF95] to
provide persistent storage of ABLS entries and to
support SQL-like queries. The soft-state timers for the
entries are maintained separately by the SSS.

To simplify ABLS programming, a client-side DLL
provides a COM APl layer that takes application-
specific data as input and generates ABLS requests
according to the wire protocol. The APIs are factored
into two interfaces: |ABLSAdmin and | ABL SServices.
For example, IABLSAdmin:: SetLocalelnfo() is typically
used to specify the mapping between an X10 address
and a s of physca location attributes;
| ABLSAdmIN:: SetDevicelnfo() assigns a device code to
a particular device type; |ABLSServices::Update() is
used to indicate that a device of a particular device type
is now controllable at a communication address. It also
specifies the host name of the controlling PC.

|ABLSServices::LookUp() takes as input a list of
attribute-value pairs and returns the number of
matching device entries and an Enum structure that can
be enumerated to retrieve al matching entries. Each
entry may contain multiple subentries, each of which is
associated with a PC candidate that can be contacted to
control the device and is identified by a unique NBLS
name. For each matching device, the client application
then chooses one of the NBLS names and submits it to
the NBLS to locate the corresponding device object. To
simplify the programming for the common case, an
entry from the Enum supports a GetAddresses() method
that implicitly performs the NBLS lookup using the
NBLS name of the first subentry. In addition,
GetAddresses() takes as input a flag indicating whether
automatic activation is requested. If the flag is set and
the object instance is not running, the ABLS will, based
on the information supplied by
| ABLSServices:: Update(), create the object instance on
an appropriate machine and return the list of addresses
tothe caller.

3.2.2. Name-Based L ookup Service (NBLS)

The name-based lookup service essentially provides
alookup table that maps each unique nameto the object
instance identified by that name. The Aladdin NBLS,
however, has several unique featuresthat differentiateit
from other name services and object locator services.
First, it is built on top of the soft-state store and
therefore robust against object failures and non-graceful
termination. Client applications can take advantage of
the publish/subscribe eventing mechanism to request to
be notified when a target object is instantiated and
announced to the NBL S, without having to periodically
poll the service. Object instances that, for example, run
on battery-operated devices may wish to perform
refreshes at alow rate. Due to the persistence support of
the SSS, such objects can remain available to clients
through the lookup service immediately after the NBLS
fails and recovers.

The second feature of the NBLS is its extensihility.
Most device objects in the current Aladdin system have
been built as DCOM objects because the object-
oriented RPC model greatly simplified programming.
However, several limitations of DCOM have been
identified. For example, the synchronous RPC model
does not work well in the presence of failures and in
loosely coupled environments; the requirement of
proxy/stub installation creates complexity, hinders
application evolution, and creates versioning problems;
the binary marshalling format and the private wire
protocol do not work well in an open environment and
make it hard to do introspection. To allow the Aladdin
system to evolve as the distributed computing world
moves towards loosdly-coupled, asynchronous
messaging, we built extensibility into NBLS, instead of
making it a mere object locator service for DCOM. The
heterogeneous nature of the home networking
environment further calls for the need of an extensible
lookup service. Future generations of smart devices
may plug into different communication media and run
different communication protocols. Even for devices
based on the same communication protocol, market
competitions from different vendors may eventually
fragment the market and require devices running
software with different object models or programming
paradigms (distributed objects, wire protocals, etc.) to
coexist. To maximize market acceptance, some devices
may choose to support multiple protocols, models, and
paradigms.

To provide extenshility, the Aladdin NBLS allows
mapping a unique name to potentialy multiple
addresses. Each address starts with a prefix, identifying
the protocol/model/paradigm, followed by an opaque
string that encapsulates addressing information. Upon
receiving a list of addresses as the responseto an NBLS

query, the client application can enumerate the list to
identify the addresses that it can understand, choose the
one that is most desirable, and unmarshal the address
into a communication handle if necessary.

