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Abstract

We present a generalization of frequent itemsets allowing the notion of errors in the itemset definition.
We motivate the problem and present an efficient algorithm that identifies error-tolerant frequent clusters
of items in transactional data (customer-purchase data, web browsing data, text, etc.). This efficient
algorithm exploits sparsity of the underlying data to find large groups of items that are correlated over
database records (rows). The notion of transaction coverage allows us to extend the algorithm and view it
as afast clustering algorithm for discovering segments of similar transactions in binary sparse data. We
evaluate the new algorithm on three real-world applications: clustering high-dimensional data, query
selectivity estimation and collaborative filtering. Results show that we consistently uncover structure in
large sparse databases that other more traditional clustering algorithms in data mining fail to find.

26" International Conference on Very Large Databases, submitted.
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1 Preliminaries and Motivation

Progress in database technology has provided the foundation that made massive stores of transactional
data ubiquitous. Such stores are common in commerce (products purchased by customers), web logs
(websites visited by users), text (words occurring in documents), etc. The frequent itemset problemisthat
of determining which items frequently occur together in atransaction. We consider relaxing the criteria
commonly associated with frequent itemsets to a more flexible version that tolerates error and propose an
algorithm for finding all such error-tolerant frequent itemsets. We then provide an efficient algorithm
approximating the complete algorithm. The primary motivation for this generalization is to find frequent
groups of transactions (groups of users, web sessions, etc.) instead of focusing primarily on just the items
themselves, alowing for the discovery of groups of similar transactions that share most items. We
believethis to be a more general and more intuitive characterization of groups of transactions.

The frequent itemset generalization, based on relaxing the exact matching criteria in frequent item sets
and allowing a transaction to violate some conditions, is motivated by the following example. Consider a
set of customer purchase data over 5 products (P1,...,P5). Figure 1 shows a graphical snapshot of the data
where items (columns) P1,...,P5 are listed first (the other products are not of interest for this example),
and customers purchasing these 5 products are similarly listed first. The shaded regions depict sets of
products bought by sets of customers. Table 1 gives the counts of customers depicted as blocks in Figure
1. Let the total number of customers (rows) in the database be 10,000. For simplicity, suppose that no
other customers in the database purchased these 5 products. Notice that for any minimum support value ¥
> 0, theitemset {P1,...,P5} will not appear to be frequent. In fact, for a support level of 5%, none of the
5 items would appear in any frequent itemset enumeration. Note, however, that 5.7% of the transactions
contain 4 of the 5 products. If products P1,...,P5 are different brands of soda then these 5.7% of the
customers purchase a significant portion of these 5 brands. This pattern may be useful for the data analyst
but would be undiscovered by traditional frequent itemset approaches due to the harsh definition of
support. In fact, when reducing the support to 4%, traditional frequent itemsets would only find { P2, P4}
as the longest itemset over {P1,...,P5}. By relaxing the definition of frequent itemsets to be error-
tolerant, one could identify this cluster of customers who, purchase “most” of the products { P1,...,P5}.
The intuition is made specific with the following definition and problem statement. Adopting the notation
of [AMSTV96], let | ={iy, iy, ..., ig} bethefull set of items over a database D consisting of transactions
T, where each transaction is a subset of the full itemset 1. Each transaction T may be viewed as record
with d attributes {i,, i», ..., ig} taking valuesin {0,1}, where a 1 occurs over the attributes specifically
listed in the transaction T (hence viewing the database as a table with one record for each transaction and
d columns). This view of the data often results in a very sparse table (i.e. the majority of the table

P1 | P2 | P3| P4 | P5|Other Products Count P1 | P2 = o1 55
: 100 1 ]/1 |1 |1 |0
§ 100 0 1 1 1 1
é 80 1 1 1 0 1
. 90 1]/0 |1 |1 |1
Other customers 200 1 1 0 1 1

Table 1: Counts of customer-purchase

Figure 1: graphical depiction purchase data patterns for submatrix.

regions in data sub-matrix
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elements have value 0). The support of an itemset is the fraction of total transactions in the database
containing the given itemset. The frequent itemset problem is that of finding al itemsets with support
greater than a minimum threshold « (called minimum support or minsup) [RG99]. Note that for asingle
transaction T to contribute to the support of a given itemset, it must contain the entire itemset. We relax
this exact matching criterion to yield a more flexible definition of support and consequently of error-
tolerant itemsets, eventually leading to an algorithm for clustering rows in sparse binomial databases.

We have found that our algorithm is capable of identifying the presence of structure (clusters) in large
sparse databases that traditional clustering algorithm consistently fail to find. This leads to both a more
effective (and faster) method of clustering, as well as an effective way of determining the number of
clusters: an open problem for most classical clustering algorithms [DH73,CS96,BFR98].

Definition 1. Error-Tolerant Itemset [ETI] (general): Anitemset E c | is an error-tolerant itemset
having error € and support k with respect to a database D having n transactions if there exists at least kn
transactions in which the probability of observing a1 over the itemset is not less than 1-€.

Problem Statement: Given a sparse binomia database D of n transactions (rows) and d items (columns),
error tolerance € > 0, and minimum support x in [0,1], determine all error-tolerant itemsets (ETIs) over D.
The fundamental difference between this problem and that of traditional frequent itemsetsis arelaxation
in support criteria. An error threshold € = O collapses Definition 1 to the standard frequent itemset
definition. For € > 0, the problem is to efficiently determine itemsets for which support can be
determined by a function requiring that (1-€) of the m items in the ETI E be present. For example, the
itemset E = {P1,P2,P3,P4,P5} from Table 1 is an error-tolerant itemset with support k = 5.7% and € =
0.2. Notethat the support for this itemset can also be interpreted as those transactions containing 4 of 5 of
the items in E. This definition is not confined to binary {0,1} data, but can be extended to find error-
tolerant itemsets over transactional databases with categorical-valued attributes (more than 2 values).
Continuous-valued attributes may be preprocessed with a discretization algorithm [FI93]. We discuss
generalizations in Section 6, but we focus on the binary case in this paper.

We define maximal ETls as those ETls whose supersets are not ETIs. Sometimes both maximal and
nonmaximal ETls are of interest when finding clusters of similar transactions (clustering rows versus just
columns). We illustrate this notion in the example shown in Figure 2. On the left we illustrate 3 groups
of transactions. customers who bought 5 products P1-P5 (35% of the transactions), customers who bought
only P1-P2 (20%) and customers who bought only P4 and P5 (45%). On the right, we show the 3 possible
ETlIs (note that ETI identifiers overlap). An algorithm that looks for coverage of the data would do the
job with {P1, P2} (55%) and { P4, P5} (80%). Even worse, imagine a product, say P6, that most shoppers
bought. That's an itemset of length 1 that has approximately 100% support, but hardly indicates structure
in the data. However, intuitively the cluster of people who bought all five products should be identified
and is indeed significantly different from the others. We will show how the ETIs can be used to
efficiently uncover the structure on the left, identifying the three “natural” clustersin the example.

1.1 AreETIsRandom Artifacts?

PL [P2 [P3| P4 P5 P2 [ P3 ] P4 | P5

Before studying properties of ETIs and their 350

efficient extraction, we pause briefly to address 20% BN

===

the question of whether finding such item sets 45 35%)
is of interest, and whether ETI discovery could 80%]

Figure 2: ETls and data clusters
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be a side effect of correlations that happen to appear in data by pure chance. It should be obvious from the
definition of ETIs that as the error € is increased, the expected number of items in ETIs should increase,
which raises the question of the validity of such patterns to begin with. Essentially, is one really finding
structurein data, or simply fishing out random correlationsin lar ge data sets?

