
Efficient Discovery of Error-Tolerant Frequent Itemsets in High Dimensions Yang, Fayyad and Bradley

0

Efficient Discovery of Error-Tolerant Frequent Itemsets in High Dimensions
Cheng Yang Usama Fayyad Paul S. Bradley

Stanford University Microsoft Research Microsoft Research
yangc@cs.stanford.edu fayyad@microsft.com bradley@microsoft.com

February, 2000
Technical Report
MSR-TR-2000-20

Microsoft Research

Microsoft Corporation
One Microsoft Way

Redmond, WA 98052

Abstract
We present a generalization of frequent itemsets allowing the notion of errors in the itemset definition.
We motivate the problem and present an efficient algorithm that identifies error-tolerant frequent clusters
of items in transactional data (customer-purchase data, web browsing data, text, etc.). This efficient
algorithm exploits sparsity of the underlying data to find large groups of items that are correlated over
database records (rows). The notion of transaction coverage allows us to extend the algorithm and view it
as a fast clustering algorithm for discovering segments of similar transactions in binary sparse data. We
evaluate the new algorithm on three real-world applications: clustering high-dimensional data, query
selectivity estimation and collaborative filtering. Results show that we consistently uncover structure in
large sparse databases that other more traditional clustering algorithms in data mining fail to find.

26th International Conference on Very Large Databases, submitted.

Efficient Discovery of Error-Tolerant Frequent Itemsets in High Dimensions Yang, Fayyad and Bradley

1

Count P1 P2 P3 P4 P5

100 1 1 1 1 0

100 0 1 1 1 1

80 1 1 1 0 1

90 1 0 1 1 1

200 1 1 0 1 1

Table 1: Counts of customer-purchase

data patterns for submatrix.

P1 P2 P3 P4 P5 Other Products

C
us

to
m

er
s

of
In

te
re

st

Other customers

Figure 1: graphical depiction purchase

regions in data sub-matrix

1 Preliminaries and Motivation
Progress in database technology has provided the foundation that made massive stores of transactional
data ubiquitous. Such stores are common in commerce (products purchased by customers), web logs
(websites visited by users), text (words occurring in documents), etc. The frequent itemset problem is that
of determining which items frequently occur together in a transaction. We consider relaxing the criteria
commonly associated with frequent itemsets to a more flexible version that tolerates error and propose an
algorithm for finding all such error-tolerant frequent itemsets. We then provide an efficient algorithm
approximating the complete algorithm. The primary motivation for this generalization is to find frequent
groups of transactions (groups of users, web sessions, etc.) instead of focusing primarily on just the items
themselves, allowing for the discovery of groups of similar transactions that share most items. We
believethis to be a more general and more intuitive characterization of groups of transactions.
The frequent itemset generalization, based on relaxing the exact matching criteria in frequent item sets
and allowing a transaction to violate some conditions, is motivated by the following example. Consider a
set of customer purchase data over 5 products (P1,…,P5). Figure 1 shows a graphical snapshot of the data
where items (columns) P1,…,P5 are listed first (the other products are not of interest for this example),
and customers purchasing these 5 products are similarly listed first. The shaded regions depict sets of
products bought by sets of customers. Table 1 gives the counts of customers depicted as blocks in Figure
1. Let the total number of customers (rows) in the database be 10,000. For simplicity, suppose that no

other customers in the database purchased these 5 products. Notice that for any minimum support value κ
> 0, the itemset {P1,…,P5} will not appear to be frequent. In fact, for a support level of 5%, none of the
5 items would appear in any frequent itemset enumeration. Note, however, that 5.7% of the transactions
contain 4 of the 5 products. If products P1,…,P5 are different brands of soda then these 5.7% of the
customers purchase a significant portion of these 5 brands. This pattern may be useful for the data analyst
but would be undiscovered by traditional frequent itemset approaches due to the harsh definition of
support. In fact, when reducing the support to 4%, traditional frequent itemsets would only find {P2, P4}
as the longest itemset over {P1,…,P5}. By relaxing the definition of frequent itemsets to be error-
tolerant, one could identify this cluster of customers who, purchase “most” of the products {P1,…,P5}.
The intuition is made specific with the following definition and problem statement. Adopting the notation
of [AMSTV96], let I = {i1, i2, …, id} be the full set of items over a database D consisting of transactions
T, where each transaction is a subset of the full itemset I. Each transaction T may be viewed as record
with d attributes {i1, i2, …, id} taking values in {0,1}, where a 1 occurs over the attributes specifically
listed in the transaction T (hence viewing the database as a table with one record for each transaction and
d columns). This view of the data often results in a very sparse table (i.e. the majority of the table

Efficient Discovery of Error-Tolerant Frequent Itemsets in High Dimensions Yang, Fayyad and Bradley

2

elements have value 0). The support of an itemset is the fraction of total transactions in the database
containing the given itemset. The frequent itemset problem is that of finding all itemsets with support

greater than a minimum threshold κ (called minimum support or minsup) [RG99]. Note that for a single
transaction T to contribute to the support of a given itemset, it must contain the entire itemset. We relax
this exact matching criterion to yield a more flexible definition of support and consequently of error-
tolerant itemsets, eventually leading to an algorithm for clustering rows in sparse binomial databases.
We have found that our algorithm is capable of identifying the presence of structure (clusters) in large
sparse databases that traditional clustering algorithm consistently fail to find. This leads to both a more
effective (and faster) method of clustering, as well as an effective way of determining the number of
clusters: an open problem for most classical clustering algorithms [DH73,CS96,BFR98].

Definition 1: Error-Tolerant Itemset [ETI] (general): An itemset E ⊆ I is an error-tolerant itemset

having error ε and support κ with respect to a database D having n transactions if there exists at least κ.n

transactions in which the probability of observing a 1 over the itemset is not less than 1-ε.

Problem Statement: Given a sparse binomial database D of n transactions (rows) and d items (columns),

error tolerance ε > 0, and minimum support κ in [0,1], determine all error-tolerant itemsets (ETIs) over D.
The fundamental difference between this problem and that of traditional frequent itemsets is a relaxation

in support criteria. An error threshold ε = 0 collapses Definition 1 to the standard frequent itemset

definition. For ε > 0, the problem is to efficiently determine itemsets for which support can be

determined by a function requiring that (1-ε) of the m items in the ETI E be present. For example, the

itemset E = {P1,P2,P3,P4,P5} from Table 1 is an error-tolerant itemset with support κ = 5.7% and ε =
0.2. Note that the support for this itemset can also be interpreted as those transactions containing 4 of 5 of
the items in E. This definition is not confined to binary {0,1} data, but can be extended to find error-
tolerant itemsets over transactional databases with categorical-valued attributes (more than 2 values).
Continuous-valued attributes may be preprocessed with a discretization algorithm [FI93]. We discuss
generalizations in Section 6, but we focus on the binary case in this paper.
We define maximal ETIs as those ETIs whose supersets are not ETIs. Sometimes both maximal and
nonmaximal ETIs are of interest when finding clusters of similar transactions (clustering rows versus just
columns). We illustrate this notion in the example shown in Figure 2. On the left we illustrate 3 groups
of transactions: customers who bought 5 products P1-P5 (35% of the transactions), customers who bought
only P1-P2 (20%) and customers who bought only P4 and P5 (45%). On the right, we show the 3 possible
ETIs (note that ETI identifiers overlap). An algorithm that looks for coverage of the data would do the
job with {P1, P2} (55%) and {P4, P5} (80%). Even worse, imagine a product, say P6, that most shoppers
bought. That’s an itemset of length 1 that has approximately 100% support, but hardly indicates structure
in the data. However, intuitively the cluster of people who bought all five products should be identified
and is indeed significantly different from the others. We will show how the ETIs can be used to
efficiently uncover the structure on the left, identifying the three “natural” clusters in the example.

1.1 Are ETIs Random Artifacts?

Before studying properties of ETIs and their
efficient extraction, we pause briefly to address
the question of whether finding such item sets
is of interest, and whether ETI discovery could

P1 P2 P3 P4 P5

35%

20%

45%

P1 P2 P3 P4 P5

80%

55%

35%

Figure 2: ETIs and data clusters

Efficient Discovery of Error-Tolerant Frequent Itemsets in High Dimensions Yang, Fayyad and Bradley

3

be a side effect of correlations that happen to appear in data by pure chance. It should be obvious from the

definition of ETIs that as the error ε is increased, the expected number of items in ETIs should increase,
which raises the question of the validity of such patterns to begin with. Essentially, is one really finding
structure in data, or simply fishing out random correlations in large data sets?
Lemma: Assume a binary N × D sparse matrix over {0,1} is generated at random with the probability
that an entry is 1 is p. Then the probability of a frequent error-tolerant item set with r items appearing in

it with support κ and error ε is not greater than NrNr pp
N

N

r

D εκκε

κ
)1()1(−















 − .

