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Abstract

A method is proposed which computes a direction in a dataset such
that a specified fraction of a particular class of all examples is separated
from the overall mean by a maximal margin. The projector onto that
direction can be used for class-specific feature extraction. The algorithm
is carried out in a feature space associated with a support vector kernel
function, hence it can be used to construct a large class of nonlinear fea-
ture extractors. In the particular case where there exists only one class,
the method can be thought of as a robust form of principal component
analysis, where instead of variance we maximize percentile thresholds. Fi-
nally, we generalize it to also include the possibility of specifying negative
examples.

1 Introduction and Notation
Suppose we are given two sets of data: a set of points

Z:{Zla"'azt} (1)

which we think of as representative of the kind of data that we typically en-
counter in some problem of interest, and a second set

X:{le"')xl} (2)

representing a specific class of examples that we are interested in.

Our goal in the present paper is to construct a real-valued feature extractor
which, given a previously unseen test point x, charaterizes the “X-ness” of the
point x. By this we mean a feature extractor which takes large values for points
similar to those in X and small values for generic points from Z. In addition
to this, we will compute a threshold value such that if we draw a novel point
from the same distribution P(x) as the one underling X, then its feature value
will be above threshold with, approximately, a pre-specified probability. In this
sense, we are trying to estimate regions that contain specified fractions of the
probability mass of P(x), including the case where we estimate the whole sup-
port of P(x). At the same time, if a novel point falls below that threshold, then
we can assert that it is unlikely to have been generated from P(x). This task
is referred to as novelty (or anomaly) detection. It has ample applications, but
there are few approaches that are viable for high-dimensional data. Moreover,
compared to widely studied problems such as pattern recognition or density
estimating, there exists little theory dealing with novelty detection (cf. (Ben-
David & Lindenbaum, 1997)). This stands in sharp contrast to the practical
importance that novelty detection tasks have assumed, for instance in medical
diagnosis (Tarassenko et al., 1995).

The present approach can be used for the estimation of a distribution’s
support, for novelty detection, and for feature extraction. It employs two ideas
from support vector machines (Vapnik, 1995) which we are crucial for their fine



generalization performance even in high-dimensional tasks. Those are the idea
of maximizing a margin, and the idea of nonlinearly mapping the data into some
feature space F'. In the remainder of this section, we shall describe the latter.
We assume that the feature space be endowed with a dot product. This need
not be the case for the input domain X’; in fact, we do not even require that
it be a vector space; for instance, it could be a discrete set. The connection
between the input domain and the feature space is established by a feature map

®: X > F, (3)

i.e. a map such that some simple kernel (Boser et al., 1992; Vapnik, 1995)
k(x,y) = (®(x) - 2(y)), (4)

such as the Gaussian ,
k(x,y) =e Ix¥I/e, (5)

provides a dot product in the image of ®. In practice, we need not necessar-
ily worry about @, as long as a given k satisfies certain positivity conditions
(Vapnik, 1995).

As F'is a dot product space, we can use tools of linear algebra and geometry
to construct algorithms in F', even if the input domain X" is discrete. Below, we
derive our results in F', using the following shorthands:

z; = (x;) (6)

2n = ®(zy) (7)

X =A{z1,...,z} (8)

Z ={z1,...,2t} 9)

Indices ¢ and j are understood to range over 1,...,¢ (in compact notation:

i,j € [f]), similarly, n,p € [t]. Bold face greek letters denote ¢-dimensional
vectors whose components are labelled using normal face typeset.

2 Algorithms

In analogy to an algorithm recently proposed for the estimation of a distri-
bution’s support (Scholkopf et al., 1999), we will try to construct a nonlinear
decision function on X' by mapping the data into some feature space and then
seeking to separate X from the centroid of Z with a large margin hyperplane



committing few training errors. Projections on the normal vector of the hy-
perplane then characterize the “X-ness” of test points, and the area where the
decision function takes the value 1 can serve as an approximation of the support
of X. While X is the set that we are actually interested in, the set Z thus only
plays the role of, in some weak and possible imprecise sense, modeling what the
unknown “other” examples might look like. This will be useful if our algorithm
for estimating a distribution’s support is applied to problems such as novelty
detection.