Lemma: Assume a binary N x D sparse matrix over {0,1} is generated at random with the probability
that an entry is1isp. Then the probability of a frequent error-tolerant item set with r items appearing in

L . DY N
it with support « and error € is not greater than ( i j[KN] pULeAN (1 _ gy

Proof: see Appendix A 0

An application of this lemma to some realistic assumptions over market-basket type data quickly shows
that this probability is vanishingly small. For example, for p = 0.15, € = 0.2, k = 0.01, N = 1,000,000, D
=500 and r =5, using Stirling’ s approximation [GKP39] for the combinatorial terms one obtains that the
probability of finding an ETI with 5 items by chance is approximately 10%% -- essentially zero (for r=10
items this probability drops to 10*°%).

Further, assuming a Zipf distribution [Z49] over items yields even smaller probabilities. For a detailed
description, see Appendix A. Using the original example and making the Zipf assumption, we have € =
0.2, k=0.01, N= 1,000,000, D =500, r =5, on average p is (6/501) = 0.012 and probability of finding an
ETI with 5 items by chance is less than 10°*°® (drops quickly to less than 10™%%® for r=10 items) —
again essentialy zero. Hence the identification of submatrices with high frequency of 1's in them is
indeed interesting as such submatrices, especially when the number of columns involved is large, are
extremely unlikely to occur by pure chance.

1.2 Applicationsof ETIs

While our primary aim is to introduce the generalization to frequent item sets, we also use some
applications of ETIs to demonstrate their benefits. We show that ETIs provide great utility as a technique
for initializing clustering algorithms like the EM (Expectation-Maximization) algorithm [DLR77, CS96].
We show that ETls are very effective at leading EM to clusters it would not otherwise find over real and
synthetic sparse transactional data. The cluster initialization problem over sparse transactional data in
high dimensions is effectively addressed by error-tolerant itemsets. In fact in many cases ETIs find the
solutions quickly and the clustering algorithm adds little improvements to it. We also use error-tolerant
itemsets for query selectivity estimation over sparse binomial databases, and for a collaborative filtering
prediction task [MRK97,R*97,RV97] predicting items likely to be included in a transaction based upon
the presence of other items.

2 Finding Error-Tolerant Frequent Itemsets

In binomial {0,1} datasets, an error-tolerant frequent itemset (ETI) is represented as a set of dimensions
(called defining dimensions) where “1” appears with high probability among a set of rows. Formally, we
give the following two ETI definitions, a strong one and a weak one:

ETI Definition 1 (strong): A strong ETI consists of a set of items, called defining dimensions DD c |,
such that there exists a subset of transactions R c T consisting of at least k'n transactions and, for each of
r e R, thefraction of itemsin DD which are presentinr isat least 1-¢.
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ETI Definition 2 (weak): A weak ETI consists of aset of items, called defining dimensions DD c I, such
that there exists a subset of transactions R c T, |R| > x'n transactions and,

Z 500
LIICCTR I
Here d(X) is 1 if item d occurs in x and O otherwise. Theweak |1 1 1 1 1
definition basically requires that the data sub-matrix defined by 7 1 7 1 ]
the records in R and the columns in DD be mostly “1"s, withthe |1 1 1 1 1
fraction of “0”s not greater than €. It is clear that anything that i i i i 1 - .
satisfies the strong definition above also satisfies the weak |, 1 1 1 1 1 1 1
definition, but not vice versa. 1 1 1 1
In both definitions above, we say that the set DD defines the ETI, 1 1 1 1
and we call x the support threshold and € the error threshold. A 1 1 1
set of defining dimensions DD is called maximal if and only if . 1
DD defines an ETI and no superset of DD defines an ETI. For 1
example, in Table 2 with k=25% and €=20%, {1 2 3 4 5} defines 1 1
a maximal strong ETI, {1 2 3 4} defines a non-maximal strong N ! N

ETI, and {6 7 8 9} defines a maximal weak ETI (but not a strong
ETI). Our ultimate goal is to find strong ETIs, but the notion of
weak ETIswill also be needed in our algorithm.
2.1 Properties
Lemma 1: If a set DD of m dimensions defines a weak ETI, then there exists a set DD’ of m-1
dimensions such that DD’c DD and DD’ also defines a weak ETI. (In other words, it is possible to
remove one defining dimension from DD and still maintain aweak ETI).
Proof: Let DD={d, dy, ..., dn}, and let DD; = DD —{dj}, for j=1,2,...,m. Since DD defines awesk ETI,
then by definition there must exist a set of records R ¢ T such that |R| > kn and DD defines the weak ET]
on the set R. Assume to the contrary that there does not exist a set DD’ that satisfies the given properties.
Then for all j, DD; does not define aweak ETI with the set of records R.
Let  z =number of “0”s over records R and dimensions DD;,

d; = probability of “0”s over records R and dimensions DD, ¢, =z /[(m1) |R]],

z = number of “0"s over records R and dimensions DD, and

&= probability of “0”s over records R and dimensions DD, 6 =z/[ m|R|]
Then the assumption impliesthat §; > € for all j=1,2,...,m.

z = number of “0”s over records R and dimensions DD
= (1/(m1)) [number of “0"s over records R and dimensions DD;+DDy+...+DDy]
=(WU(ml) (z+z+ ... +2Zy)
0 =z/[mR|] = (U/(MMLIR]) (zz+ 2o+ ... +Zz) = (M) (81 + &2+ ... + )

>(@A/m)me=¢

This contradicts with the precondition that DD defines aweak ETI with the set of records R. 0

Table 2: Example binary data set



Efficient Discovery of Error-Tolerant Frequent Itemsetsin High Dimensions Yang, Fayyad and Bradley

Corollary of Lemma 1. if aset DD ={d,, d,, ..., dy} definesaweak ETI, then there exists a permutation
of its defining dimensions{dpl, d . dpm} such that for al j, 1 <j < m, the set {dpl, dpj} defines a
weak ETI.

Proof: Obvious by induction on Lemma 1. O
Lemma2: Given aset of mdimensions, their eligibility to be defining dimensions for aweak ETI can be
tested with one pass over the database.

Proof: The test can be done by the following algorithm, which makes one pass over the database:

While scanning the database once, we keep m+1 counters Co, Cy, ..., C,, where C; keeps track of the
number of data points (records) that have i “1”s out of m candidate dimensions, i = 0,1,2,..., m. From

pyr -

m
these counters, we find the maximum t such that: ZCi > x-n, where n is the total number of recordsin
i=t

. [Z(m—i)ci}(m—t)(ct -Cy)
the database. With thist value, let C; =Y C; -x-n. Define §=~"" .
i=t

Then, the m candidate dimensions are eligible to be defining dimensions for a weak ETI if and only if
0 <¢g, and d isreferred to as the error rate of this weak ETI. The algorithm works as follows: it ranks all
rows based on the number of “1”s out of m candidate dimensions, picks the top kn rows, and checks the
probability & of “0”s occurring among the xn rows over m candidate dimensions. Such ranking ensures
that, if we picked any other set of kn rows, the probability of “0” occurring among those rows over m
candidate dimensions would have been at least 6. Hence, if 6 > €, no weak ETI exists. If § <&, these kn
rows and m dimensions form aweak ETI, so aweak ETI exists. 0
2.2 The Exhaustive Algorithm

The lemmas and corollary in the previous section suggest the following algorithm to find maximal weak
or strong ETls, which parallels the a-priori algorithm [A1S93, AS94]:
Exhaustive Growing Algorithm:

1. Find al dimensions d. where the global count of “1’s is at least kn(1-€). Each of these
dimensions forms a singleton set {d} which definesaweak ETI. We call each of these singleton
setsa“seed”. Seti=1.