Proof: see Appendix A �

An application of this lemma to some realistic assumptions over market-basket type data quickly shows

that this probability is vanishingly small. For example, for p = 0.15, ε = 0.2, κ = 0.01, N = 1,000,000, D

= 500 and r = 5, using Stirling’s approximation [GKP89] for the combinatorial terms one obtains that the
probability of finding an ETI with 5 items by chance is approximately 10-9300 -- essentially zero (for r=10
items this probability drops to 10-43,000).
Further, assuming a Zipf distribution [Z49] over items yields even smaller probabilities. For a detailed

description, see Appendix A. Using the original example and making the Zipf assumption, we have ε =

0.2, κ = 0.01, N = 1,000,000, D = 500, r = 5, on average p is (6/501) = 0.012 and probability of finding an
ETI with 5 items by chance is less than 10-52,000 (drops quickly to less than 10-108,000 for r=10 items) –
again essentially zero. Hence the identification of submatrices with high frequency of 1’s in them is
indeed interesting as such submatrices, especially when the number of columns involved is large, are
extremely unlikely to occur by pure chance.

1.2 Applications of ETIs

While our primary aim is to introduce the generalization to frequent item sets, we also use some
applications of ETIs to demonstrate their benefits. We show that ETIs provide great utility as a technique
for initializing clustering algorithms like the EM (Expectation-Maximization) algorithm [DLR77, CS96].
We show that ETIs are very effective at leading EM to clusters it would not otherwise find over real and
synthetic sparse transactional data. The cluster initialization problem over sparse transactional data in
high dimensions is effectively addressed by error-tolerant itemsets. In fact in many cases ETIs find the
solutions quickly and the clustering algorithm adds little improvements to it. We also use error-tolerant
itemsets for query selectivity estimation over sparse binomial databases, and for a collaborative filtering
prediction task [MRK97,R*97,RV97] predicting items likely to be included in a transaction based upon
the presence of other items.

2 Finding Error-Tolerant Frequent Itemsets
In binomial {0,1} datasets, an error-tolerant frequent itemset (ETI) is represented as a set of dimensions
(called defining dimensions) where “1” appears with high probability among a set of rows. Formally, we
give the following two ETI definitions, a strong one and a weak one:

ETI Definition 1 (strong): A strong ETI consists of a set of items, called defining dimensions DD ⊆ I,

such that there exists a subset of transactions R ⊆ T consisting of at least κ.n transactions and, for each of

r ∈ R, the fraction of items in DD which are present in r is at least 1-ε.

Efficient Discovery of Error-Tolerant Frequent Itemsets in High Dimensions Yang, Fayyad and Bradley

4

1 2 3 4 5 6 7 8 9 10
1 1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1

1
1

1
1 1

1
1 1

Table 2: Example binary data set

ETI Definition 2 (weak): A weak ETI consists of a set of items, called defining dimensions DD ⊆ I, such

that there exists a subset of transactions R ⊆ T, |R| ≥ κ.n transactions and,

)1(
|DD||R|

)(
R DD ε−≥

⋅

∑ ∑
∈ ∈x d

xd

.

Here d(x) is 1 if item d occurs in x and 0 otherwise. The weak
definition basically requires that the data sub-matrix defined by
the records in R and the columns in DD be mostly “1”s, with the

fraction of “0”s not greater than ε. It is clear that anything that
satisfies the strong definition above also satisfies the weak
definition, but not vice versa.
In both definitions above, we say that the set DD defines the ETI,

and we call κ the support threshold and ε the error threshold. A
set of defining dimensions DD is called maximal if and only if
DD defines an ETI and no superset of DD defines an ETI. For

example, in Table 2 with κ=25% and ε=20%, {1 2 3 4 5} defines
a maximal strong ETI, {1 2 3 4} defines a non-maximal strong
ETI, and {6 7 8 9} defines a maximal weak ETI (but not a strong
ETI). Our ultimate goal is to find strong ETIs, but the notion of
weak ETIs will also be needed in our algorithm.

2.1 Properties

Lemma 1: If a set DD of m dimensions defines a weak ETI, then there exists a set DD’ of m-1

dimensions such that DD’⊂ DD and DD’ also defines a weak ETI. (In other words, it is possible to
remove one defining dimension from DD and still maintain a weak ETI).

Proof: Let DD={d1, d2, …, dm}, and let DDj = DD – {dj}, for j=1,2,…,m. Since DD defines a weak ETI,

then by definition there must exist a set of records R ⊆ T such that |R| ≥ κ.n and DD defines the weak ETI
on the set R. Assume to the contrary that there does not exist a set DD’ that satisfies the given properties.
Then for all j, DDj does not define a weak ETI with the set of records R.
Let zj = number of “0”s over records R and dimensions DDj,

δj = probability of “0”s over records R and dimensions DDj, δj = zj / [(m-1) |R|],
z = number of “0”s over records R and dimensions DD, and

δ= probability of “0”s over records R and dimensions DD, δ = z / [m |R|]

Then the assumption implies that δj > ε for all j=1,2,…,m.
z = number of “0”s over records R and dimensions DD

= (1/(m-1)) [number of “0”s over records R and dimensions DD1+DD2+…+DDm]

= (1/(m-1)) (z1 + z2 + … + zm)

δ = z / [m |R|] = (1/(m(m-1)|R|)) (z1 + z2 + … + zm) = (1/m) (δ1 + δ2 + ... + δm)

> (1/m) mε = ε

This contradicts with the precondition that DD defines a weak ETI with the set of records R. �

Efficient Discovery of Error-Tolerant Frequent Itemsets in High Dimensions Yang, Fayyad and Bradley

5

Corollary of Lemma 1: if a set DD = {d1, d2, ..., dm} defines a weak ETI, then there exists a permutation

of its defining dimensions {dp1
, dp2

, ..., dpm
} such that for all j, 1 ≤ j ≤ m, the set {dp1

, ..., dpj
} defines a

weak ETI.

Proof: Obvious by induction on Lemma 1. �
Lemma 2: Given a set of m dimensions, their eligibility to be defining dimensions for a weak ETI can be
tested with one pass over the database.
Proof: The test can be done by the following algorithm, which makes one pass over the database:
While scanning the database once, we keep m+1 counters C0, C1, …, Cm where Ci keeps track of the
number of data points (records) that have i “1”s out of m candidate dimensions, i = 0,1,2,…, m. From

these counters, we find the maximum t such that: ∑
=

⋅κ≥
m

ti
i nC , where n is the total number of records in

the database. With this t value, let ∑
=

⋅κ−=
m

ti
it nCC ' . Define

mn

CCtmCim tt

m

ti
i

⋅⋅κ

−−+









−

=δ
∑

+=

))(()('

1 .

Then, the m candidate dimensions are eligible to be defining dimensions for a weak ETI if and only if

δ ≤ ε, and δ is referred to as the error rate of this weak ETI. The algorithm works as follows: it ranks all

rows based on the number of “1”s out of m candidate dimensions, picks the top κn rows, and checks the

probability δ of “0”s occurring among the κn rows over m candidate dimensions. Such ranking ensures

that, if we picked any other set of κn rows, the probability of “0” occurring among those rows over m

candidate dimensions would have been at least δ. Hence, if δ > ε, no weak ETI exists. If δ ≤ ε, these κn

rows and m dimensions form a weak ETI, so a weak ETI exists. �
2.2 The Exhaustive Algorithm

The lemmas and corollary in the previous section suggest the following algorithm to find maximal weak
or strong ETIs, which parallels the a-priori algorithm [AIS93, AS94]:
Exhaustive Growing Algorithm:

1. Find all dimensions di where the global count of “1”s is at least κn(1-ε). Each of these
dimensions forms a singleton set {di} which defines a weak ETI. We call each of these singleton
sets a “seed”. Set i = 1.

2. For every seed that contains i dimensions, grow it by adding a dimension to it so that the new
seed still defines a weak ETI (obtained with one pass over the database as in the proof of Lemma
2). If one or more such dimension can be found, keep all of the new seeds (each of which
contains i+1 dimensions).

3. Increment i and repeat step 2 until no more growing is possible.
4. (to find maximal strong ETIs) Among all seeds, pick those satisfying the strong ETI definition

(done in one pass over the database in a straightforward way). Output the maximal strong ETIs.
The Corollary of Lemma 1 ensures that this algorithm will find all weak or strong ETIs.

For example, with the database shown in Table 3, κ=40% and ε=25%, the exhaustive growing algorithm
produces the hierarchy shown in Figure 3. The only maximal strong ETI is {1,2,3,4}. There are two
other maximal weak ETIs {1,4,5} and {6}, and 16 other non-maximal ETIs shown in the hierarchy.

Efficient Discovery of Error-Tolerant Frequent Itemsets in High Dimensions Yang, Fayyad and Bradley

6

1 2 3 4 5 6
1 1 1

1 1 1
1 1 1
1 1 1
1 1 1
1 1
1 1 1

1
1

1

Table 3

2.2 Approximating Approach: Greedy Growing

The time complexity of the exhaustive growing algorithm is exponential in the maximum number of
defining dimensions for ETIs. To reduce complexity, we modify it to become a greedy method which
takes polynomial time and finds most of the ETIs. In practice, we believe that the chance of the
approximate approach missing some of the ETIs is very low. We characterize these situations below.
The modifications to the algorithm will be done in three stages: in the first stage, we show how to reduce
complexity, in the second stage we show how missed ETIs can be recovered by doing a few iterations.
This second stage also sets us up for addressing the efficient identification of clusters of similar
transactions. In the third stage, given in Section 3, we show that the overall scheme can be sped up
dramatically using a sampling and validation framework.