In analogy to v-support-vector algorithms (Schoélkopf et al., 2000), the deci-
sion function is found by minimizing a weighted sum of a support vector type
regularizer and an empirical error term depending on an overall margin variable
p and individual L; errors &;,

. oIl + 5 3o - 10
wEF,rgIél]}gemeR 2““’“ + e Ezg p ( )
subject to (w-(zi—§ X 2n)) 2 p— & (11)
& > 0. (12)

The precise meaning of the parameter v governing the trade-off between the
regularizer and the traning error will become clear later. Since nonzero slack
variables &; are penalized in the objective function, we can expect that if w and
p solve this problem, then the decision function

f(@) = sgu((w - (e = 3 2 20) — ) (13)

will be positive for many examples x; contained in X, while the SV type reg-
ularization term ||w|| will still be small. This can be shown to correspond to a
large margin of separation from % Y on Zn

We next compute a dual form of this optimization problem. To this end, we
introduce Lagrange multipliers a;, 8; > 0, and a Lagrangian

1 1
L(w>£7p7aaﬁ) = §||’LU||2 + I/_ézgl —p

=S aillw (= 1 Y m)) -+ &) - 3 Ak (1)

The Lagrangian needs to be maximized with respect to the primal variables
w, &, p, and minimized with respect to the Lagrange multipliers. We first set
the derivatives with respect to the primal variables equal to zero, yielding

w:Zai(mi—%Zzn), (15)

1 1

-~ _ B < —
%= e ﬁz_ul’

dai=1. (17)



In (15), all patterns {x;:i € [f], a; > 0} are called Support Vectors. The
expansion (15) turns the decision function (13) into a form which only depends
on dot prducts,

) = sgn( Zal ,——z:zn)-(a:—1 Zn)) — p). (18)

By multiplying out the dot products, we obtain a form that can be written as a
nonlinear decision function on the input domain X" in terms of a kernel (4) (cf.

(6) and (7))
f(x) = Sgn(zaz (xi,x __Zk Zp,X
t2 Zk Zn,Zp) Zk zn,xZ — p) (19)
= sgn(Zaik(xi,x) — Zk(zn,x
o Zk (Zn,2p) Za ik(Zn, X;) ) (20)

Note that the last step used the constraint (17), and that we have slightly abused
the symbol f by employing it to denote both the decision function in feature
space (18) and in input space (20). Moreover, in the argument of the sgn, only
the first two terms depend on x, therefore we may absorb the next terms in the
constant, p, which we have not fixed yet. To compute p in the final form of the
decision function

X) = sgn (Z a;k(x;,x) — %Zk(zn,x) - p) , (21)

we employ the KKT conditions of the optimization problem (Bertsekas, 1995,
e.g.). They state that for points x; where both «; and 3; are nonzero, the
inequality constraints (11) and (12) become equalities. In other words, if «; €
(0,1/(v?)) (note that in general, a; € [0,1/(v¢)]), then the argument of the sgn
in the decision function should equal 0, i.e. the corresponding x; sits exactly on
the hyperplane of separation.

The KKT conditions also imply that only those points x; can have a nonzero
a; for which the inequality constraint in (11) is precisely met; therefore the
support vectors £ with a; > 0 will often form but a small subset of X. However,
the solution depends on all z,, hence it will not necessarily be particularly
sparse. If this is a concern, then postprocessing can be applied to increase
sparsity, along the lines of Scholkopf et al., 1999.

Substituting (15) — (17) into L (14), we can eliminate the primal variables to
get, the dual problem. A short calculation shows that it consists of minimizing



the quadratic form
1
W(a) = 2 Zaiaj (@i~ zj) +q—q; — @)
ij
1
= 52%’%‘ (k(xi,x5) +q—q; — @), (22)
ij

using the shorthands ¢ := 3 3, k(zn,2p) and ¢; := § 3_, k(X;,2n), subject to
the constraints 1
0<ai<—, Zaizl. (23)
K3
This convex quadratic program can be solved with standard quadratic pro-
gramming tools. Alternatively, one can employ the SMO algorithm described in
(Scholkopf et al., 1999), which was found to approximately scale quadratically
with the training set size.
Finally, it is interesting to note that kernel PCA, which is normally formu-
lated as an eigenvalue problem, solves almost the same problem. The target

function is the same, however it is minimized subject to the constraint that the
variance of f(x) = >, a;k(x;,x) on the training set be 1.

3 Determining Percentiles Using v

Note that if v approaches 0, the upper boundaries on the Lagrange multipli-
ers tend to infinity, i.e. the second inequality constraint in (22) becomes void.
The problem then resembles the corresponding hard margin algorithm, since the
penalization of errors becomes infinite, as can be seen from the primal objec-
tive function (10). The dual problem is still feasible, since we have placed no
restriction on p, so p can become a large negative number in order to satisfy
(11). If we had required p > 0 from the start, we would have ended up with the
constraint ). a; > 1 instead of the corresponding equality constraint in (22),
and the multipliers a; could have diverged.