2. For every seed that contains i dimensions, grow it by adding a dimension to it so that the new
seed il defines a weak ETI (obtained with one pass over the database as in the proof of Lemma
2). If one or more such dimension can be found, keep all of the new seeds (each of which
contains i+1 dimensions).

3. Increment i and repeat step 2 until no more growing is possible.

4. (to find maximal strong ETIs) Among all seeds, pick those satisfying the strong ETI definition
(donein one pass over the database in a straightforward way). Output the maximal strong ETIs.

The Corollary of Lemma 1 ensures that this algorithm will find all weak or strong ETIs.

For example, with the database shown in Table 3, k=40% and £€=25%, the exhaustive growing algorithm
produces the hierarchy shown in Figure 3. The only maximal strong ETI is {1,2,3,4}. There are two
other maximal weak ETIs{1,4,5} and {6}, and 16 other non-maximal ETIs shown in the hierarchy.

K-Nn-m
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1 2 3 45 6
11111
. i i 1 1111
11 1 1111
1 1 1 1111 1
1 11 1
1 1 1
1 1 1
1 1
1 1
1 1
Table3 Figure 3: Hierarchy of ETls Table4

2.2 Approximating Approach: Greedy Growing

The time complexity of the exhaustive growing algorithm is exponentia in the maximum number of
defining dimensions for ETIs. To reduce complexity, we modify it to become a greedy method which
takes polynomia time and finds most of the ETIs. In practice, we believe that the chance of the
approximate approach missing some of the ETIsis very low. We characterize these situations bel ow.

The modifications to the algorithm will be done in three stages: in the first stage, we show how to reduce
complexity, in the second stage we show how missed ETIs can be recovered by doing a few iterations.
This second stage also sets us up for addressing the efficient identification of clusters of similar
transactions. In the third stage, given in Section 3, we show that the overall scheme can be sped up
dramatically using a sampling and validation framework.

2.2.1 Heuristics to Reduce Complexity

First, we make three changes to step 2 of the exhaustive growing algorithm:
i. When looking for a dimension to grow a seed, we only consider those dimensions that have been
picked in step 1, i.e., dimensions that have enough “ 1" sto form singleton weak ETIs.

ii. When testing whether a dimension can be added to a seed, we require not only that the expanded
seed still define a weak ETI, but also that the new dimension have at most € probability of “0’s
within the weak ETI.

iii. When two or more dimensions are found as possible candidate dimensions for seed growth, we

only keep one. We throw away the old seed once it has been grown to a new seed.

The first two changes remove from consideration those dimensions that have too few “1”s globally or too
few “1"sin aweak ETI. Even though those dimensions could potentially be in aweak ETI as dimension
5in Table 4 (which could be part of aweak ETI {1 2 3 4 5}), they are not likely to make any interesting
contributions to the result in real-world applications.
To implement the second change, we need to augment the algorithm given in the proof of Lemma2. In
addition to the counters Co, Cy, ..., C,, we keep an extra set of m+1 counters Zo, Zi, ..., Zm, Where Z;
keeps track of how many “0’s there are in the new candidate dimension d, over those data points that
havei “1”s out of m existing candidate dimensions. These counters, together with the other counters C,
Cy, ..., Cy, can be updated in the same pass over the database. Then, the probability of “0"s along the
new dimension d within the weak ETI is approximately the fraction:
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Sz vmminz, -
i=t+1 | o t 1111

KN 1111
The third change ensures that the total number of seeds at any timewouldnot |1 1 1 1
exceed the total number of seeds we started with, reducing the exponential 1111
behavior to polynomial. When two or more candidate dimensions are found, 1111
we use the heuristics that picks one that causes the smallest error rate in the new 1111
weak ETI. Other heuristics are possible.  Although the third change 1111
dramatically reduced the amount of time and memory required, it may cause |1 1 1 1 1 1
some ETIs to be missed, such as{1,2,5,6} in Table 5 (with k<=30% and anye). |1 1 11
We address this issue by extending to an iterative scheme. 11 11

Table5

2.2.2 lterative Scheme to Improve Approximation

We make two more changes here. First, after steps 1, 2 and 3 of the exhaustive growing agorithm (in
which step 2 is modified as in section 2.2.1), we go through the entire database once and check if each
row is covered by the ETls we found. (A row r is covered by an ETI if the fraction of itemsin the ETI
which are present inr isat least 1-¢.) For all rowsthat are not covered by any ETI, we put them together
to form a smaller database, and perform steps 1, 2 and 3 again. We keep repeating this process until no
more ETIs can be found. Each pass of steps 1, 2 and 3iscalled a“round’. Typically no more ETIs can
be found after 2 or 3 rounds.

Secondly, starting with the second round, we replace the support threshold x with a smaller value /A,
except at the very last step (corresponding to step 4 in the exhaustive growing algorithm), where we use
the original « value to pick out strong ETIs. Increasing A would reduce the probability of missing ETIs,

but at the same time increase running time and memory requirement. Typically, we use A=2. Returning
to our example of Table 5, this would enable the algorithm to discover the missing ETI {1,2,5,6}.

2.2.3 Summary of Greedy Growing Algorithm (GGA)

With all the changes above, we have converted the Exhaustive Growing Algorithm into the Greedy
Growing Algorithm, which is summarized below.
1. Set of candidate dimensions = {all dimensions whose count of “1”s in the database is at least
kn(1-e)/A} (Aisinitialized to 1 but will be set to 2 after the first round.)
2. If no candidate dimension exists, go to step 8.

3. Each candidate dimension forms a singleton seed.

4. Grow every seed by trying to add one best candidate dimension to it, while maintaining weak
ETIswith support threshold k/A and error threshold €.

5. Repeat step 4 until no seed can be grown further.

6. Add all fully-grown seeds to the set of potential ETIs.

7. Remove from the database all rows covered by any potential ETIl. Set A=2 and go to step 1.

8. Restore the original database, count the number of rows covered by every potential ETI, and

remove those ETIs that are covered by fewer than kxn rows. Output all remaining ETIs.



Efficient Discovery of Error-Tolerant Frequent Itemsetsin High Dimensions Yang, Fayyad and Bradley

2.2.4 Analysis

GGA isableto find all maximal strong ETIsin the database except:
i. ETlsconsisting of adimension whose global count of “1”sis smaller than kn(1-€)/A;
ii. ETIsconsisting of adimension whose probability of “0”swithin the ETI is greater than ;
iii. ETIs consisting of fewer than kn(1-€)/A unique rows (a row is unique to an ETI if it does not
belong to any other ETI), and no unique dimension (adimension isunique to an ETI if it does not
occur in any other ETI).