2.2.1 Heuristics to Reduce Complexity

First, we make three changes to step 2 of the exhaustive growing algorithm:
i. When looking for a dimension to grow a seed, we only consider those dimensions that have been

picked in step 1, i.e., dimensions that have enough “1”s to form singleton weak ETIs.
ii. When testing whether a dimension can be added to a seed, we require not only that the expanded

seed still define a weak ETI, but also that the new dimension have at most ε probability of “0”s
within the weak ETI.

iii. When two or more dimensions are found as possible candidate dimensions for seed growth, we
only keep one. We throw away the old seed once it has been grown to a new seed.

The first two changes remove from consideration those dimensions that have too few “1”s globally or too
few “1”s in a weak ETI. Even though those dimensions could potentially be in a weak ETI as dimension
5 in Table 4 (which could be part of a weak ETI {1 2 3 4 5}), they are not likely to make any interesting
contributions to the result in real-world applications.
To implement the second change, we need to augment the algorithm given in the proof of Lemma 2. In
addition to the counters C0, C1, …, Cm, we keep an extra set of m+1 counters Z0, Z1, …, Zm, where Zi

keeps track of how many “0”s there are in the new candidate dimension d, over those data points that
have i “1”s out of m existing candidate dimensions. These counters, together with the other counters C0,

C1, …, Cm, can be updated in the same pass over the database. Then, the probability of “0”s along the
new dimension d within the weak ETI is approximately the fraction:

1 2 3 4 5 6
1 1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1 1

1
1
1
1
1

Table 4

1 432 65

1 2 3 42 42 31 51 41 3

1 2 3 2 3 4 1 4 51 3 41 2 4

1 2 3 4

Figure 3: Hierarchy of ETIs

Efficient Discovery of Error-Tolerant Frequent Itemsets in High Dimensions Yang, Fayyad and Bradley

7

n

CZZ tt

m

ti
i

⋅

−+∑
+=

κ

),0max()('

1 .

The third change ensures that the total number of seeds at any time would not
exceed the total number of seeds we started with, reducing the exponential
behavior to polynomial. When two or more candidate dimensions are found,
we use the heuristics that picks one that causes the smallest error rate in the new
weak ETI. Other heuristics are possible. Although the third change
dramatically reduced the amount of time and memory required, it may cause

some ETIs to be missed, such as {1,2,5,6} in Table 5 (with κ=30% and any ε).
We address this issue by extending to an iterative scheme.

2.2.2 Iterative Scheme to Improve Approximation

We make two more changes here. First, after steps 1, 2 and 3 of the exhaustive growing algorithm (in

which step 2 is modified as in section 2.2.1), we go through the entire database once and check if each

row is covered by the ETIs we found. (A row r is covered by an ETI if the fraction of items in the ETI

which are present in r is at least 1-ε.) For all rows that are not covered by any ETI, we put them together

to form a smaller database, and perform steps 1, 2 and 3 again. We keep repeating this process until no

more ETIs can be found. Each pass of steps 1, 2 and 3 is called a “round”. Typically no more ETIs can

be found after 2 or 3 rounds.

Secondly, starting with the second round, we replace the support threshold κ with a smaller value κ/λ,
except at the very last step (corresponding to step 4 in the exhaustive growing algorithm), where we use

the original κ value to pick out strong ETIs. Increasing λ would reduce the probability of missing ETIs,

but at the same time increase running time and memory requirement. Typically, we use λ=2. Returning
to our example of Table 5, this would enable the algorithm to discover the missing ETI {1,2,5,6}.

2.2.3 Summary of Greedy Growing Algorithm (GGA)

With all the changes above, we have converted the Exhaustive Growing Algorithm into the Greedy
Growing Algorithm, which is summarized below.

1. Set of candidate dimensions = {all dimensions whose count of “1”s in the database is at least

κn(1-ε)/λ} (λ is initialized to 1 but will be set to 2 after the first round.)
2. If no candidate dimension exists, go to step 8.
3. Each candidate dimension forms a singleton seed.
4. Grow every seed by trying to add one best candidate dimension to it, while maintaining weak

ETIs with support threshold κ/λ and error threshold ε.
5. Repeat step 4 until no seed can be grown further.
6. Add all fully-grown seeds to the set of potential ETIs.

7. Remove from the database all rows covered by any potential ETI. Set λ=2 and go to step 1.
8. Restore the original database, count the number of rows covered by every potential ETI, and

remove those ETIs that are covered by fewer than κn rows. Output all remaining ETIs.

1 2 3 4 5 6
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1
1 1 1 1

1 1 1 1 1 1
1 1 1 1
1 1 1 1

Table 5

Efficient Discovery of Error-Tolerant Frequent Itemsets in High Dimensions Yang, Fayyad and Bradley

8

2.2.4 Analysis

GGA is able to find all maximal strong ETIs in the database except:

i. ETIs consisting of a dimension whose global count of “1”s is smaller than κn(1-ε)/λ;

ii. ETIs consisting of a dimension whose probability of “0”s within the ETI is greater than ε;

iii. ETIs consisting of fewer than κn(1-ε)/λ unique rows (a row is unique to an ETI if it does not
belong to any other ETI), and no unique dimension (a dimension is unique to an ETI if it does not
occur in any other ETI).

An example of each of the
three cases is given in
Table 6 (i) (ii) and (iii),

with κ=40% and ε=35%.
In Table 6 (i) and (ii), the
GGA algorithm finds ETI
{1,2,3,4}, but not ETI
{1,2,3,4,5}. In Table 6
(iii), the GGA algorithm

(with λ=2) finds ETIs
{1,2,3,4} and {4,5,6,7},
but not ETI {3,4,5}, which
consists only 1 unique row and no unique dimension. We believe that these three cases are not
particularly important, especially when considering our primary application: identifying similar clusters
of transactions.
Also, a side-effect of the iterative scheme of the algorithm is that it may find some non-maximal strong

ETIs, as illustrated in Table 7, with κ=40% and ε=35%. In Table 7, both {1,2,3,4,5} and {1,2,3} will be
identified as strong ETIs in successive iterations, although {1,2,3} is not strictly maximal (however, it
covers many rows that do not overlap with the rows covered by ETI {1,2,3,4,5}). We can certainly add
an additional step to remove such non-maximal ETIs, but we choose not to do so, because this side-effect
turns out to be quite useful in real-world applications, as will be discussed in section 4.
Worst-case running time of the Greedy Growing Algorithm is O(cdh2), where

c = # of ETIs
d = average # of defining dimensions in ETIs

h = # of high-support dimensions (dimensions whose global count of “1”s is at least κn(1-ε)/λ)
There are h seeds. Each seed has up to h possible candidate dimensions to grow to, at each of d growing
steps. In the worst case, c iterations are needed to find all ETIs (one in each iteration). So O(cdh2) is the
worst-case time complexity. However, in most cases, all ETIs can be found in 1 or 2 iterations, in which
case the running time is only O(dh2).
Memory requirement is O(hd+cd+D), where D is the total number of dimensions. We need O(hd) space
to store all seeds while they are being grown, O(cd) space to store all ETIs found, and an additional O(D)
space as a buffer to count the number of “1”s in every dimension.
The database is scanned a total of O(hd) times, one for each growing step of each seed. If database
scanning becomes a bottleneck, we can reduce the number of scans to O(d) by growing all seeds in

1 2 3 4 5
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1
1 1 1 1

1 2 3 4 5
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1
1 1 1 1

1
1
1
1

1 2 3 4 5 6 7
1 1 1

1 1 1 1
1 1 1 1
1 1 1 1 1
1 1 1 1

1 1 1
1 1 1 1

1 1 1 1
1 1 1 1
1 1 1 1

(i) (ii) (iii)

1 2 3 4 5
1 1 1 1 1
1 1 1 1
1 1 1 1 1

1 1 1 1
1 1 1 1 1
1 1 1
1 1 1
1 1 1
1 1
1 1 1

Table 6 Table 7

Efficient Discovery of Error-Tolerant Frequent Itemsets in High Dimensions Yang, Fayyad and Bradley

9

parallel. This would increase the memory requirement to O(h2d+cd+D) to store intermediate results
needed to grow seeds.
When h is large and memory is tight, it is possible to limit to a constant the maximum number of seeds.
In case there are more seeds than the maximum limit, we just throw away a random subset of seeds and
grow the rest. This would bring down the time complexity to O(cdh); memory requirement is still
O(hd+cd+D) but with a smaller constant factor. When doing so, the iterative scheme helps us recover
most of the ETIs, but we have a higher risk of losing ETIs that have unique dimensions but fewer than

κn(1-ε)/λ unique rows. These ETIs would have been found if we did not limit the number of seeds to
grow. In our experience with real and synthetic data sets, we did not encounter cases where h >500.
Hence we do not believe this is a concern.

3 Iterative Sampling and Validation
GGA makes multiple passes over the database and can be quite slow when the database is large. In this
section, we present an extension to the algorithm by an iterative sampling and validation scheme which
wraps around the original GGA algorithm. The sampling framework results in the algorithm SGGA.