Next, assume that v = 1. In this case, the constraints (23) alone already
determine the solution: all a; must equal 1/¢, the argument of the decision
function (21) then reduces to the difference between two Parzen windows density
estimates, one for X and one for Z, and the decision function is a thresholded
version of that difference,

f(x) = sgn (% S kxisx) — 3 3 K, %) - p> . (24)

This amounts to a thresholded variant of the Bayes decision boundary for the
considered density models. Note that in a Parzen windows estimator, the kernels
are required to have integral 1, i.e. to be densities of probability measures.



However, since we are thresholding them anyway, a global rescaling factor can
be disregarded.

Note, moreover, that the constraints (23) rule out solutions where v > 1, as
in that case, the a; cannot sum up to 1. Negative values of v are ruled out,
t00, since they would amount to encouraging (rather than penalizing) training
errors in (10). Therefore, in the primal problem (10) only v € (0,1] makes
sense. We shall now explain that v actually characterizes how many points of X
are allowed to lie outside the region where the decision function is positive. To
this end, we introduce the term outlier to denote points x; that have a nonzero
slack variable ¢;, i.e. points that lie outside of the estimated region. By the KKT
conditions, all outliers are also support vectors; however there can be support
vectors (sitting exactly on the margin) that are not outliers.

Proposition 1 Assume the solution of (10) satisfies p # 0. The following
statements hold:

(i) v is an upper bound on the fraction of outliers.

(ii) v is a lower bound on the fraction of SVs.

(iii) Suppose the data (8) were generated independently from a distribution P(zx)
which does not contain discrete components. Suppose, moreover, that the kernel
is analytic and non-constant. With probability 1, asymptotically, v equals both
the fraction of SVs and the fraction of outliers.

Parts (i) and (ii) can be proven directly based on the primal objective function
(10), as sketched presently: suppose we have found the solution. If we now
decrease p, the term ) . & will change proportionally to the number of points
that have a nonzero &; (the outliers). If we increase p, it will be proportional
to the number of points which are either already outliers, or just about to get
a nonzero p, i.e. which sit on the hyperplane — taken together, the set of SVs.
At the optimum of (10), we therefore have (i) and (ii).

Part (iii) can be proven by a uniform convergence argument showing that
since the covering numbers of kernel expansions regularized by a norm in some
feature space are well-behaved, the fraction of points which lie exactly on the
hyperplane is asymptotically negligible (Schélkopf et al., 2000).

From the proof, note that the statements (i) and (ii) are precise in the sense
that if we changed the p that the algorithm comes up with by some € > 0, then
one of the two would not hold anymore. The statements do not assert, however,
that the proposed algorithm maximizes the margin subject to the constraint that
only a fraction v of outliers is allowed. This problem would be a combinatorial
one; using a convex program, such as in our algorithm, its solution can therefore
only be approximated.

Our experience suggests that the approximation obtained is a good one,
however it is an open theoretical question whether a precise statement to that
effect can be made.



4 Special Cases and Extensions

Separation from the origin. Assume that there is only one z,, equalling 0,
i.e. we are trying to separate the data from the origin in F. In this case, both
the decision function and the optimization problem reduce to what is described
in (Scholkopf et al., 1999). Note that the connection to the Parzen windows
density estimator noted in Sec. 3 also applies in the present case. Here, it
states that for v = 1, the decision function will be nothing but a thresholded
version of a Parzen density estimate. As v gets smaller than 1, fewer points
will appear in the expansion (cf. Proposition 1). Therefore, it will behave like a
thresholded version of a Parzen density estimator where some kernels have been
pruned. The pruning is such that the most typical examples are thrown out
first — remember that the SVs are either outliers or on the edge of the decision
boundary. This makes perfect sense, as for the task of estimating the support
of a distribution, rather then its density, it is irrelevant to represent the density
inside the estimated area — only the boundaries count.