Anexample of eachofthe ™53 4 ¢| [T 2 3 a5|[1234567 [1 2325
three cases is given in 11 11 11 11 111 11111
Table 6 (i) (i) and (iii), 1111 1111 1111 1 111
With k=40% and e=35%. |1 1 1 1 1111 1111 11111
. i 1 11 1 11 11111 1111

InTable 6 (i) and (ii), the 1, |, 1111 11 11 11111
GGA algorithm finds ETI 1 111 11 1
{1,234}, but not ETI 1 11 11 111
{1,2345}. In Table 6 1 1112 f111
(iii), the GGA algorithm ! t1id 11

ith A=2) finds ETIs - -
(W'; - 0 D) i)
{1234} and {4567, Table6 Table?

but not ETI {3,4,5}, which
consists only 1 unique row and no unique dimension. We believe that these three cases are not
particularly important, especially when considering our primary application: identifying similar clusters
of transactions.
Also, a side-effect of the iterative scheme of the algorithm is that it may find some non-maximal strong
ETls, asillustrated in Table 7, with k=40% and €¢=35%. In Table 7, both {1,2,3,4,5} and {1,2,3} will be
identified as strong ETIs in successive iterations, athough {1,2,3} is not strictly maximal (however, it
covers many rows that do not overlap with the rows covered by ETI {1,2,3,4,5}). We can certainly add
an additional step to remove such non-maximal ETIs, but we choose not to do so, because this side-effect
turns out to be quite useful in real-world applications, as will be discussed in section 4.
Worst-case running time of the Greedy Growing Algorithm is O(cdh?), where

c=#of ETIs

d = average # of defining dimensionsin ETls

h = # of high-support dimensions (dimensions whose global count of “1"sis at least kn(1-€)/A)
There are h seeds. Each seed has up to h possible candidate dimensions to grow to, at each of d growing
steps. In the worst case, ¢ iterations are needed to find all ETIs (one in each iteration). So O(cdh?) isthe
worst-case time complexity. However, in most cases, all ETls can befound in 1 or 2 iterations, in which
case the running time is only O(dh?).
Memory requirement is O(hd+cd+D), where D is the total number of dimensions. We need O(hd) space
to store all seeds while they are being grown, O(cd) space to store all ETIs found, and an additional O(D)
space as a buffer to count the number of “1”sin every dimension.
The database is scanned a total of O(hd) times, one for each growing step of each seed. If database
scanning becomes a bottleneck, we can reduce the number of scans to O(d) by growing all seeds in
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parallel. This would increase the memory requirement to O(h’d+cd+D) to store intermediate results
needed to grow seeds.

When h is large and memory is tight, it is possible to limit to a constant the maximum number of seeds.
In case there are more seeds than the maximum limit, we just throw away a random subset of seeds and
grow the rest. This would bring down the time complexity to O(cdh); memory requirement is still
O(hd+cd+D) but with a smaller constant factor. When doing so, the iterative scheme helps us recover
most of the ETIs, but we have a higher risk of losing ETIs that have unique dimensions but fewer than
kn(1-e)/A unique rows. These ETIs would have been found if we did not limit the number of seeds to
grow. In our experience with real and synthetic data sets, we did not encounter cases where h >500.
Hence we do not believe thisis a concern.

3 lterative Sampling and Validation

GGA makes multiple passes over the database and can be quite slow when the database is large. In this
section, we present an extension to the algorithm by an iterative sampling and validation scheme which
wraps around the original GGA agorithm. The sampling framework results in the algorithm SGGA.

3.1 Framework

Instead of running GGA on the entire database, we randomly sample two independent non-overlapping
samples of the database, run GGA on one sample and validate the results on the other. Then, wereturn to
the original database and check if any rows are still uncovered by the ETIs discovered so far. If so, we
repeated the process on the remaining database until no more new ETIs can be discovered. This is

illustrated in Figure 4. —
3.2 Validation Schemes Ig;i;?'s\gﬁtgr;?;ze
We randomly sample the database into two counter iter = 1.
independent non-overlapping samples RS and L[
VS, and run GGA on the set RSto get alist of RS VS,
ETIs. Some of the ETIs may contain spurious random Validation
dimensions which are purely random due to sample iter Set iter
sampling. Also, some of the ETIs may be H
totally spurious. Run GGA Validate
Identifying Spurious Defining Dimensions tg&ngizrs ET\'/ZE;’”
[

of an ETIl: An artifact of sampling to be
avoided is adding a dimension to an ETI

Terminate —No+— Any ETIs?

description if it happens to occur by chance YES

with the other defining dimensions over the — |

random sample RS~ Suppose the first [

defining dimension of an ETI description was {;Nz;gg\:/\e/rvgg by iter= ||
really random, but we observe that it occurs ETlIsfound} iter+1

frequently along with the remaining defining  Figure 4: Flowchart of SGGA: sampling and validation
dimensions in the ETI S We identify this  scheme over greedy growing

situation by first considering the ET1 with the

first defining dimension removed, then we count the number of points from the validation set VS
satisfying the reduced ETI description. Determining whether or not the first defining dimension is
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spurious is done by comparing the probability of observing a“1” in the removed dimension over points
satisfying the reduced ETI description with the probability of observing a“1” over the entire validation
set. Let the removed defining dimension for ETI Sbe d;. Let p(d; | {S - di}) be the probability of
observing a “1” in dimension d; over the data in the validation set VS belonging to the reduced ETI
consisting of the defining dimensions in Sminus d;. Let p(d;) be the probability of observinga“1” in
dimension d; over the entire validation set VS

If p(d; | {S- dy}) iswithin 1 standard deviation from the value p(d,), then we consider dimension d; as a
spurious defining dimension and remove it from the description of S. The standard deviation of p(d,) is

given by: s(d,) =\/ p(dl)ﬁ?_s :O(dl)) . Specifically, dimension d; is removed from the defining
dimensions for ETI Sif: p(d,) —s(d,) < p(d, [{S-d,}) < p(d,) + s(d,) .

We do this for every defining dimension of every ETI, and prune out defining dimensions that appear
spurious.

Identifying Spurious ETIs: Toidentify ETIswhich are found by chance over arandom sample from the
database, RS, we consider the number of rows of RSwhich match the ETI as arandom variable. Suppose
the ETI has NS pointsin it and the random sample from RS consists of |RY points. If the ETI truly exists
in the database, then given another random sample VS, one would expect to observe approximately the
same proportion of points belonging to the ETI in VS If the proportion of points belonging to the ETI in
VSis too low, then one may conclude that the ETI is spurious and needs to be adjusted. This is the
motivation behind the mechanism for removing spurious ETIs found over random samples.

Let NS(RS) be the number of data points from RS which belong to the ETI. We view the proportion of
points in arandom sample belonging to Sas arandom variable p. We estimate the value of p over RSas:

p= [NSR9)/|RS. The standard deviation in this estimate is given by: s= pl(:s'lo) .
We consider an ETI to be valid if the number of data points belonging to it over the validation set, NS(VS)

is no less than a standard deviation of the expected number in VS: NS(VS) > NS(RS) _ [pA=P) :

VS| | RS| |RS|
ETls which do not satisfy the above criteria must be adjusted (if possible) so that they are valid. We do
so by iteratively removing from an ETI the defining dimension with the least number of “1"s, until the

ETI satisfiesthe criteria. In some cases, all dimensions may get removed (deleting entire ETI).

4 Applications and Evaluation Methodology

We have tested SGGA with sampling and validation schemes on both synthetic data and real-world data.
For synthetic data, since we know the “true” ETIs in the database, we evaluate performance of our
algorithm based on the number of true ETIs found and number of extra (false) ETIsfound. For real data,
we evaluate performance based on three applications: clustering, query selectivity estimation and a
collaborative filtering prediction task. The clustering application consists of producing the ETls, and then
using them asinitial models (clusters) for the EM statistical clustering algorithm [DLR77, CS96, BFR98].
Query selectivity estimation involves answering aggregate queries using a statistical model derived from
the data initialized with the ETIs found by SGGA. Collaborative filtering or recommender systems use
data about user preferences/behavior to predict additional topics, products, websites (items in general)

10
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that a user might like [MRK97,R*97,RV97,BHK98]. Collaborative filtering is applied in domains
typically generating large stores of sparse {0,1} data (e.g. eccommerce), making ETIs particularly
applicable.