3.1 Framework

Instead of running GGA on the entire database, we randomly sample two independent non-overlapping
samples of the database, run GGA on one sample and validate the results on the other. Then, we return to
the original database and check if any rows are still uncovered by the ETIs discovered so far. If so, we
repeated the process on the remaining database until no more new ETIs can be discovered. This is
illustrated in Figure 4.

3.2 Validation Schemes

We randomly sample the database into two
independent non-overlapping samples RS and
VS, and run GGA on the set RS to get a list of
ETIs. Some of the ETIs may contain spurious
dimensions which are purely random due to
sampling. Also, some of the ETIs may be
totally spurious.
Identifying Spurious Defining Dimensions
of an ETI: An artifact of sampling to be
avoided is adding a dimension to an ETI
description if it happens to occur by chance
with the other defining dimensions over the
random sample RS. Suppose the first
defining dimension of an ETI description was
really random, but we observe that it occurs
frequently along with the remaining defining
dimensions in the ETI S. We identify this
situation by first considering the ETI with the
first defining dimension removed, then we count the number of points from the validation set VS
satisfying the reduced ETI description. Determining whether or not the first defining dimension is

RSiter:
random

sample iter

Initialize: W1 := entire
dataset, set iteration

counter iter = 1.

VSiter:
Validation

set iter

Run GGA
to find ETIs
over RSiter

Witer+1:=Witer -
{data covered by

ETIs found}

YES

iter =
iter+1

Validate
ETIs over

VSiter

Any ETIs?NOTerminate

Figure 4: Flowchart of SGGA: sampling and validation
scheme over greedy growing

Efficient Discovery of Error-Tolerant Frequent Itemsets in High Dimensions Yang, Fayyad and Bradley

10

spurious is done by comparing the probability of observing a “1” in the removed dimension over points
satisfying the reduced ETI description with the probability of observing a “1” over the entire validation
set. Let the removed defining dimension for ETI S be d1. Let p(d1 | {S - d1}) be the probability of
observing a “1” in dimension d1 over the data in the validation set VS belonging to the reduced ETI
consisting of the defining dimensions in S minus d1. Let p(d1) be the probability of observing a “1” in
dimension d1 over the entire validation set VS.

If p(d1 | {S - d1}) is within 1 standard deviation from the value p(d1), then we consider dimension d1 as a
spurious defining dimension and remove it from the description of S. The standard deviation of p(d1) is

given by:
()

||

)(1)(
)(11

1 RS

dpdp
ds

−
= . Specifically, dimension d1 is removed from the defining

dimensions for ETI S if: { })()()|()()(111111 dsdpdSdpdsdp +≤−≤− .

We do this for every defining dimension of every ETI, and prune out defining dimensions that appear
spurious.
Identifying Spurious ETIs: To identify ETIs which are found by chance over a random sample from the
database, RS, we consider the number of rows of RS which match the ETI as a random variable. Suppose
the ETI has NS points in it and the random sample from RS consists of |RS| points. If the ETI truly exists
in the database, then given another random sample VS, one would expect to observe approximately the
same proportion of points belonging to the ETI in VS. If the proportion of points belonging to the ETI in
VS is too low, then one may conclude that the ETI is spurious and needs to be adjusted. This is the
motivation behind the mechanism for removing spurious ETIs found over random samples.
Let NS(RS) be the number of data points from RS which belong to the ETI. We view the proportion of
points in a random sample belonging to S as a random variable p. We estimate the value of p over RS as:

p = [NS(RS)]/|RS|. The standard deviation in this estimate is given by:
||

)1(

RS

pp
s

−
= .

We consider an ETI to be valid if the number of data points belonging to it over the validation set, NS(VS)

is no less than a standard deviation of the expected number in VS:
||

)1(

||

)(

||

)(

RS

pp

RS

RSNS

VS

VSNS −
−≥ .

ETIs which do not satisfy the above criteria must be adjusted (if possible) so that they are valid. We do
so by iteratively removing from an ETI the defining dimension with the least number of “1”s, until the
ETI satisfies the criteria. In some cases, all dimensions may get removed (deleting entire ETI).

4 Applications and Evaluation Methodology
We have tested SGGA with sampling and validation schemes on both synthetic data and real-world data.
For synthetic data, since we know the “true” ETIs in the database, we evaluate performance of our
algorithm based on the number of true ETIs found and number of extra (false) ETIs found. For real data,
we evaluate performance based on three applications: clustering, query selectivity estimation and a
collaborative filtering prediction task. The clustering application consists of producing the ETIs, and then
using them as initial models (clusters) for the EM statistical clustering algorithm [DLR77, CS96, BFR98].
Query selectivity estimation involves answering aggregate queries using a statistical model derived from
the data initialized with the ETIs found by SGGA. Collaborative filtering or recommender systems use
data about user preferences/behavior to predict additional topics, products, websites (items in general)

Efficient Discovery of Error-Tolerant Frequent Itemsets in High Dimensions Yang, Fayyad and Bradley

11

that a user might like [MRK97,R*97,RV97,BHK98]. Collaborative filtering is applied in domains
typically generating large stores of sparse {0,1} data (e.g. e-commerce), making ETIs particularly
applicable.

4.1 Determining Initial Mixture Models from ETIs

ETIs are extremely effective in identifying structure in sparse {0,1} data. This structure can easily be
exploited by using ETIs to form an initial statistical model of the underlying data. This initial model may
then be further fit to data using an iterative optimization procedure such as the Expectation-Maximization
(EM) algorithm [DLR77, CS96, BFR98]. EM estimates the probability density function of the data as a
mixture of densities (binomial or multinomial distributions for discrete data). Each cluster corresponds to
one component of the mixture model and specifies a distribution for its population. Within each cluster,
for an observation (transaction) x, the probability of x being a member of cluster C, is proportional to

∏
∈

∝
Ii

i CxCx)|Pr()|Pr(. Hence the model for each cluster is simply the probability of each attribute (item)

being present, for all items in the database. Note that conditional independence within clusters is very
different from assuming independence. The conditional independence assumption, typically applied when
clustering discrete data in the statistics, learning, and pattern recognition literature [CS96,
BFR98,DLR77], is a much more powerful model than the global independence model.
In the case of binary {0,1} data, we model each attribute with a binomial probability distribution within a
cluster or component. In this case Pr(xi | C) is simply Pr(xi =1 | C) if item i occurs in the record x or (1-
Pr(xi =1 | C)) if item i does not appear in x.
While EM provides many advantages for clustering data, including the fact that it produces a statistically
meaningful model, the solution it produces is determined completely by the initial model. The state of the
art of initializing EM over {0,1} data is via random restarts [MH98]. In high dimensions, EM falls prey to
two problems in particular: clusters often go empty (have no data records assigned to them); and different
clusters converge on the same distribution (the two clusters become identical). In either case, the
algorithm effectively identifies fewer clusters in the data. Certainly this should happen if the user asked
the algorithm to find more clusters than truly exist in the data. However, in practice these problems
surface frequently when clustering high-dimensional sparse data when more structure actually exists. We
demonstrate that ETIs consistently uncover more structure in the data than EM is capable of discovering
with a multitude of repeated random initializations.
Each ETI is treated as a potential cluster. To construct a binomial model for each ETI (which will be the
initial binomial distribution of that cluster) a pass is made over the data, collecting counts of items for all
transactions that belong to the ETI. A transaction belongs to an ETI if the fraction of items in the ETI

which are present in the transaction is at least 1-ε. Since ETIs can overlap on items, some transactions
could belong the multiple ETIs. A transaction t that belongs to a set of ETIs gets a fractional membership
score in each ETI proportional to the number of defining dimensions in that ETI. Hence longer ETIs,
when they match a transaction, claim “more” of the transaction than shorter ETIs. With a single pass over
the database, degree of membership for each transaction to each ETI is computed (typically there is only
one matching ETI) and the corresponding item counts for items appearing in the transaction are
incremented by degree of membership. At the completion of the scan, the counts for each ETI are
normalized to probabilities, and an initial cluster model for each ETI is produced.

Efficient Discovery of Error-Tolerant Frequent Itemsets in High Dimensions Yang, Fayyad and Bradley

12

This initial model is then refined via EM. If EM converges with stable clusters (few clusters have gone
empty or converged to model the same set of records), it is an indicator that the ETIs indeed detected real
structure in the data. Hence a quick way to compare a clustering solution based on ETIs with one
obtained from a random starting model is to compare the number of non-empty clusters after EM
converges. See results in Section 5.2.2.

4.2 Query Selectivity Estimation

Having derived a statistical model based on ETI initialization, one can evaluate the fit of the model to the

data. An application measuring this directly is to estimate a count(*) query using the model and

measure the difference between the model-based estimate and the true value of the query. A comparison
is made between the statistical model estimated from ETI initialization and the statistical model estimated
from random initialization.
Queries with h conjunctive items are generated with respect to a statistical cluster model as follows.

1. Cluster C is selected with probability given by the number of records associated with cluster C
divided by the total number of database records.

2. Generate a distribution over each attribute i ∈ I given by:
∑
∈

=
=

Ii
i

i
Ci

Cx

Cx
p

)|Pr(

)|1Pr(
, .