As an example, a DCOM object may choose to
support an additional address for queued, asynchronous
communication in order to accommodate non-RPC
clients. Therefresh interval for the synchronous address
(i.e., amarshaled DCOM interface pointer) is typically
in the range of tens of seconds to allow fast detection of
failled objects. The interval for the queued address is
usually longer (minutes to tens of minutes) to
accommodate failures and recoveries. When the
object’ s hosting machine fails and reboots, the object is
destroyed and its synchronous address soon gets timed
out. If a client wants to send a request to the object at
that time and a queued call is acceptable, it can do so by
using the remaining queued address. When the object
restarts, it will check its message queue and process the
request, much like a person walks into hisher officein
the morning and checks voice mail or email.

| mplementation

The NBLS wire protocol uses similar semanticsto an
earlir version of the Simple Service Discovery
Protocol (SSDP) [G+99]. It specifies the XML tags for
the request and response of device/object
announcements, revocations, and lookups. Similar to
the ABLS, a client-side DLL exposes a COM interface
INBLSServices to smplify NBLS programming on
PCs. For DCOM applications, a second client-side DLL
provides additional helper APIs to further smplify
programming: CreateDCOMRefDisplayName()
marshals a DCOM interface pointer into an address
string with the “DCOMRef” prefix;
BindToDisplayName() takes such an address string as
input and unmarshalsit back to an interface pointer. On
the server side, NBLS is tightly coupled with the SSS
and relies on the SSS to store the lookup service entries
aswell as to manage timeouts.

4. Applications and Performance Results

We now describe two of the home networking
applications that we have built using the toolkit: email-
based remote automation and cell phone-based remote
notification. We demonstrate how the various system
infrastructure components are involved in these end-to-
end application scenarios and how the tool kit facilitates
the support for dependability and extensihility.
Although home networking applications are usually not
performance-sensitive, we measure the overhead of
individual system components and present them in the
context of end-to-end latencies.

» Email-based remote control of garage door

The user rushes out for a meeting and forgetsto close
the garage door. Sitting in the conference room, he/she
sends a signed and encrypted email request to remotely
close the garage door. After the email daemon receives,
authenticates and parses the request, it locates the
garage door opener object through ABLS and NBLS,
and instructs the object to close the garage door. To
ensure reliable operation, the garage door is equipped
with three inexpensive, redundant sensors. a magnetic
sensor that detects that the door is at least two inches
open, and two horizontal/vertical sensors that detect
that the door is at least 25% and 75% open,
respectively. The object first reads the states of the
sensors from the ABLS to verify that the door isindeed
open, after which it sends a powerline control command
to achieve the same effect of pushing the garage door
opener button. The sensors periodically send out state
refresh signals, which are received by the device
daemon and converted to ABLS soft-state refreshes. If
any of the sensors runs out of battery, its soft-state
variable will eventually be timed out so that it does not
cause the object to perform incorrect action. Also, a
daemon subscribing to sensor variable deletion events
will receive an event and display messages on the
UAPs to notify the homeowner to change the batteries.
To add additional confidence in this critical operation,
the object locates the camera in the garage through the
lookup services and instructs it to take two snapshots of
the garage door, one before the action and one after.
The two snapshots are sent back to the user as
attachmentsin the reply email.

On the 550MHz home gateway machine,
performance numbers for the various system
infrastructure components involved in this scenario for
each device operation are 90ms for the language
parser, 85ms for the lookup services (with both ABLS
and NBLS running on the gateway machine), and 40ms
for the BindToDisplayName() operation. The
overhead is insignificant compared to the time for the
actual device operations (several seconds to 15
seconds) and the time for email delivery.

e« Cel phone-based
emer gency

remote notification of

The device daemon queries the ABLS for all critical
sensors and their corresponding powerline signals, and
listens on the powerline, looking for matching signals.
A water sensor liesin the crawl space. When it detects
water, it sends out a powerline signal, which is
trandated into a soft-state update by the device daemon
(see Section 3.2). Since the email daemon subscribes to
the event of changes in any soft-state variable of the
CRITICAL_SENSOR type, it receives an event
callback from the SSS and sends an emergency email to

the homeowner’'s cell phone email address. It also
describes the sensor type and the physical location
based on the ABLS information; for example, it says
“Crawl space water sensor ON” on the cell phone
screen. When a new water sensor is installed in the
laundry room and registered in the ABLS, the ABLS
change event natifies the device daemon to include the
monitoring of signals from the new sensor. Since the
soft-state variable associated with the new sensor is of
the CRITICAL_SENSOR type, the event subscription
of the email daemon does not require any update. This
example is a smple demonstration of the extensibility
of the Aladdin system.