4.1 Determining Initial Mixture Modelsfrom ETIs

ETls are extremely effective in identifying structure in sparse {0,1} data. This structure can easily be
exploited by using ETIsto form an initial statistical model of the underlying data. Thisinitial model may
then be further fit to data using an iterative optimization procedure such as the Expectation-Maximization
(EM) algorithm [DLR77, CS96, BFR98]. EM estimates the probability density function of the data as a
mixture of densities (binomial or multinomial distributions for discrete data). Each cluster corresponds to
one component of the mixture model and specifies a distribution for its population. Within each cluster,
for an observation (transaction) x, the probability of x being a member of cluster C, is proportional to
Pr(x|C) e [ ] Pr(x; |C). Hence the model for each cluster is simply the probability of each attribute (item)
iel
being present, for al items in the database. Note that conditional independence within clusters is very
different from assuming independence. The conditional independence assumption, typically applied when
clustering discrete data in the dtatistics, learning, and pattern recognition literature [CS96,
BFR98,DLR77], is amuch more powerful model than the global independence model.
In the case of binary {0,1} data, we model each attribute with a binomial probability distribution within a
cluster or component. In this case Pr(x, | C) issimply Pr(x, =1 | C) if itemi occursin the record x or (1-
Pr(x, =1|C)) if itemi does not appear in X.
While EM provides many advantages for clustering data, including the fact that it produces a statistically
meaningful model, the solution it produces is determined completely by the initial model. The state of the
art of initializing EM over {0,1} dataisviarandom restarts [MH98]. In high dimensions, EM falls prey to
two problemsin particular: clusters often go empty (have no data records assigned to them); and different
clusters converge on the same distribution (the two clusters become identical). In either case, the
algorithm effectively identifies fewer clusters in the data. Certainly this should happen if the user asked
the algorithm to find more clusters than truly exist in the data. However, in practice these problems
surface frequently when clustering high-dimensional sparse data when more structure actually exists. We
demonstrate that ETIs consistently uncover more structure in the data than EM is capable of discovering
with a multitude of repeated random initializations.
Each ETI istreated as a potential cluster. To construct a binomial model for each ETI (which will be the
initial binomial distribution of that cluster) a pass is made over the data, collecting counts of items for all
transactions that belong to the ETI. A transaction belongs to an ETI if the fraction of items in the ETI
which are present in the transaction is at least 1-e. Since ETIs can overlap on items, some transactions
could belong the multiple ETIs. A transaction t that belongs to a set of ETls gets afractional membership
score in each ETI proportiona to the number of defining dimensions in that ETI. Hence longer ETIs,
when they match atransaction, claim “more” of the transaction than shorter ETIs. With asingle pass over
the database, degree of membership for each transaction to each ETI is computed (typically thereis only
one matching ETI) and the corresponding item counts for items appearing in the transaction are
incremented by degree of membership. At the completion of the scan, the counts for each ETI are
normalized to probabilities, and an initia cluster model for each ETI is produced.

11
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This initial model is then refined via EM. If EM converges with stable clusters (few clusters have gone
empty or converged to model the same set of records), it is an indicator that the ETIs indeed detected real
structure in the data. Hence a quick way to compare a clustering solution based on ETIs with one
obtained from a random starting model is to compare the number of non-empty clusters after EM
converges. Seeresultsin Section 5.2.2.
4.2 Query Selectivity Estimation
Having derived a statistical model based on ETI initialization, one can evaluate the fit of the model to the
data. An application measuring this directly is to estimate a count (*) query using the model and
measure the difference between the model-based estimate and the true value of the query. A comparison
is made between the statistical model estimated from ETI initialization and the statistical model estimated
from random initialization.
Queries with h conjunctive items are generated with respect to a statistical cluster model as follows.

1. Cluster C is selected with probability given by the number of records associated with cluster C

divided by the total number of database records.

Pr(x =1|C)
> Pr(x 1C)

iel

2. Generate adistribution over each attributei € | givenby: p; . =

3. Select hitems randomly according to the computed probabilities, yielding the count (*) query.
To use a probabilistic model to estimate an aggregate query, such as the number of shoppers who bought
items 1, 5, and 16 together, we simply compute the probability of the event that items 1, 5, and 16 occur
together for every cluster and adding them together weighted by the size of each cluster. Not only isthis
an extremely fast operation involving access only to the model and no access to the data, but it can also be
avery accurate estimator for an underlying model that fits the data well.
4.3 Collaborative Filtering Prediction

Succinctly, the collaborative filtering prediction task is the following: given a set of items, predict other
items that typically occur with the given set [MRK97,R*97,RV97]. For example, given that a set of web-
pages have been browsed by a user, predict other web-pages are likely to be browsed by the user in this
session. Or, given products in a shopper’s basket, what other items will the shopper likely place in their
basket also?

By using the given set of items (viewed as a partial record, since more items may be added), it is possible
to associate the record with a cluster. Once the record has been associated with a cluster (possibly with
fractional membership), it is possible to predict other items that would most likely appear with the given
set based on the values of Pr(x, | C). Intuitively, an itemi with alarge corresponding value of Pr(x; | C)
would be likely to occur along with the given itemset. See [BHK 98] for a detailed description.

4.4 Comparison with Traditional Frequent Itemsets

Probabilistic clustering algorithms (such as EM) do not rely upon harsh cluster membership criteria, but
assign a data point to all clusters with a different probability of membership. In the standard frequent
itemset framework, a data point (row) must contain all of the itemsin the itemset to support it. This“all-
or-nothing” behavior often results in poor initial models for EM-clustering and structure that existsin the
data (capable of being located by a EM) is simply missed. For example, consider the binary data set
shown in Table 8. Assume that each row in the table represents 100 rows in the actual data. If minimum
support is such that 300 rows are needed for a frequent itemset, the only one existing in this example is
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. .

{A,B}. But dlowing for 34% error in ETls, we get: {A,B}, 111

{D.EF} and {G,H,I}. If we simply used the result of standard 7171

frequent itemsets and generated an initial cluster model, wewould 717

have one cluster corresponding to the itemset { A,B} and asingle 111

cluster corresponding to “not {A,B}”. EM would not be capable 1 1

of further segmenting the data based on the collections { D,E,F} 1|1

and {G,H,I}. Obvious, using ETIs, this structure is identified and 101

the final mixture model more accurately fits the given data. 1 1
101

Table 8: Frequent Itemset
5 Results

5.1 Resultson Synthetic Data

We generated synthetic data with parameters and default values shown in Table 9. We generated more
than 70 different datasets while perturbing some parameters away from default values, and studied the
response of our algorithm in terms of running time and quality of ETIsfound (i.e., number of true ETIs
found and number of extra ETIs found). Par ameter Default
Unless otherwise noted, we ran the | Toia number of ETIs 50
Greedy Growing Algorithm  with

’ A ] Approximate number of pointsin each ETI 10,000
Sampling and Validation, setting support Approximate support of each ET] 0%
threshold k=1%, error threshold €=20%

_ ’ | Total number of dimensions 5,000
sample size of RS= 6000 and sample size - _ S
of VS = 6000. With all data parameters Number of defining dimensions in each ETI 5,6,7,0r8
set to default in Table 9, the algorithm Probability{ defining dimension being “1"} 92.5%
finds all 50 true ETIs, and no extra ETIs, | Probability{non-defining dimension being“1"} | 0.01%
in about 540 seconds on a Pentium |1 | Number of random dimensions 0
X 0N Processor. Probability{ arandom dimension being “1"} 0