3. Select h items randomly according to the computed probabilities, yielding the count(*) query.

To use a probabilistic model to estimate an aggregate query, such as the number of shoppers who bought
items 1, 5, and 16 together, we simply compute the probability of the event that items 1, 5, and 16 occur
together for every cluster and adding them together weighted by the size of each cluster. Not only is this
an extremely fast operation involving access only to the model and no access to the data, but it can also be
a very accurate estimator for an underlying model that fits the data well.

4.3 Collaborative Filtering Prediction

Succinctly, the collaborative filtering prediction task is the following: given a set of items, predict other
items that typically occur with the given set [MRK97,R*97,RV97]. For example, given that a set of web-
pages have been browsed by a user, predict other web-pages are likely to be browsed by the user in this
session. Or, given products in a shopper’s basket, what other items will the shopper likely place in their
basket also?
By using the given set of items (viewed as a partial record, since more items may be added), it is possible
to associate the record with a cluster. Once the record has been associated with a cluster (possibly with
fractional membership), it is possible to predict other items that would most likely appear with the given
set based on the values of Pr(xi | C). Intuitively, an item i with a large corresponding value of Pr(xi | C)
would be likely to occur along with the given itemset. See [BHK98] for a detailed description.

4.4 Comparison with Traditional Frequent Itemsets

Probabilistic clustering algorithms (such as EM) do not rely upon harsh cluster membership criteria, but
assign a data point to all clusters with a different probability of membership. In the standard frequent
itemset framework, a data point (row) must contain all of the items in the itemset to support it. This “all-
or-nothing” behavior often results in poor initial models for EM-clustering and structure that exists in the
data (capable of being located by a EM) is simply missed. For example, consider the binary data set
shown in Table 8. Assume that each row in the table represents 100 rows in the actual data. If minimum
support is such that 300 rows are needed for a frequent itemset, the only one existing in this example is

Efficient Discovery of Error-Tolerant Frequent Itemsets in High Dimensions Yang, Fayyad and Bradley

13

{A,B}. But allowing for 34% error in ETIs, we get: {A,B},
{D,E,F} and {G,H,I}. If we simply used the result of standard
frequent itemsets and generated an initial cluster model, we would
have one cluster corresponding to the itemset {A,B} and a single
cluster corresponding to “not {A,B}”. EM would not be capable
of further segmenting the data based on the collections {D,E,F}
and {G,H,I}. Obvious, using ETIs, this structure is identified and
the final mixture model more accurately fits the given data.

5 Results
5.1 Results on Synthetic Data

We generated synthetic data with parameters and default values shown in Table 9. We generated more
than 70 different datasets while perturbing some parameters away from default values, and studied the
response of our algorithm in terms of running time and quality of ETIs found (i.e., number of true ETIs
found and number of extra ETIs found).
Unless otherwise noted, we ran the
Greedy Growing Algorithm with
Sampling and Validation, setting support

threshold κ=1%, error threshold ε=20%,
sample size of RS = 6000 and sample size
of VS = 6000. With all data parameters
set to default in Table 9, the algorithm
finds all 50 true ETIs, and no extra ETIs,
in about 540 seconds on a Pentium II
Xeon processor.

5.1.1 Adding Random dimensions

Figure 5 shows the quality of ETIs found when we add 10, 25, 50 and 100 random dimensions to the data.
We vary the probability of a random dimension being “1” from 0.25% to 2%. There is no major change
in running time. All 50 true ETIs are found in every case, but the number of extra ETIs varies. This is
reasonable and expected behavior: as the random dimension probability increases beyond the support

Parameter Default
Total number of ETIs 50

Approximate number of points in each ETI 10,000

Approximate support of each ETI 2%

Total number of dimensions 5,000

Number of defining dimensions in each ETI 5,6,7, or 8

Probability{defining dimension being “1”} 92.5%

Probability{non-defining dimension being “1”} 0.01%

Number of random dimensions 0

Probability{a random dimension being “1”} 0

Defining dimensions overlap in different ETIs None

Table 9: Synthetic Data Parameter Settings

0
10
20
30

40
50
60

0.0% 1.0% 2.0% 3.0%

Random Dimension Probability

#
o

f
tr

u
e

E
T

Is
fo

u
n

d

0

50

100

150

0.0% 1.0% 2.0%

Random Dimension
Probability

#
o

f
ex

tr
a

E
T

Is
fo

u
n

d

10 rand dims

25 rand dims

50 rand dims

100 rand dims

Figure 5: Adding Random Dimensions

A B C D E F G H I
1 1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0

0 0 0 1 0 1 0 0 0

0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 1 1

Table 8: Frequent Itemset

Efficient Discovery of Error-Tolerant Frequent Itemsets in High Dimensions Yang, Fayyad and Bradley

14

threshold κ=1%, more and more random dimensions are detected as forming singleton ETIs themselves.

5.1.2 Varying Non-Defining Dimension Probability

As we vary the probability of non-defining dimensions from 0% to 2%, running time and ETI quality are
shown in Figure 6. As the non-defining dimension probability is increased, number of high-support
dimensions becomes larger, and data becomes denser. Both contribute to the increase in running time.

As the non-defining dimension probability increases beyond the support threshold κ=1%, real ETIs
become hard to identify. So the quality of ETIs found is deteriorated.
There is a “bump” in running time when iterative sampling and validation is used, because 2 iterations are
made here, as opposed to 1 iteration elsewhere. If we disable validation and use only 1 iteration
everywhere (but still use sampling), then the bump disappears and running time decreases slightly.
However, this is at the cost of losing some true ETIs, as shown in the figure.

5.1.3 Varying Degree of Overlap in Defining Dimensions

Real datasets could have ETIs which overlap in defining dimensions. To simulate this, we generated
datasets with different degrees of overlap in defining dimensions. We define the degree of overlap by the
sum of number of defining dimensions for every ETI divided by the total number of different dimensions
used in one or more ETIs. For example, if every ETI has 6 defining dimensions and there are 50 ETIs,
but only 100 different dimensions are used as defining dimensions, then the degree of overlap is

3
100

506 =×
. A degree of 1 means no overlap, and a larger degree means more overlap. Figure 7 shows

the quality of ETIs found on datasets of different degrees
of overlap. It can be seen that, our algorithm performs
reasonably well for overlap up to degree 10, then
deteriorates gradually. This is acceptable for practical
purposes, since from our experience degree of overlap in
real data rarely goes this high.

5.1.4 Scalability Experiments

Figure 8(left) shows the running time as we increase the average number of defining dimensions of each
ETI. With no overlap, this also means that we increase the total number of high-support dimensions. As
can be derived from Section 2, worst-case running time should grow cubically as we increase this

0

5000

10000

15000

20000

25000

0.0% 1.0% 2.0%

Non-Defining Dimension Probability

R
u

n
n

in
g

T
im

e
(s

ec
.)

no validation

w ith validation

0

100

200

300

400

500

0.0% 1.0% 2.0%

Non-Defining Dimension Probability

E
T

Is
F

o
u

n
d

(I
te

ra
ti

ve
V

al
id

at
io

n
)

true ETIs found

extra ETIs found

0

100

200

300

400

500

0.0% 1.0% 2.0%

Non-Defining Dimension Probability

E
T

Is
F

o
u

n
d

W
it

h
o

u
t

It
er

at
iv

e
V

al
id

at
io

n

Figure 6: Effect of varying non-defining dimension Probability

0

20

40

60

0 5 10 15 20 25 30 35

Degree of Overlap

E
T

Is
F

o
u

n
d

true ETIs found # extra ETIs found

Figure 7: Varying Degree of Overlap

Efficient Discovery of Error-Tolerant Frequent Itemsets in High Dimensions Yang, Fayyad and Bradley

15

number. The figure shows the actual result is much better than the worst-case scenario. Figure 8(right)
shows the running time as we increase the total number of data points in each ETI, which also increases
the database size. Since we use sampling, there is no major change in running time as the database size
increases. In terms of qualitative performance over all these data sets, all 50 true ETIs and no extra ETIs
are found for all of these experiments.

5.1.5 Parameter Sensitivity Experiments

We show that our method is fairly insensitive to parameter settings in Appendix B. The 6 charts provided
in Figures B.1 and B.2 demonstrate this for the primary parameters.

5.2 Results on Real Data

Error Tolerant Itemsets are particularly suited to identifying structure for cluster initialization over sparse
{0,1} high-dimensional data. In this respect, we evaluate ETIs in this application over 4 real sparse {0,1}
databases. ETI-initialized cluster models are evaluated in comparison to randomly-initialized cluster
models in 3 areas: 1) preservation of the number of clusters in the model (see Section 4.1); 2) ability of

the model to approximate count(*) queries over the database (see Section 4.2); 3) a collaborative

filtering prediction task (see Section 4.3).

5.2.1 Real Databases

Web-1: This database consists of the browsing behavior of 516,511 users over 218 web-page categories.
This data was obtained from a major internet service provider/web portal. Viewed as a data table, this
databases consists of 516,511 rows and 218 columns. An entry of 1 in row h and column j indicates that
user h visited a web-page in category j. Since clustering is much more expensive that ETI extraction,
when clustering this database (initialized with either ETIs or randomly), a random sample of 100,000
users was used.
Web-2: This database consists of the browsing behavior of 602,479 users over 9822 websites. This data
set was obtained from one of the largest web-content providers on the internet. Prior to clustering this
database, a random sample of 100,000 users was obtained. Clustering was done using the 5000 most
frequent items out of the total 9822. After the cluster model was constructed, binomial distributions were
estimated over the entire set of 9822 items for each cluster.