The eapsed time between the detection of water and
the ringing of the cdl phone is usually 10 to 40
seconds. Occasionally, it may go up to several minutes,
depending on the carrier’ s text messaging performance.
If the gateway machineis not on line and so dialing up
is necessary, that would take an additional 40 seconds.

5. Experience Report

The Aladdin system has been running in an actual
deployment for several months, and used by the
homeowner on a daily basis. For the most part, the
system delivers satisfactory services of remote control
and natification. However, we have observed problems
at severa layers, which must be solved before such
home networking systems can become mainstream.

The lack of reliability of the X10 powerline control
protocol iswell known. X10 uses a single frequency to
transmit signals and so is particularly sensitive to the
signal attenuation problem due to the quality of the
powerline wires, and the fluctuation in powerline
transmission characteristics as devices are plugged into
and removed from outlets throughout the house.
Basically, the X10 powerline network is partitioned and
the partitioning is dynamic. The soft-state-based
distributed system solution provided by Aladdin greatly
alleviate the problems by using the phoneline to reach
powerline partitions and by alowing the lookup
services to adapt to the changes in powerline
partitioning. However, it is conceivable that some
devices or sensors may become completely isolated
from the rest of the powerline, rendering reliable
control an impossible task. Next-generation powerline
control protocols promise to overcome the above
problems at a lower layer and present a reliable
broadcast network abstraction over the powerline.
Whether and when devices using such protocols can
become low-cost consumer-ready devices may be a
deciding factor on the broad acceptance of home
networking.

Security is another major concern. We have
observed in more than one occasion that a faulty

powerline computer interface may exhibit Byzantine
behavior by sending random commands over the
powerline [WRA+00]. This may create security
problems if any of the commands happens to be
addressed to a critical device. Even if the random
commands only turn on and off less critical devices
such as lamps, it creates an extremely unpleasant
experience for the user and the diagnosisis not trivial.
It remains a challenge for consumer eectronics
manufacturers to produce low-cost, yet dependable
devices. It aso requires a system management |ayer
capable of detecting, diagnosing, and, if possible,
recovering from anomalies created by faulty devices
[WRA+0Q].

Power outage is an important and interesting failure
mode. Since most of the devices in the current Aladdin
system rely on electrical power either for operation or
for signal transmission, prolonged power outages can
potentially shut down the entire system. In the
deployment, the gateway machine is connected to a 30-
minute UPS and equipped with a power outage sensor.
When a power outage occurs and lasts for longer than a
few minutes, the email daemon sends out emergency
notifications to alert the homeowner to the problem.

Since both remote home automation scenarios
involve the use of emails, the Aladdin system is
susceptible to email server unavailability and email
ddivery latency. For example, when the “ILOVEY OU”
computer virus'worm and its variants plagued the email
systems around the globe, the homeowner lost remote
access to his home devices for many hours.

6. Related Work

The concept of soft-states has been widely used in
network protocols and distributed systems. But it
typically appears in the context of a specific protocol.
Our contribution in Aladdin is to identify the
importance of soft-states for building robust distributed
applications in a heterogeneous and dynamic
environment, and to build a soft-state store as a shared
infrastructure. The APIs for interacting with the store
have been designed to be sufficiently flexible to
encompass the existing uses of soft-states in various
aress.