Defining dimensions overlap in different ETIs | None

5.1.1 Adding Random dimensions Table 9: Synthetic Data Parameter Settings

Figure 5 shows the quality of ETIs found when we add 10, 25, 50 and 100 random dimensions to the data.
We vary the probability of arandom dimension being “1” from 0.25% to 2%. There is no mgjor change
in running time. All 50 true ETls are found in every case, but the number of extra ETIs varies. Thisis
reasonable and expected behavior: as the random dimension probability increases beyond the support

©
T 60 £ 150 :
5 50 | o —e— 10 rand dims
3 O 2
» 40 £ 1001 —m— 25 rand dims
w
o 30 s 50 1 /. _ 50 rand dims
2 20 £ .
> x
B I E—— ‘.ﬂ 100 rand dims
2 0 ‘ ‘ ‘ . 0.0% 1.0% 2.0%
0.0% 1.0% 2.0% 3.0% Random Dimension
Random Dimension Probability Probability

Figure5: Adding Random Dimensions
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threshold k=1%, more and more random dimensions are detected as forming singleton ETIs themselves.

5.1.2 Varying Non-Defining Dimension Probability

As we vary the probability of non-defining dimensions from 0% to 2%, running time and ETI quality are
shown in Figure 6. As the non-defining dimension probability is increased, number of high-support
dimensions becomes larger, and data becomes denser. Both contribute to the increase in running time.
As the non-defining dimension probability increases beyond the support threshold k=1%, real ETIs
become hard to identify. So the quality of ETlsfound is deteriorated.

Thereisa“bump” in running time when iterative sampling and validation is used, because 2 iterations are
made here, as opposed to 1 iteration elsewhere. If we disable validation and use only 1 iteration
everywhere (but still use sampling), then the bump disappears and running time decreases slightly.
However, thisis at the cost of losing some true ETIs, as shown in the figure.

25000 ~

—e— no validation 500 - 500 -
- [ 5
S 20000 H s with valdation I, /'—' 3 S 00 /S
) / S h =
g 15000 — 2§ 300 22 300
= - ® c >
= 10000 | S 2 200 —e—# true ETIs found 3 & 200 4
c o w =
5 L > | —m— # extra ETls found » 8 100
S 5000 - o~ 100 4 De $eeey ;
14 m 0 0

0 0.0% 1.0% 2.0% 0.0% 1.0% 2.0%

0.0% 1.0% 2.0%

N ) o Non-Defining Dimension Probability Non-Defining Dimension Probability
Non-Defining Dimension Probability

Figure 6: Effect of varying non-defining dimension Probability

5.1.3 Varying Degree of Overlap in Defining Dimensions

Real datasets could have ETIs which overlap in defining dimensions. To simulate this, we generated
datasets with different degrees of overlap in defining dimensions. We define the degree of overlap by the
sum of number of defining dimensions for every ETI divided by the total number of different dimensions
used in one or more ETIs. For example, if every ETI has 6 defining dimensions and there are 50 ETIs,
but only 100 different dimensions are used as defining dimensions, then the degree of overlap is
6x50
100

the quality of ETls found on datasets of different degrees
of overlap. It can be seen that, our agorithm performs
reasonably well for overlap up to degree 10, then
deteriorates gradually. This is acceptable for practical
purposes, since from our experience degree of overlap in 5 2 % n  ®
real datararely goes this high. Degree of Overlap

= 3. A degree of 1 means no overlap, and a larger degree means more overlap. Figure 7 shows

‘—0—#true ETlsfound —l—# extra ETls found ‘

ETIs Found
o888

o
wu
=
o

5.1.4 Scalability Experiments Figure7: Varying Degree of Overlap

Figure 8(left) shows the running time as we increase the average number of defining dimensions of each
ETI. With no overlap, this also means that we increase the total number of high-support dimensions. As
can be derived from Section 2, worst-case running time should grow cubically as we increase this
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Figure 8: Scalability Results

number. The figure shows the actual result is much better than the worst-case scenario. Figure 8(right)
shows the running time as we increase the total number of data pointsin each ETI, which also increases
the database size. Since we use sampling, there is no major change in running time as the database size
increases. In terms of qualitative performance over all these data sets, all 50 true ETIs and no extra ETIs
arefound for al of these experiments.

5.1.5 Parameter Sensitivity Experiments

We show that our method is fairly insensitive to parameter settingsin Appendix B. The 6 charts provided
in Figures B.1 and B.2 demonstrate this for the primary parameters.

5.2 Reaultson Real Data

Error Tolerant Itemsets are particularly suited to identifying structure for cluster initialization over sparse
{0,1} high-dimensional data. In thisrespect, we evaluate ETIsin this application over 4 real sparse {0,1}
databases. ETlI-initialized cluster models are evaluated in comparison to randomly-initialized cluster
modelsin 3 areas: 1) preservation of the number of clusters in the model (see Section 4.1); 2) ability of
the model to approximate count (*) queries over the database (see Section 4.2); 3) a collaborative
filtering prediction task (see Section 4.3).

5.2.1 Real Databases

Web-1: This database consists of the browsing behavior of 516,511 users over 218 web-page categories.
This data was obtained from a major internet service provider/web portal. Viewed as a data table, this
databases consists of 516,511 rows and 218 columns. An entry of 1 in row h and column j indicates that
user h visited a web-page in category j. Since clustering is much more expensive that ETI extraction,
when clustering this database (initialized with either ETIs or randomly), a random sample of 100,000
users was used.

Web-2: This database consists of the browsing behavior of 602,479 users over 9822 websites. This data
set was obtained from one of the largest web-content providers on the internet. Prior to clustering this
database, a random sample of 100,000 users was obtained. Clustering was done using the 5000 most
frequent items out of the total 9822. After the cluster model was constructed, binomial distributions were
estimated over the entire set of 9822 items for each cluster.
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Product-Purchase-1: This database consists of the products purchased by 29989 users. The number of
possible products is 297 and were obtained from a small e-commerce site that sells software products.
Sampling was not employed in clustering this database.

Product-Purchase-2: This database consists of purchasing behavior of 703,510 customers purchasing a
subset of 32,301 products. This data set is obtained from a major software/hardware retailer. Similar to
Web-1 and Web-2, clustering was done over a random sample of 100,000 customers. In addition the
cluster model was computed over the most frequently occurring 5,000 items. Once the cluster model was
obtained, binomial distributions were estimated over the full set of 32,301 items for each cluster.

5.2.2 Number of Clusters

For a given minimum support value x, SGGA was applied to the database. Upon termination, the ETIs
constructed were used to initialize the binomial cluster model. EM [BFR98] was then applied to the
database to refine the given initial model. EM was also applied to the database from 5 random initial
binomial cluster models. The number of clustersin the random models was initially set to the number of
ETIs returned by SGGA. We then compare the number of clusters at EM convergence from the ETI-
initialized model with the average number of clusters from the 5 random initial models. Results are
summarized for the 4 datasets in Figure 9. The random initial cluster models had a number of clusters
equal to the corresponding ETI-value. No clusters went empty when initialized via ETls. Random values
are averages over 5 random initial models, error bars are 1 standard deviation.