Separating a dataset from its mean. To give meaning to this somewhat
paradoxical phrase, let us start by assuming that X = Z. In this case, we
are separating the data points from their mean. Note that we have not ruled
out the case of a negative p, so this will be feasible. As in (Schélkopf et al.,
1999), it can be shown that the margin of separation to the centroid is p/|w|,
hence the margin can be negative, too. At the same time, some of the training
examples will usually lie outside of the estimated region; the number of such
examples is controlled by the trade-off constant v (Proposition 1). Suppose, for
instance, we adjust ¥ = 90%, such that 10% of all examples are in the estimated
region. Then the solution effectively gives us a direction and an offset such that
along that direction, 10% of the data are further away from the mean than that
offset, and the offset is as large as possible (cf. the notes following Proposition
1). It is thus giving us feature extractors with large percentile offsets. Principal
component analysis, in contrast, provides feature extractors with large variance,
either directly in input space, or, in the case of kernel PCA (Scholkopf et al.,
1998), in feature space. Using variance as a contrast function, however, is known
to be sensitive towards outliers, whereas the present algorithm can be shown to
have a desirable resistance property (see Sec. 5).

So far, we have only told you how to compute the first feature extraction
direction. Higher order features can be extracted subsequently by projecting out
the previous direction from the dataset. For instance, if w is the first direction,
we generate a new dataset by transforming the points according to

, w w

= = ) = 2
i = w (e (25)
Zi = zp — ( v zn> v (26)

|w] |w|’

Note that this ensures that (w-z}) = (w - 2!,) = 0, therefore all the transformed



points are in the subspace orthogonal to w.

Separation of a subset from the overall mean. Here, we consider the
situation where X C Z. This is a generalization of the previous case, where the
feature extractor is only seeking to characterize a subset of the whole dataset.

Incorporating negative examples. Suppose now that we are given in-
formation in addition to {zi,...,z,}, namely, a set of corresponding labels
{y1,-..,ye}, where y; € {£1}. As in the theoretical results of (Schélkopf et al.,
1999), we point-reflect those z; that have a negative y;, and then solve the re-
sulting problem as above. The point reflection is carried out w.r.t. the mean of
Z. In the primal problem, this leads to a y; on the left hand side of the con-
straint (11). In the support vector expansion (15), «; is replaced by «;y;, the
same applies to the dual objective function (22) and to the decision function.
Note, however, that we have to use the decision function in the form (19), not
(20), as the last simplification does not hold in this more general case. Every-
thing else remains the same. Note that our original algorithm is contained as
a special case, with all labels equal to +1. This approach applies no matter
whether the sets of positive and negative labels are balanced or not.

5 Theoretical Results

A number of results proven for the special case of separation from the origin
carry over to the more general case. It would be redundant to reproduce them
in the present work, we refer to (Scholkopf et al., 2000) for details. Among
them are a statement about the optimality (in the sense of maximizing the
margin) of the computed hyperplane in the case where X is linearly separable
from the mean of Z, and some insights characterizing the connection to binary
classification. Moreover, the above paper contains a proof of a resistance results
that we briefly re-state here:

Proposition 2 (Resistance) Local movements of outliers parallel to w do not
change the hyperplane.

We refrain from reproducing the proof. Essentially, the result is due to the fact
that the errors ; enter in the objective function only linearly. To determine
the hyperplane, we need to find the (constrained) extremum of the objective
function, and in finding the extremum, the derivatives are what counts. For the
linear error term, however, those are constant, so they do not depend on how
far away from the hyperplane an error point lies.

Finally, the paper dealing with separation from the origin contains general-
ization error bounds. Roughly, they state the following: suppose the estimated
hyperplane separates part of X from the origin by a certain margin, and with
an offset p. Now we are given test examples coming from the same distribution
as X, and classify them using a shifted hyperplane, with offset np, where < 1.



Then the probability that they are on the wrong side of the shifted hyperplane
will exceed the fraction of training outliers at most by a complexity term that
depends on 7 (the further 5 from 1, the smaller it is; for n — 1, it diverges) and
on the margin (the larger the margin, the smaller the term).

Note that 7 < 1 means that the region is somewhat larger than the one deter-
mined by the algorithm. As n approaches 1, the region that the generalization
error bound talks about approaches the region returned by the algorithm; at
the same time, the bound gets weaker.

Note that originally, the bound refers to the separation from the origin. We
expect that the extension to separation from points estimated from the data
will not cost much in terms of increasing the complexity term. Indeed, if X
and Z are disjoint, then the bound does not change at all, since it that case to
compute the mean of Z we need not use any data from X.