In network protocols, soft-states are typically
propagated by each node to one or more groups that the
node belongs to. Examples include resource
reservation protocols such as the receiver-initiated
RSVP [ZDE+93] and the sender-initiated YESSIR
[PS99], where the soft-states are path states and
reservation states. In multicast protocols such as PIM
[DEF+96] and SRM [FIM+95], the soft-states are
group membership and topology updates. Other
examples include periodic route advertisement in

routing protocols [DEF+96], directory updates in DNS
and in the MBONE Session Announcement Protocol
[H96], and data summarieddatistics in transport
protocols such as Real-time Transport Protocol
[SCF+96] and Soft-State Transport Protocol [RM99].
More generally, we find that most self-stabilizing
network protocols essentially use soft-states [AP95].

In distributed systems, soft-states are typically used
where strong consistency is not required, but eventual
consistency with high availability of information is
sufficient. The use of soft-state control information has
enabled fault tolerance and high availability in web
servers [SLR98], distributed resource management
[CRS98], and cluster-based network servers [FGC+97].
Heartbeats or “1 am alive” messages have been widely
used in detecting failures of remote nodes
[HK93][V+98][RMH98]. DCOM pinging [BK98] is a
soft-state-based, distributed garbage collection
mechanism for server objects to reclam reference
counts associated with abnormally terminated clients.

Jini [E99] provides a set of specifications for
services and conventions built atop Java Remote
Method Invocation (RMI). Both Jini and Aladdin
identified service discovery and lookup, leasing (or
soft-states), and events as the most critica
infrastructure components in a dynamic distributed
system. They differ in the approach of dealing with
heterogeneity. Jini focuses on the object-oriented API
layer: all network entities must interact with the Jini
infrastructure through Java interfaces by either hosting
alocal Java Virtual Machine or bridging through a Java
communication proxy. In contrast, Aladdin specifiesthe
wire protocols for interacting with the infrastructure.
Any network entity that is capable of generating
messages conforming to the wire protocols can
participate in the Aladdin system as a first-class citizen
without bridging through a communication proxy.
Higher-level object-oriented APIs are provided only for
convenience; they ssimplify the programming on PCs. In
another aspect, both Jini and Aladdin allow arbitrary
communication protocols between the clients and the
services. The difference is that, in Jini, the lookup
service entries are Java proxies that provide the
interfaces seen by the clients. Any non-Java RMI
communication protocols must also be hidden behind
these interfaces. In Aladdin, the NBLS entries are
opague address strings. Aladdin is agnostic about the
address encoding/decoding process and how a client
makes use of an address. This design can facilitate the
addition of new protocols and accommodate both RPC
and non-RPC style communications. To simplify
DCOM programming, Aladdin does provide helper
functions for marshaling and unmarshaling DCOM
interface pointers. Finaly, the concepts of Aladdin
Device Adapter and pesistent soft-states, the

architecture for remote home automation, and the
system management for providing reliable services are
orthogonal to Jini and can be applied there aswell.

Whether they use soft-states or hard-states, extant
lookup services [BvST99, CZH99+, E99] mostly focus
on the issue of scalability to millions of users and many
groups of lookup services. Being focused on home
networks, our lookup services do not emphasize
hierarchy or federation. Providing a lightweight
solution to support friendly naming of devices has been
the key requirement. The NBLS wire protocol uses
similar semantics to an early version of the Simple
Service Discovery Protocol (SSDP) [G+99], which is
part of the Universal Plug and Play (UPNP) initiative. In
general, Aladdin provides higher level services for
home networking and can build on top of UPnP. Since
eventual consistency based on soft-state refreshes is
sufficient for most home networking applications, we
did not adopt active replication-based solutions [M96]
that use totally ordered, reiable multicast to achieve
virtual synchrony across replicated lookup services,
thereby guaranteeing strong consistency.

Scalahility of the soft-state networking protocols
necessitates dealing with the message overhead
introduced by the periodic refresh of information. This
has led to severa refinements. batching and
compression of refreshes between nodes [WTZ99],
adaptation of refresh frequency (either by negotiation
between senders and recelvers or independently by
senders and receivers by monitoring control traffic)
[SEF+97], use of acknowledgements for refreshes
[RM99], and multistage decrease of frequency of
refresh [PH97]. Our toolkit accommodates most of
these refinements. It uses acknowledgements albeit
only for low-frequency refreshes which benefit the
most from acknowledgements in the presence of

message | oss.