0

5000

10000

15000

0 5 10 15 20 25

Avg. # of Defining Dimensions in Each ETI

R
u

n
n

in
g

T
im

e
(s

ec
.)

0

1000

2000

3000

4000

5000

0 10000 20000 30000 40000 50000

Avg. # of Points in Each ETI

R
u

n
n

in
g

T
im

e
(s

ec
.)

Figure 8: Scalability Results

Efficient Discovery of Error-Tolerant Frequent Itemsets in High Dimensions Yang, Fayyad and Bradley

16

Product-Purchase-1: This database consists of the products purchased by 29989 users. The number of
possible products is 297 and were obtained from a small e-commerce site that sells software products.
Sampling was not employed in clustering this database.
Product-Purchase-2: This database consists of purchasing behavior of 703,510 customers purchasing a
subset of 32,301 products. This data set is obtained from a major software/hardware retailer. Similar to
Web-1 and Web-2, clustering was done over a random sample of 100,000 customers. In addition the
cluster model was computed over the most frequently occurring 5,000 items. Once the cluster model was
obtained, binomial distributions were estimated over the full set of 32,301 items for each cluster.

5.2.2 Number of Clusters

For a given minimum support value κ, SGGA was applied to the database. Upon termination, the ETIs
constructed were used to initialize the binomial cluster model. EM [BFR98] was then applied to the
database to refine the given initial model. EM was also applied to the database from 5 random initial
binomial cluster models. The number of clusters in the random models was initially set to the number of
ETIs returned by SGGA. We then compare the number of clusters at EM convergence from the ETI-
initialized model with the average number of clusters from the 5 random initial models. Results are
summarized for the 4 datasets in Figure 9. The random initial cluster models had a number of clusters
equal to the corresponding ETI-value. No clusters went empty when initialized via ETIs. Random values
are averages over 5 random initial models, error bars are 1 standard deviation.

Note that when EM is initialized via ETIs, no empty clusters are observed when EM converges. In
contrast, when initializing EM with a random cluster model with the same number of clusters as the

corresponding ETI model, EM converges with many empty clusters. For minimum support κ = 0.01, ETI-
initialized models uncovered as
many as 16 times as many
clusters as randomly initialized
models on the Product-Purchase-
1 database. On average over the
4 databases tested, for minimum

support κ = 0.01, ETI-initialized
models uncovered 9.6 times as
many clusters as the randomly
initialized models.

5.2.3 Query Selectivity
Estimation

Similar to Section 5.2.2, for a

given minimum support value κ,
SGGA was applied to the
database. The ETIs constructed
were used to initialize the
binomial cluster model as in the
previous section. As above, we

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

0 0 .0 5 0 .1

M in im u m S u p p o r t k

F
in

al
N

um
be

r
of

C
lu

st
er

s E T I

R a n d o m

(a) Web-1

0

1 0

2 0

3 0

4 0

5 0

6 0

0 0 .0 2 0 .0 4

M in im u m S u p p o r t κκκκ

F
in

al
N

um
be

r
of

C
lu

st
er

s E T I

R a n d o m

(b) Web-2

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

0 0 .0 1 0 .0 2 0 .0 3 0 .0 4 0 .0 5

M in im u m S u p p o r t κκκκ

F
in

al
N

um
be

r
of

C
lu

st
er

s E T I

R a n d o m

(c) Product-Purchase-1

0

5

1 0

1 5

2 0

2 5

0 0 .0 1 0 .0 2 0 .0 3 0 .0 4 0 .0 5

M in im u m S u p p o r t κκκκ

F
in

al
N

um
be

r
of

C
lu

st
er

s

E T I

R a n d o m

(d) Product-Purchase-2

Figure 9: Final number of clusters after EM converges

Efficient Discovery of Error-Tolerant Frequent Itemsets in High Dimensions Yang, Fayyad and Bradley

17

compare against initializing EM with 5 different random initial binomial cluster models. The number of
clusters in the random models was initially set to the number of ETIs returned by SGGA. We then

randomly generated 50 count(*) queries with 2 items in the “where” clause, based on the ETI-

intialized model as described in Section 4.2. We did experiments with 2 and 3 conjunctions in the “where
clause”. Having more than 3 conjuncts usually results in most queries returning zero or a very small
number for the count result. When a query has a small true result (e.g. less than 5), it is known that the
estimate of these small queries with statistical models is poor [SFB99]. Over these high-dimensional,

sparse databases, we have observed very small true result sizes for count(*) queries with more than 3

attributes. Estimates of count(*) queries with only 1 attribute in the “where” clause were deemed

uninteresting as these queries can obviously be effectively estimated without modeling dependency
among attributes. For very long queries, a constant zero is a good estimator, hence uninteresting.
Suppose the “where” clause of the query of interest consists of items i and j. The probability that these

two items appear in a given cluster C is Pr(xi | C) ⋅ Pr(xj | C). The number of records in cluster C

containing both items i and j is the total number of records in C times Pr(xi | C) ⋅ Pr(xj | C). Let N(C) be
the number of records in cluster C, the query :

“select count(*) from DB.Table where (i = 1) and (j = 1)”

is then simply approximated by the cluster model by: ∑ ⋅⋅
C

ji CxCxCN).|Pr()|Pr()(

We tested the ability of cluster models initialized with ETIs versus 5 randomly initialized models. Each
initial cluster model had the same number of clusters as discovered by algorithm SGGA. Average results
over 50 two conjunct queries (see Section 4.2 for description of query generation) for the ETI-initialized
model are given in
Figure 10 noted as
“ETI”. Results over
3-conjunct queries
yielded similar results.
Average results over
the same 50 queries
and over the 5
randomly initialized
models are noted in
Figure 10 as
“Random”. The
method noted as
“Ave. Random Est.”
in Figure 10 refers to
the following: for
each individual query,
we obtain the 5
approximations with
the random models,
then average these to

0

0 .0 1

0 .0 2

0 .0 3

0 .0 4

0 .0 5

0 .0 6

0 .0 7

0 .0 8

0 .0 9

0 .0 1 0 .0 2 0 .0 3 0 .0 4 0 .0 5

M in im u m S u p p o r t κκκκ

R
el

at
iv

e
E

rr
or

E T F

R a n d

A v e R a n d E s t

(a) Web-1

0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .0 1 0 .0 2 0 .03 0 .04 0 .05

M inim um Support κκκκ

R
el

at
iv

e
E

rr
or

ETI

Ran d om

Ave. Ran d om Est.

(b) Web-2

0

0.05

0.1

0.15

0.2

0.25

0.01 0.02 0.03 0.04 0.05

Minimum Support κκκκ

R
el

at
iv

e
E

rr
o

r ETI

Random

Ave. Random

(c) Product-Purchase-1

0

0 .5

1

1 .5

2

0 .01 0 .02 0 .03 0 .04 0 .05
M in im u m S u pp o rt κκκκ

R
el

at
iv

e
E

rr
o

r

E TI

R andom

A ve. R andom Es t.

(d) Product-Purchase-2

Figure 10: Average query selectivity relative error for 4 real databases.

Efficient Discovery of Error-Tolerant Frequent Itemsets in High Dimensions Yang, Fayyad and Bradley

18

0.85

0.855

0.86

0.865

0.87

0.875

0.88

0.885

0.01 0.02 0.03 0.04 0.05

Minimum Support

A
cc

u
ra

cy

ETI

Rand

(a) Web-1

0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .01 0.02 0.0 3 0 .04 0.05

M in im u m S u p p o rt κκκκ

A
cc

u
ra

cy

E T I
R an do m

(b) Web-2

0.68

0.685

0.69

0.695

0.7

0.705

0.71

0.715

0.01 0.02 0.03 0.04 0.05

Minimum Support

A
cc

u
ra

cy

ETI

Random

(c) Product-Purchase-1

0.38

0.4

0 .42

0 .44

0 .46

0 .48

0.5

0.01 0 .02 0 .03 0 .04 0 .05

M in im u m S u p p o rt k

A
cc

u
ra

cy

E T I

R andom

(d)Product-Purchase-2

Figure 11: Collaborative filtering predictive accuracy

get an approximate result for the specific query in question. Relative error in Figure 10 is obtained by
taking the absolute value of the difference between the true result and the approximation and dividing by
the true result. Over all databases, we discarded queries where the true result was less than or equal to 5.

Over all 4 databases the ETI-initialized models were better query estimators than the randomly initialized

models. Except in over the Product-Purchase-2 database with minimum support κ = 0.05. For this value
of minimum support, the number of ETIs found was 3 and the average number of clusters from random
initialization was 1.8. Hence these models are very similar. We note that data which does not match any
ETI does not contribute to the initial cluster model. So in this case where there are only 3 ETIs we
conjecture that there is a non-trivial portion of the data space which was not appropriately modeled by the
ETI-initialized cluster model and it should be expected that multiple randomly initialized cluster models
would capture some (if not most) of this space.