Note that when EM is initialized via ETIs, no empty clusters are observed when EM converges. In
contrast, when initializing EM with a random cluster model with the same number of clusters as the
corresponding ETI model, EM converges with many empty clusters. For minimum support x = 0.01, ETI-
initialized models uncovered as
many as 16 times as many

» 160 o ETI » 60 o
g 1;‘3 ] —m—randon | § 50 x\ . .. | dusters as randomly initialized
5 0 E o \\ models on the Product-Purchase-

Qo 30 -
5 97 R 1 database. On average over the
: 20 1 % 10 4 databases tested, for minimum
0 0.05 T oo ‘ support k = 0.01, ETl-initialized

M inimum Support k 0 0.02 0.04 -
M inimum Support x models uncovered 9.6 times as
(a) Web-1 (b) Web-2 many clusters as the randomly
initialized models.
120 4 25 ——cET!
5 100 - (—e—em o] —— R andom 5.2.3 Query Selectivity
S w0 - e Estimation
£ o £ 10 Similar to Section 5.2.2, for a
T R : ? given minimum support value «,
0 0 —— SGGA was applied to the
0 0.01 0.02 0.03 0.04 0.05 0 0.01 0.02 0.03 0.04 0.05

M inimum Support x M inimum Support database. The ETIs constructed
(c) Product-Purchase 1 were used to initialize the
(d) Product-Purchase-2 binomial cluster model as in the
Figure9: Final number of clustersafter EM converges previous section. As above, we
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compare against initializing EM with 5 different random initial binomial cluster models. The number of
clusters in the random models was initially set to the number of ETIs returned by SGGA. We then
randomly generated 50 count (*) queries with 2 items in the “where” clause, based on the ETI-
intialized model as described in Section 4.2. We did experiments with 2 and 3 conjunctionsin the “where
clause’. Having more than 3 conjuncts usually results in most queries returning zero or a very small
number for the count result. When a query has a small true result (e.g. less than 5), it is known that the
estimate of these small queries with statistical models is poor [SFB99]. Over these high-dimensional,
sparse databases, we have observed very small true result sizes for count (*) queries with more than 3
attributes. Estimates of count (*) queries with only 1 attribute in the “where” clause were deemed
uninteresting as these queries can obviously be effectively estimated without modeling dependency
among attributes. For very long queries, a constant zero is a good estimator, hence uninteresting.
Suppose the “where” clause of the query of interest consists of itemsi andj. The probability that these
two items appear in a given cluster C is Pr(x | C) - Pr(x | C). The number of records in cluster C
containing both itemsi and j is the total number of recordsin C times Pr(x; | C) - Pr(x | C). Let N(C) be
the number of recordsin cluster C, the query :

“select count (*) from DB.Table where (i = 1) and (j = 1)”

isthen simply approximated by the cluster model by: Z N(C) - Pr(x; [C)-Pr(x; |C).
C

We tested the ability of cluster models initialized with ETIs versus 5 randomly initialized models. Each
initial cluster model had the same number of clusters as discovered by agorithm SGGA. Average results
over 50 two conjunct queries (see Section 4.2 for description of query generation) for the ETl-initialized
model are given in

Figure 10 noted as 0.09 . —
“ETI”. Results over sz | EEZ; B o Braion
3-conjunct queries 0.06 1 DlAve Rand Est
yielded similar results.

Average results over

the same 50 queries 0.02 1 AN
and over the 5 " Rl
randomly |n|t|a||zed 0.01 0.02 0.03 0.04 0.05
models are noted in M inimum Support x
Figure 10 as (a) Web-1 (b) Web-2
“Random”. The 025 ; 2
method noted as " S
“Ave. Random Est.” Qave. Random
in Figure 10 refers to

the following:  for
each individual query,
we obtan the 5

0.8 -
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Figure 10: Average query selectivity relative error for 4 real databases.
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get an approximate result for the specific query in question. Relative error in Figure 10 is obtained by
taking the absolute value of the difference between the true result and the approximation and dividing by
the trueresult. Over all databases, we discarded queries where the true result was less than or equal to 5.

Over al 4 databases the ETI-initialized models were better query estimators than the randomly initialized
models. Except in over the Product-Purchase-2 database with minimum support x = 0.05. For thisvalue
of minimum support, the number of ETIs found was 3 and the average number of clusters from random
initialization was 1.8. Hence these models are very similar. We note that data which does not match any
ETI does not contribute to the initial cluster model. So in this case where there are only 3 ETls we
conjecture that there is anon-trivial portion of the data space which was not appropriately modeled by the
ETl-initialized cluster model and it should be expected that multiple randomly initialized cluster models
would capture some (if not most) of this space.

5.2.4 Collaborative Filtering Prediction

We tested the utility of cluster models initialized via ETIs in the collaborative filtering task of predicting
other items that a record may contain based on a set of given items occurring in the record. We compared
the predictive accuracy of ETI-initialized cluster models and randomly initialized models using a subset
of data not used on the clustering process. Recall that for databases Web-1, Web-2 and Product-
Purchase-2, clustering was performed over a random sample of 100,000 records. For these databases, an
additional 10,000 records were held out and used to score the predictive accuracy of the models. For the
Product-Purchase-1 database, having 29989 records, 10% of the records were set aside for scoring and the
cluster models were built on the remaining 90%.

The scoring scheme works as follows. For each record in the hold-out set, we remove one of the items
occurring in the record. Call a5 - —
this record with 1 item 088 ::ﬂd i 0 BERandom
removed the partial record. ]
The record is assigned to
clusters (with fractional 0.86 |
membership) based on the 0.855 1 01
remai ning items that appear v 001 002 003 004 0.05 ° 0.01 0.02 0.03 0.04 0.05
in the record. Let w(C) be Minimum Support Minimum Support x
the fractional membership () Web-1 (b) Web-2

assignment for cluster C.
0'5"‘ [ =[]
0.48 BERandom

0.875 1
087 4 0.4 4
0.865 3 034

0.2 4

Accuracy
racy

Acc

The w(C)-values satisfy:
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p(m) =D W(C) - Pr(x,,|C).

The missing items are sorted in descending order by their p(m) values. If the item which was explicitly
removed to form the partial record occurs in the top 10 of the sorted list, the score is incremented by 1.
Accuracy is then the score divided by the number of items held out (to form partia records) over the
entire hold-out set. Accuracy scores are summarized for the 4 databases in Figure 11 for ETl-initialized
cluster models and average collaborative filtering predictive accuracy over 5 randomly initialized cluster
models. Error bars associated with the random results are 1 standard deviation.

6 Generalization to Categorical Data

Note that the definition of our algorithm does not fundamentally rely on the assumption that the data is
binary. It can be generalized to handle categorical data aswell. For efficiency purposes, we assume that
each attribute has one value that is somehow distinguished as the “ default” value. In transaction data, that
value isimplicitly the “zero” value. Assuming that the “default” value for each attribute is pre-dominant
(i.e. the data can be efficiently represented in sparse format), we can generalize our agorithm to count
combinations of attribute values that do not involve the “default” value for each attribute. Note that the
treatment is almost identical algorithmically as thinking of each non-default value of a multi-valued
categorical attribute as a new binary attribute. Aslong as we have an efficient mechanism for counting
frequent combinations of attribute values, the algorithm carries through and can be applied to finding
clustersin categorical data. Thisis similar to the algorithm presented in [SA96].