Extant research projects on smart home
environments are largely focusing on issues orthogonal
to dependability and extensibility. Research results
from those projects can be incorporated into the
Aladdin environment to further enhance overall user
experience. The Adaptive House project [M98] aims at
developing a home control system that observes the
lifestyle of the inhabitants and learns to anticipate their
needs based on neural network techniques. The goal of
the EasyLiving project [S+98] is to build an intelligent
environment that maintains an awareness of its
occupants through computer vison and facilitates
unencumbered interactions among people and devices.
The Aware Home project [Es99] focuses on analyzing
and interpreting captured sensor streams from high-end
multi-modal sensors to make the environment aware.

The Smart Floor project [O00] has created a system for
identifying people based on their footstep force profiles.

7. Summary

We have shown that the combination of soft-state
store, publish/subscribe eventing, attribute-based
lookup service, and name-based lookup service
provides a powerful programming abstraction for
building dependable and extensible home networking
applications. To provide dependability, the soft-state
store serves as a uniform framework for detecting the
faillures and unavailability of devices and objects, and
for removing stale data to reclaim system resources as
well as preventing misuse of such data. The
publish/subscribe event system further allows higher-
level adaptive, corrective, aerting, and cleanup actions
to be performed in response to changes in the soft-state
store. The late-binding feature provided by the lookup
services makes the system more robust in the presence
of failures, recoveries, and mobility. To provide
extensibility, the attribute-based and name-based
lookup services alow devices and objects to join
dynamically and be available to future clients. Event
subscriptions based on soft-state types, instead of
individual variables, further allow triggering existing
clients to include the new devices and objects. We have
described two remote home automation applications
and summarized our experiences from the actual usage
of these applications.

Acknowledgement

We thank Kuansan Wang (Microsoft Research) for
providing the language parser and speech recognizer.

References

[AP95] A. Arora and D. Poduska, “A Timing-based
Schema for Stabilizing Information Exchange in
Networks,” in Proc. Int. Conf. on Computer
Networks, 1995.

[B98] D. Box, Essential COM, Addison Wedl ey, 1998.

[BvST99] G. Bdlatijn, M. van Steen, A. Tannebaum,
“Exploting location awareness for scalable location-
independent object IDs,” in Proc. Fifth Annual ASCI
Conf., pp. 321-328, 1999.

[BK98] N. Brown and C. Kindd, Distributed
Component Object Model Protocol -- DCOM/1.0,
1998.

[CRS98] K. Chandy, A. Rifkin, and E. Schodler,
“Using announce-listen with global eventsto develop
distributed control systems,” Concurrency: Practice
and Experience, pp. 1021-1027, 1998.

[C88] D. D. Clark, “The design philosophy of the
DARPA internet protocols, in Proc. ACM
S GCOMM, 1988.

[CM] CM11A Programming
ftp://ftp.x10-beta.com/ftp/protocal.txt.

[CZH99+] S. Czerwinski, B. Zhao, T. Hodes, et al, “An
architecture for secure service discovery service’, in
Proc. ACM/IEEE MobiCom, pp. 24-35, Aug. 1999.

[DEF+96] S. Deering, D. Estrin, D. Farinacci, et a,
“PIM architecture for wide-area multicast routing,”
IEEE/ACM Trans. on Networking, Vol. 4, No. 2, pp.
153-162, Apr 1996.

[E99] W. K. Edwards, “Core Jini”, Prentice-Hall Inc.,
1999.

[Es99] |. Essa, “Ubiquitous Sening for Smart and
Aware Environments: Technologies towards the
building of an Aware Home,” Position paper for the
DARPA/NSF/NIST Workshop on Smart
Environments, July 1999.

[FIM+95] S. Floyd, V. Jacobson, S. McCanne, et al.,
“A reliable multicast framework for light-weight
sessons and application level framing,” Proc.
S GCOMM, Sept. 1995.

[FGC+97] A. Fox, S. Gribble, Y. Chawathe, et a,
“Cluster-based scalable network services,” in Proc.
SOSP, pp. 78-91, 1997.