6 Experiments

In the section, we show some preliminary experiments. Figure 1 shows a toy
example of an estimation of a region that separates a class of data from the mean
of another set. Note that the latter mean is taken in feature space, indeed, if we
were to separate the circles from the mean of the asterisks in input space, the
decision boundary would look different. As the mean in feature space, % Y on Zns
does not normally correspond to a single point in input space, it (in a sense)
retains information about all the asterisks. This is, to some extent, noticable
from the shape of the decision boundary, which takes into accound the asterisks
to a much finer degree than just looking at their mean.

Next, we show some results on real-world data, obtained for the special case
of separation from the mean (from (Scholkopf et al., 1999)). We used the US
postal service database of handwritten digits. The database contains 9298 digit
images of size 16 x 16 = 256; the last 2007 constitute the test set. We used a
Gaussian kernel (5) of width ¢ = 0.5-256, a common value for SVM classifiers on
that data set, trained the algorithm on the test set and used it to identify outliers
— it is folklore in the community that the USPS test set (Fig. 2) contains a
number of patterns which are hard or impossible to classify, due to segmentation
errors or mislabelling (Vapnik, 1995, e.g.). In the experiment, we augmented
the input patterns by ten extra dimensions corresponding to the class labels
of the digits. The rationale for this is that if we disregarded the labels, there
would be no hope to identify mislabelled patterns as outliers. Vice versa, with
the labels, the algorithm has the chance to identify both unusual patterns and
usual patterns with unusual labels. Fig. 3 shows the 20 worst outliers for the
USPS test set, respectively. Note that the algorithm indeed extracts patterns
which are very hard to assign to their respective classes. As in the toy example,
we used a v value of 5%.



Figure 1: Toy example of the proposed algorithm separating one class (marked
by circles) from the mean, taken in feature space, of a collection of “generic”
examples (marked by aterisks). In the experiment, we used v = 5% and the
Gaussian kernel (5) with ¢ = 0.1. As threshold, we used 0.9 - p, where p was the
one returned by the algorithm. As argued in Sec. 5, this is preferable to using p
from a theoretical point of view. In the picture, it slightly enlarges the decision
region — otherwise, several of the circles which are inside the estimated region
would exactly sit on the decision boundary (the SVs).

7 Discussion

The present work builds on our previous algorithm for estimating a distribution’s
support. That algorithm, separating the data from the origin in feature space,
suffered from the drawback that the origin played a special role. One way to
think of it is as a prior on where, in a novelty detection context, the unknown
“other” class lies. The present work alleviates this problem by allowing for the
possibility to separate from a point inferred from the data, either from the same
class, or from some other data. Serendipitously, this has led to robust PCA type
algorithms in feature space computing feature extractors maximizing percentile
thresholds.

There is a concern that one could put forward about one of the variants of
the presently proposed approach, namely about the case where X and Z are
disjoint, and we are separating X from Z’s centroid: why not actually train a
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Figure 2: A subset of 20 examples randomly drawn from the USPS test set,
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Figure 3: Outliers identified by the proposed algorithm, ranked by the negative
output of the SVM (the argument of (21)). The outputs (for convenience in
units of 10™°) are written underneath each image in italics, the (alleged) class
labels are given in bold face. Note that most of the examples are “difficult” in
that they are either atypical or even mislabelled.

full binary classifier separating X from all examples from Z, rather that just
from its mean? Indeed there might be situations where this is appropriate.
More specifically, whenever Z is representative of the instances of the other
class that we expect to see in the future, then a binary classification is certainly
preferable. However, there can be situations where Z is not representative
for the other class, for instance due to nonstationarity. Maybe it is even the
case that Z only consists of artificial examples. In this situation, the only real
training examples are the positive ones. In this case, separating the data from
the mean of some artificial, or non-representative examples, provides a way of
taking into account some information from the other class which might work
better than simply separating the positive data from the origin. However, this
conjecture has yet to be confirmed in real-world experiments.

In any event, the present algorithm enlarges the toolkit for modelling dis-
tributions using support vector methods. These methods have a large number
of applications that are currently being investigated, including tasks such as
novelty detection.

The philosophy behind our approach is the one advocated by (Vapnik, 1995).
If you are trying to solve a learning problem, do it directly, rather than solving
a more general problem along the way. Applied to the estimation of a distribu-
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tion’s support, this means: do not first estimate a density and then threshold
it to get an estimate of the support. In the present paper, we have shown that
our direct approach contains a Parzen windows density estimation approach asa
special case, however, it was the special case for v = 1, which is not the most
sensible parameter choice conceivable. General values of v, the outlier constant,
provide a useful means of taking into account information on how much noise
we expect in the data, and lead to thresholded kernel expansions which behave
different from generic density estimates.
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