7 Related Work

Frequent itemsets were first developed by Agrawal et al. in the a-priori algorithm for association rule
mining [A1S93, AS94, AMSTV96]. The key optimization in finding frequent itemsets was based on the
fact that, if an itemset of length m has enough support, then any of its subset of length m-1 must also have
enough support. This property enables building frequent itemsets in a bottom-up manner. As we
introduce the notion of errors into the definition of frequent itemsets, this property no longer holds. A
similar but weaker property exists as discussed earlier, but it was not suffieicient to ensure fast discovery
of error-tolerant frequent itemsets, hence the additional optimization schemes developed in this paper.
One problem that arises in a-priori is that the algorithm scales exponentially with longest pattern length.
Many variants have been proposed to address thisissue. Zaki et a. [ZPOL97] developed the algorithms
MaxEclat and MaxClique which “look ahead” during initialization so that long frequent itemsets are
identified early. Bayardo [B98] presented an optimized search method called Max-Miner that prunes out
all subsets of long patterns of frequent itemsets that are discovered early. Gunopulos et a. [GMS97]
suggested iteratively extending a working pattern until failure, using a randomized algorithm, which is
similar to the idea we used in our algorithm to grow itemsets in a greedy fashion.

Srikant and Agrawal [SA96] extended the a-priori algorithm to the domains of non-binary values, such as
categorical or continuous values. They discussed ways to map intervals and categorical values to integers
that effectively converted the non-binary databases into binary ones, where the original a-priori algorithm
could be used. The same idea applies to our algorithm as well, so our algorithm can also be used on non-
binary databases. We are not aware of problem formulations that introduce the notion of error-tolerance,
and we believe that efficient algorithms presented in previous work rely on itemsets being exact.
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Much work has been done in automatic clustering methods. Traditionally, clustering is done by finding a
set of centroids in a high-dimensional space [CS96, DLR77, NH94, ZRL96], and cluster membership is
determined by some distance function to the centroids. This leads to cluster shapes similar to spheres.
Later work by Guha et al. [GRS98] was able to handle arbitrarily-shaped clusters by using several
representative points to define a cluster. They aso used a sampling scheme to reduce I/O costs.
Recognizing that most clusters are defined on subspaces rather than the entire high-dimensional space,
Agrawal et al. [AGGR98] presented a method to build subspace clusters in a bottom-up way, using the
property that if a collection of points form a cluster in a k-dimensional space, then must also form a
cluster in al of its (k-1)-dimensional subspaces (where a cluster is defined as a dense region in the
subspace). As presented in this paper, our algorithm to find error-tolerant frequent itemsets may be used
independently as an efficient subspace clustering algorithm, with a more general definition of clusters
than that used in [AGGR98]. It can also be used as an effective initialization method for existing cluster
refinement algorithms such as EM.

Discrete clustering algorithms, as opposed to generalized frequent itemsets, include CACTUS [GGR99],
STIRR [GKR98], and ROCK [GRS99]. The first two require the computation of a similarity matrix
between all attributes (items), which takes O(d?) time (d = number of attributes). CACTUS uses a more
efficient refinement method on the computed similarities and henceisfaster. ETIsare ageneralization to
frequent itemsets, and cluster initialization is just an application. In fact, ETIs could be used as a
preprocessor to these algorithms, reducing the similarity matrix needed and hence alleviating the primary
bottleneck. We plan to test this application in future work. ROCK requires a distance metric between
transactions and is cubic in their number. In general, clustering is much more time consuming than
extracting ETIs.

8 Concluding Remarks

We have presented a generalization to the standard frequent itemset problem and an efficient and scalable
algorithm to find error-tolerant frequent itemsets (ETIs). ETIs describe simpler and more intuitive
frequent structuresin data. Starting with an exhaustive approach which guaranteesthat all such ETFswill
be found, we developed an efficient approximation which runs in polynomial time and produces good
results. We demonstrated that this method can be used as a fast initialization method for clustering
algorithms such as EM, and generates far more stable models than existing techniques. Query selectivity
estimation and collaborative filtering are two other useful applications of our algorithm.

One possible future direction is to study the extension of the algorithm to continuous-valued domains.
Approaches suggested in [SA96] are applicable, but there may be other methods as well. We are
currently exploring its use to identify which attribute similarities to focus on in algorithms driven by such
similarity matrices [GGR99,GKR98,GRS99]. It would also be interesting to explore other sampling
schemes to improve performance. Furthermore, much of the previous work that made use of traditional
(error-free) frequent itemsets can now be reconsidered in this new framework.
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Appendix A:

On Chance Occurrences of Error-Tolerant Frequent |temsets
Lemma: Assume a binary N x D sparse matrix over {0,1} is generated at random with the probability
that an entry is1isp. Then the probability of afrequent error-tolerant item set with r items appearing in

L : DY N
it with support k and error € is not greater than ( ) j[KNJ p-e)aNr (1 _ pyeshr

Proof: Let A be the event that there exists a submatrix with kN rows and r columns with (1-€)% of the
entries having value 1. Let B be the random variable counting the number of such submatrices occurring
over the N x D sparse matrix over {0,1}, then we obviously have:

P(A) < E[B].
Here E[B] is the expected value for B taken over all such N x D sparse matrices over {0,1}, where 1
is generated at random with the probability p. The right-hand-side of the above inequality is given by the
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number of kN x r submatrices in an N x D matrix times the probability of observing the given structure.
The number of ways to choose a submatrix with kKN rows and r columns from the N x D matrix is

kN r
N )(D/
The probability that (1-€)% of the entries have value 1 is given by:

p(l—S)KNr (1_ p) exNr .

U
We next discuss the case when the assumption that the column densities of the data matrix follow a Zipf
distribution (i.e. the probability of observing a 1 in column j is proportional to (1/j)). Now, when we
choose a sub-matrix of size kN x r we can approximate (overestimate) the probability of observing a 1
over the sub-matrix by the probability of observing a 1 in the column with minimal index in the sub-
matrix (this column has maximum probability). We consider the expected value of the minimal index
over al such sub-matrices of size kN x r, where the probability of choosing a given column for the sub-
matrix is uniform.
Let X be the random variable which is the value of the minimum index over the r columns chosen. What
is the expected value of X over all possible ways of choosing r distinct columns from D? Once we know
the expected value of X, we can use the Zipf assumption to obtain a value for p and apply the lemma
above.
By definition, the expected value of X is:

E[X]=ZD:X~PI’(X)

= i x-[Pr({0,...,(x—1)} arenot chosen) - Pr(xischosen {0, ..., (x— 1)} arenot chosen)]

ngﬁ(l_ Di fJ(D—rX+1]

~D+1
r+1

Hence, on average, the minimum column index that we pick for the submatrix with xN rows and r
columnsis (D + 1)/(r + 1). By Zipf, we can make the assumption that the probability of observingalin
this column is one over the column index (r + 1)/(D + 1). We can then over-estimate the probability of
observing a 1 in the entire submatrix by assuming this probability is constant and equal to p = (r + 1)/(D
+ 1) and apply the result of the lemma.
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Appendix B: Parameter Sensitivity Results

Figure B.1 shows the effects of changing the error threshold €, while keeping the support threshold « at
1.5%. There is no mgor change in running time, but the quality of ETI is very bad when the error
threshold ¢ is set too low. Since the true ETIs have an average of 5 defining dimensions, setting e<20%
would mean that a row must contain a “1” in every defining dimension of an ETI in order to be
considered “covered”. Thisistoo harsh and causes many ETIs to be missed.

Figure B.2 shows the effects of changing the support threshold «, while keeping the error threshold ¢ at
20%. Quality of ETIsis best when x is below but not far from the real support of ETls. Smaller k leads
to longer running time, because the total number of high-support dimensions is larger. However, when
iterative sampling and validation is used, there is a large bump in running time when x coincides with the
real support of 2%. This is because many iterations of sampling and validation are happening here, with
each iteration generating a few more new ETIs based on different samples of the data. This is an
instability which can be removed by terminating after one iteration without using validation.
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