[G+99] Y. Y. Goland et al., “Simple Service Discovery
Protocol,” IETF Internet Draft,
http://www.ietf.org/internet-drafts/draft-cai-ssdp-v1-
03.txt, Oct. 1999.

[H96] M. Handley, “SAP:. Session Announcement
Protocol,” Internet Draft, Internet Engineering Task
Force, Nov. 19, 1996

[H98] The Home Phonedine Networking Alliance,
“Simple, High-Speed Ethernet Technology for the
Home,” http://www.homepna.org/docs/wpl.pdf, June
1998.

[HF95] D. Haught and J. Ferguson, “Jet Database
Engine Programmer’ s Guide,” Microsoft Press, 1995.

[HK93] Y. Huang and C. Kintala, “Software
Implemented Fault Tolerance: Technologies and
Experience,” in Proc. FTCS, pp. 2-9, 1993.

[M96] S. Maffeis, “A Fault-Tolerant CORBA Name
Server,” in Proc. SRDS, pp.188-197, Oct. 1996.

[M98] M. C. Mozer, “The Neural Network House: An
Environment that adapts to its inhabitants,” in Proc.
AAAI Spring Symp. on Intelligent Environments, pp.
110-114, 1998.

[O00] R. J. Orr and G. D. Abowd, “The Smart Floor: A
Mechanism for Natural User Identification and
Tracking,” Technical Report GIT-GVU-00-02,
Georgia Tech., Jan. 2000.

[PH97] P. Pan and H. Schulzrinne, “Staged refresh
timers for RSVP,” in Proc. GLOBECOM, Val. 3, pp.
1909-1913, 1997.

Specification,

[PS99] P. Pan and H. Schulzrinne, "YESSIR: a smple
reservation mechanism for the Internet," Computer
Communication Review, Val. 29, No. 2, pp. 89-101,
1999.

[RM99] S. Raman and S. McCanne, “A modd,
analysis, and protocol framework for soft state-based
communication,” in Proc. SGCOMM, pp. 15-25,
1999.

[S98] Silent Servant Home Control Inc., Automated
Home Control, 1998.

[SCF+96] H. Schulzrinne, S. Cassner, R. Frederick, et
a, “RTP. A transport protocol for real-time
applications’, IETF Audio Visual Transport Working
Group, RFC-1889, Jan. 1996.

[S+98] S. Shafer, J. Krumm, B. Brumitt, B. Meyers, M.
Czerwinski, and D. Robbins, “The New EasyLiving
Project at Microsoft Research,” DARPA/NIST
Workshop on Smart Spaces, July 1998.

[SEF+97] P. Sharma, D. Estrin, S. Floyd, et a,
“Scalable timers for soft state protocals,” in Proc.
INFOCOM, pp. 222-229, 1997.

[SLR98] A. Singhai, S.-B. Lim, and S. R. Radia, “The
SUNSCALR Framework for Internet Servers” in
Proc. FTCS pp.108-117, 1998.

[RMH98] R. van Renesse, Y. Minsky, and M. Hayden,
“A Gossip-Based Failure Detection Service” in
Proc. Middleware, 1998.

[V+98] W. Vogelset al., “The Design and Architecture
of the Microsoft Cluster Service,” in Proc. FTCS, pp.
422-431, 1998.

[WRA+0Q] Y. M. Wang, W. Russdll, A. Arora, et al.,
“Towards Dependable Home Networking: An
Experience Report,” in Proc. |IEEE Int. Conf. on
Dependable Systems and Networks (formerly FTCS),
June 2000.

[WTZ99] L. Wang, A. Terzis, and L. Zhang, “New
proposal for RSVP refreshes,” in Proc. 7th Int. Conf.
on Network Protocols (ICNP'99), pp. 163-172, 1999,

[ZDE+93] L. Zhang, S. Deering, D. Estrin, et a,
“RSVP: a new resource ReSerVation Protocol ,”
|EEE Network, Val. 7, No. 5, pp. 8-18, Sept. 1993.