5.2.4 Collaborative Filtering Prediction

We tested the utility of cluster models initialized via ETIs in the collaborative filtering task of predicting
other items that a record may contain based on a set of given items occurring in the record. We compared
the predictive accuracy of ETI-initialized cluster models and randomly initialized models using a subset
of data not used on the clustering process. Recall that for databases Web-1, Web-2 and Product-
Purchase-2, clustering was performed over a random sample of 100,000 records. For these databases, an
additional 10,000 records were held out and used to score the predictive accuracy of the models. For the
Product-Purchase-1 database, having 29989 records, 10% of the records were set aside for scoring and the
cluster models were built on the remaining 90%.
The scoring scheme works as follows. For each record in the hold-out set, we remove one of the items
occurring in the record. Call
this record with 1 item
removed the partial record.
The record is assigned to
clusters (with fractional
membership) based on the
remaining items that appear
in the record. Let w(C) be
the fractional membership
assignment for cluster C.
The w(C)-values satisfy:

1)(=∑
C

Cw . For every

missing item in the partial
record (including the item
removed), we ask for a
prediction for that item. For
missing item m, the
prediction is given by:

Efficient Discovery of Error-Tolerant Frequent Itemsets in High Dimensions Yang, Fayyad and Bradley

19

∑ ⋅=
C

m CxCwmp)|Pr()()(.

The missing items are sorted in descending order by their p(m) values. If the item which was explicitly
removed to form the partial record occurs in the top 10 of the sorted list, the score is incremented by 1.
Accuracy is then the score divided by the number of items held out (to form partial records) over the
entire hold-out set. Accuracy scores are summarized for the 4 databases in Figure 11 for ETI-initialized
cluster models and average collaborative filtering predictive accuracy over 5 randomly initialized cluster
models. Error bars associated with the random results are 1 standard deviation.

6 Generalization to Categorical Data
Note that the definition of our algorithm does not fundamentally rely on the assumption that the data is
binary. It can be generalized to handle categorical data as well. For efficiency purposes, we assume that
each attribute has one value that is somehow distinguished as the “default” value. In transaction data, that
value is implicitly the “zero” value. Assuming that the “default” value for each attribute is pre-dominant
(i.e. the data can be efficiently represented in sparse format), we can generalize our algorithm to count
combinations of attribute values that do not involve the “default” value for each attribute. Note that the
treatment is almost identical algorithmically as thinking of each non-default value of a multi-valued
categorical attribute as a new binary attribute. As long as we have an efficient mechanism for counting
frequent combinations of attribute values, the algorithm carries through and can be applied to finding
clusters in categorical data. This is similar to the algorithm presented in [SA96].

7 Related Work
Frequent itemsets were first developed by Agrawal et al. in the a-priori algorithm for association rule
mining [AIS93, AS94, AMSTV96]. The key optimization in finding frequent itemsets was based on the
fact that, if an itemset of length m has enough support, then any of its subset of length m-1 must also have
enough support. This property enables building frequent itemsets in a bottom-up manner. As we
introduce the notion of errors into the definition of frequent itemsets, this property no longer holds. A
similar but weaker property exists as discussed earlier, but it was not suffieicient to ensure fast discovery
of error-tolerant frequent itemsets, hence the additional optimization schemes developed in this paper.
One problem that arises in a-priori is that the algorithm scales exponentially with longest pattern length.
Many variants have been proposed to address this issue. Zaki et al. [ZPOL97] developed the algorithms
MaxEclat and MaxClique which “look ahead” during initialization so that long frequent itemsets are
identified early. Bayardo [B98] presented an optimized search method called Max-Miner that prunes out
all subsets of long patterns of frequent itemsets that are discovered early. Gunopulos et al. [GMS97]
suggested iteratively extending a working pattern until failure, using a randomized algorithm, which is
similar to the idea we used in our algorithm to grow itemsets in a greedy fashion.
Srikant and Agrawal [SA96] extended the a-priori algorithm to the domains of non-binary values, such as
categorical or continuous values. They discussed ways to map intervals and categorical values to integers
that effectively converted the non-binary databases into binary ones, where the original a-priori algorithm
could be used. The same idea applies to our algorithm as well, so our algorithm can also be used on non-
binary databases. We are not aware of problem formulations that introduce the notion of error-tolerance,
and we believe that efficient algorithms presented in previous work rely on itemsets being exact.

Efficient Discovery of Error-Tolerant Frequent Itemsets in High Dimensions Yang, Fayyad and Bradley

20

Much work has been done in automatic clustering methods. Traditionally, clustering is done by finding a
set of centroids in a high-dimensional space [CS96, DLR77, NH94, ZRL96], and cluster membership is
determined by some distance function to the centroids. This leads to cluster shapes similar to spheres.
Later work by Guha et al. [GRS98] was able to handle arbitrarily-shaped clusters by using several
representative points to define a cluster. They also used a sampling scheme to reduce I/O costs.
Recognizing that most clusters are defined on subspaces rather than the entire high-dimensional space,
Agrawal et al. [AGGR98] presented a method to build subspace clusters in a bottom-up way, using the
property that if a collection of points form a cluster in a k-dimensional space, then must also form a
cluster in all of its (k-1)-dimensional subspaces (where a cluster is defined as a dense region in the
subspace). As presented in this paper, our algorithm to find error-tolerant frequent itemsets may be used
independently as an efficient subspace clustering algorithm, with a more general definition of clusters
than that used in [AGGR98]. It can also be used as an effective initialization method for existing cluster
refinement algorithms such as EM.
Discrete clustering algorithms, as opposed to generalized frequent itemsets, include CACTUS [GGR99],
STIRR [GKR98], and ROCK [GRS99]. The first two require the computation of a similarity matrix
between all attributes (items), which takes O(d2) time (d = number of attributes). CACTUS uses a more
efficient refinement method on the computed similarities and hence is faster. ETIs are a generalization to
frequent itemsets, and cluster initialization is just an application. In fact, ETIs could be used as a
preprocessor to these algorithms, reducing the similarity matrix needed and hence alleviating the primary
bottleneck. We plan to test this application in future work. ROCK requires a distance metric between
transactions and is cubic in their number. In general, clustering is much more time consuming than
extracting ETIs.

8 Concluding Remarks
We have presented a generalization to the standard frequent itemset problem and an efficient and scalable

algorithm to find error-tolerant frequent itemsets (ETIs). ETIs describe simpler and more intuitive

frequent structures in data. Starting with an exhaustive approach which guarantees that all such ETFs will

be found, we developed an efficient approximation which runs in polynomial time and produces good

results. We demonstrated that this method can be used as a fast initialization method for clustering

algorithms such as EM, and generates far more stable models than existing techniques. Query selectivity

estimation and collaborative filtering are two other useful applications of our algorithm.

One possible future direction is to study the extension of the algorithm to continuous-valued domains.

Approaches suggested in [SA96] are applicable, but there may be other methods as well. We are

currently exploring its use to identify which attribute similarities to focus on in algorithms driven by such

similarity matrices [GGR99,GKR98,GRS99]. It would also be interesting to explore other sampling

schemes to improve performance. Furthermore, much of the previous work that made use of traditional

(error-free) frequent itemsets can now be reconsidered in this new framework.

Efficient Discovery of Error-Tolerant Frequent Itemsets in High Dimensions Yang, Fayyad and Bradley

21

Acknowledgements
We gratefully acknowledge Jeong Han Kim and Dimitris Achlioptas for discussions and assistance
regarding the probability of error-tolerant itemsets occurring by chance. We thank Ilya Vinarsky for help
with implementation and experiments.

9 References
[AGGR98] R. Agrawal, J. Gehrke, D. Gunopulos and P. Raghavan, Automatic Subspace Clustering of

High Dimensional Data for Data Mining Applications. In Proc. of the ACM SIGMOD Conf., 1998.

[AIS93] R. Agrawal, T. Imielinski and A. Swami. Mining Association Rules Between Sets of Items in
Large Databases. In Proc. of the ACM SIGMOD Conf., 1993, pp. 207-216.

[AMSTV96] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen and A. I. Verkamo. Fast Discovery of
Association Rules. In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth and R. Uthurusamy (eds.),
Advances in Knowledge Discovery and Data Mining, pp. 307-328, AAAI Press, Menlo Park, CA,
1996.

[AS94] R. Agrawal and R. Srikant. Fast Algorithms for Mining Association Rules. In Proceedings of the
20th International Conference on Very Large Databases, 1994.

[B98] R. J. Bayardo Jr. Efficiently Mining Long Patterns from Databases. In Proc. of the 1998 ACM
SIGMOD Int’l Conf. on Management of Data, pp. 85-93, 1998.

[BFR98] P. S. Bradley, U. M. Fayyad and C. Reina. Scaling EM (Expectation-Maximization) Clustering
to Large Databases. Technical Report MSR-TR-98-35, Microsoft Research, 1998.

[BHK98] J. Breese, D. Heckerman and C. Kadie. Empirical Analysis of Predictive Algorithms for
Collaborative Filtering. Technical Report MSR-TR-98-12, Microsoft Research, 1998.

[CS96] P. Cheeseman and J. Stutz. Bayesian Classification (AutoClass): Theory and Results. In U. M.
Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurasamy (eds.) Advances in Knowledge

Discovery and Data Mining, pages 153-180. AAAI Press, Menlo Park , CA, 1996.

[DLR77] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum Likelihood from Incomplete Data via
the EM Algorithm. Journal of the Royal Statistical Society B, 39:1-38, 1973.

[FI93] U.M. Fayyad and K.B. Irani. “Multi-interval Discretization of Continuous-valued Attributes for
Classification Learning.” Proc. of the 13th Intl. Joint Conf. on Artificial Intelligence. IJCAI-93:
Chambery, France (1993).

[GGR99] V. Ganti, J. Gehrke, and R. Ramakrishnan. “CACTUS –Clustering Categorical Data Using
Summaries”. Proc. of KDD-99, ACM Press, 1999.

[GKP89] R. L. Graham, D. E. Knuth and O. Patashnik. Concrete Mathematics. Addison Wesley,
Reading, MA, 1989.

[GKR98] D. Gibson, J. Kleinburg, and P. Raghavan. “Clustering categorical data: an approach based on
dynamical systems”. Proc. VLDB-98, pp. 311-323. 1998.

[GMS97] G. Gunopulos, H. Mannila and S. Saluja. Discovering All Most Specific Sentences by
Randomized Algorithms. In Proc. Of the 6th Int’l Conf. On Database Theory, pp. 215-229, 1997.

[GRS98] S. Guha, R. Rastogi and K. Shim. CURE: An efficient algorithm for clustering large databases.
In Proceedings of the ACM SIGMOD conference, 1998.

Efficient Discovery of Error-Tolerant Frequent Itemsets in High Dimensions Yang, Fayyad and Bradley

22

[GRS99] S. Guha, R. Rastogi, K. Shim. “A Robust Clustering Algorithm for Categorical Attributes”.
Proc. ICDE-99, IEEE Press, 1999.

[MH98] M. Meila and D. Heckerman. An Experimental Comparison of Several Clustering and
Initialization Methods. Technical Report MSR-TR-98-06, Microsoft Research, Redmond, WA,
98052, 1998.

[MRK97] B. Miller, J. Riedl and J. Konstan. Experiences with GroupLens: Making Usenet Useful
Again. In Proc. USENIX 1997 Tech. Conf., pp. 219-231, Anaheim, CA, 1997.

[NH94] R. T. Ng and J. Han. Efficient and effective clustering methods for spatial data mining. In
Proceedings of the International Conference on Very Large Databases, 1994.

[RG99] R. Ramakrishnan and J. Gehrke. Principles of Database Management (2nd Edition). 1999.

[R*97] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom and J. Riedl. GroupLens: An Open
Architecture for Collaborative Filtering of Netnew. In Proc. ACM 1994 Conf. Computer Supported
Cooperative Work, pp. 175-186, New York. ACM, 1997.

[RV97] P. Resnick and H. Varian. Recommender Systems. Comm. of the ACM, 40(3):56-58, 1997.

[SFB99] J. Shanmugusundaram, U. M. Fayyad and P. S. Bradley. Compressed Data Cubes for OLAP
Aggregate Query Approximation on Continuous Dimensions. In Proc. 5th Intl. Conf. on Knowledge
Discovery and Data Mining, pp. 223-232, 1999.

[SA96] R. Srikant and R. Agrawal. Mining Quantitative Association Rules in Large Relational Tables.
In Proceedings of the ACM SIGMOD Conference, 1996.

[ZPOL97] M. J. Zaki, S. Parthasarathy, M. Ogihara and W. Li. New Algorithms for Fast Discovery of
Association Rules. In Proc. of the Third Int’l Conf. On Knowledge Discovery in Databases and

Data Mining, pp. 283-286, 1997.
[ZRL96] T. Zhang, R. Ramakrishnan and M. Livny. Birch: An efficient data clustering method for very

large databases. In Proceedings of the ACM SIGMOD Conference, 1996, pp. 103-114.
[Z49] G.E. Zipf. Human Behavior and the Principle of Least Effort. Addison-Wesley Press, Inc, 1949.

Appendix A:
On Chance Occurrences of Error-Tolerant Frequent Itemsets
Lemma: Assume a binary N × D sparse matrix over {0,1} is generated at random with the probability
that an entry is 1 is p. Then the probability of a frequent error-tolerant item set with r items appearing in

it with support κ and error ε is not greater than NrNr pp
N

N

r

D εκκε

κ
)1()1(−















 − .

Proof: Let A be the event that there exists a submatrix with κN rows and r columns with (1-ε)% of the
entries having value 1. Let B be the random variable counting the number of such submatrices occurring

over the N × D sparse matrix over {0,1}, then we obviously have:

].[)(BEAP ≤

Here E[B] is the expected value for B taken over all such N × D sparse matrices over {0,1}, where 1

is generated at random with the probability p. The right-hand-side of the above inequality is given by the

Efficient Discovery of Error-Tolerant Frequent Itemsets in High Dimensions Yang, Fayyad and Bradley

23

number of κN × r submatrices in an N × D matrix times the probability of observing the given structure.

The number of ways to choose a submatrix with κN rows and r columns from the N × D matrix is

.







⋅






κ
D

r

N

N

The probability that (1-ε)% of the entries have value 1 is given by:

NrNr pp εκκε− −)1()1(.

�
We next discuss the case when the assumption that the column densities of the data matrix follow a Zipf
distribution (i.e. the probability of observing a 1 in column j is proportional to (1/j)). Now, when we

choose a sub-matrix of size κN × r we can approximate (overestimate) the probability of observing a 1
over the sub-matrix by the probability of observing a 1 in the column with minimal index in the sub-
matrix (this column has maximum probability). We consider the expected value of the minimal index

over all such sub-matrices of size κN × r, where the probability of choosing a given column for the sub-
matrix is uniform.
Let X be the random variable which is the value of the minimum index over the r columns chosen. What
is the expected value of X over all possible ways of choosing r distinct columns from D? Once we know
the expected value of X, we can use the Zipf assumption to obtain a value for p and apply the lemma
above.
By definition, the expected value of X is:

[]

1

1

1
1

chosen)notare)}1(,,0{|chosenisPr(chosen)notare)}1(,,0Pr({

)Pr(][

1

2

0

1

1

+
+=









+−
⋅








−

−=

−⋅−⋅=

⋅=

∑ ∏

∑

∑

=

−

=

=

=

r

D

xD

r

fD

r
x

xxxx

xxXE

D

x

x

f

D

x

D

x

KK

Hence, on average, the minimum column index that we pick for the submatrix with κN rows and r

columns is (D + 1)/(r + 1). By Zipf, we can make the assumption that the probability of observing a 1 in
this column is one over the column index (r + 1)/(D + 1). We can then over-estimate the probability of
observing a 1 in the entire submatrix by assuming this probability is constant and equal to p = (r + 1)/(D
+ 1) and apply the result of the lemma.

Efficient Discovery of Error-Tolerant Frequent Itemsets in High Dimensions Yang, Fayyad and Bradley

24

Appendix B: Parameter Sensitivity Results
Figure B.1 shows the effects of changing the error threshold ε, while keeping the support threshold κ at
1.5%. There is no major change in running time, but the quality of ETI is very bad when the error

threshold ε is set too low. Since the true ETIs have an average of 5 defining dimensions, setting ε<20%
would mean that a row must contain a “1” in every defining dimension of an ETI in order to be
considered “covered”. This is too harsh and causes many ETIs to be missed.

Figure B.2 shows the effects of changing the support threshold κ, while keeping the error threshold ε at

20%. Quality of ETIs is best when κ is below but not far from the real support of ETIs. Smaller κ leads
to longer running time, because the total number of high-support dimensions is larger. However, when

iterative sampling and validation is used, there is a large bump in running time when κ coincides with the
real support of 2%. This is because many iterations of sampling and validation are happening here, with
each iteration generating a few more new ETIs based on different samples of the data. This is an
instability which can be removed by terminating after one iteration without using validation.

0

100

200

300

400

500

600

0% 10% 20% 30% 40% 50%

Error Threshold εεεε

R
u

n
n

in
g

T
im

e
(s

ec
.)

0
20
40
60
80

100
120

0% 10% 20% 30% 40% 50%

Error Thresholdεεεε

E
T

Is
F

o
u

n
d

#trueETIsfound
#extraETIsfound

0

50

100

150

200

0.0% 1.0% 2.0% 3.0%

Support Threshold κκκκ

E
T

Is
F

o
u

n
d

W
it

h
It

er
at

iv
e

V
al

id
at

io
n

true ETIs found

extra ETIs found

0

500

1000

1500

2000

0.0% 1.0% 2.0% 3.0%

Support Threshold κκκκ

R
u

n
n

in
g

T
im

e
(s

ec
.)

W
it

h
o

u
t

It
er

at
iv

e
V

al
id

at
io

n

0

500

1000

1500

2000

0.0% 1.0% 2.0% 3.0%

R
u

n
n

in
g

T
im

e
(s

ec
.)

W
it

h
It

er
at

iv
e

V
al

id
at

io
n

0

500

1000

1500

2000

0.0% 1.0% 2.0% 3.0%

R
u

n
n

in
g

T
im

e
(s

ec
.)

W
/O

It
er

at
iv

e
V

al
id

at
io

n

Figure B.1: Effects of Varying Error

Figure B.2: Effect of Varying Support Threshold

