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Abstract

Let us assign independent, exponentially distributed random edge lengths to the
edges of an undirected graph. Lyons, Pemantle and Peres [11] proved that the expected
length of the shortest path between two given nodes is bounded from below by the
resistance between these nodes, where the resistance of an edge is the expectation of its
length. They remarked that instead of exponentially distributed variables, one could
consider random variables with a log-concave tail.

We generalize this result in two directions. First, we note that the variables don’t
have to be independent: it suffices to assume that their joint distribution is log-concave.
Second, the inequality can be formulated as follows: the expected length of a shortest
path between two given nodes is the expected optimum of a stochastic linear program
over a flow polytope, while the resistance is the minimum of a convex quadratic function
over this polytope. We show that the inequality between these quantities holds true for
an arbitrary polytope provided its blocker has 0-1 vertices.



1 Introduction

Let G = (V, E) be an undirected graph, let s,¢t € V, and let us assign random nonnega-
tive edge lengths W; (i € E) to the edges of G. The W; are independent exponentially
distributed random variables, with w; = E(W;). Lyons, Pemantle and Peres [11] proved
that the expected length of the shortest path between s and t is bounded from below
by the resistance between these nodes, where the resistance of an edge i is w;. They
prove a similar lower bound for the “dual” problem, namely the expected minimum cut
capacity. They also show (in a slightly different form) that instead of the exponential
distribution of the edge lengths, one could allow more general distributions whose sur-
vival function P(W; > t) is log-concave. Their estimate is tight (up to a factor of 2) for
a certain class of series-parallel graphs.

In this note we generalize this result in two directions. First the variables don’t
have to be independent; it suffices to assume that the joint distribution of the W; are
such that the joint survival function P(W7 > t4,...,W,, > t,) is log-concave.

To formulate our second generalization, we need some preliminaries from optimiza-
tion. Let K C R be a closed convex set. We say that K is recessive, if v € K, y > x

implies that y € K. For every convex set Ko C R, its dominant
K—={zeR%} : x>yforsomeye K}

is a recessive convex set.

Among recessive convex sets, one can define a version of polarity called blocking,
introduced by Fulkerson [3]. The blocker of a recessive convex set K C R} is defined
by

K*={z eR"} : y'z>1foralyeK}.

The blocker relation has the standard properties of duality; in particular, the blocker
of the blocker is the original recessive convex set. Thus it makes sense to talk about a
”blocking pair”.

Our starting example of a blocking pair is the following. Let Py consist of all (s,t)-
flows in G of value 1, and let P be the dominant of F;. Then P* is the dominant
of the convex hull of incidence vectors of (s,t)-cuts. In terms of these polyhedra, the
expected length of a shortest (s,t)-path is the expected optimum of the random linear
function WTa over P, while the resistance between s and t is the minimum of the

convex quadratic function Y, w;z7 over this polytope (see section 3).



With this notation, the inequalities of Lyons, Pemantle and Peres can be formulated

as follows:

E(min{W'z : z€P}) > min{Zwia:? C T € P} (1)

and

E(min{W's : € P*}) > min{Zwia:? C T € P*}

It would be natural to conjecture that these inequalities hold for all recessive convex
sets K in place of P, but this is false; the two sides don’t even scale in the same way
under homothetical transformations of K. However, the two inequalities are always
equivalent. Our main result (Theorem 7) is that they do hold under the following
assumption: every non-zero entry of every vertex of K™ is at least 1. This includes the
combinatorially interesting case when K™ has integer vertices. For the general case, a
(weaker) inequality will also be given in section 4.

The quantity on the right hand side of 1, which we call the energy of P (for the
justification of the name, see example 1), has some interest on its own right. It behaves
nicely for blocking pairs, and generalizes some interesting combinatorial quantities (see
section 3).

The result is most interesting when both K and K™ have 0-1 vertices. In this case,
each of them can be thought of as a hypergraph, i.e., a collection of subsets of the
underlying set {1,2,...,n}. In this case Z above can be thought of as the minimum
weight of an edge of H, under a random weighting of the vertices. There are many
such pairs of hypergraphs arising in combinatorial optimization. Some of these will be

discussed in section 7.

2 Preliminaries: blocking polyhedra and blocking clut-
ters

Let K C R be a closed convex set. We call K recessive, if z € K, y > z impliesy € K.

For every convex set K, its dominant
K+RY ={zcR": Jyc K,y <z}
is recessive. We denote by K™ the blocker of K:

K*={zeR} : y'z>1 Vye K}



It is clear that K* is recessive. Furthermore, if K is recessive then (K*)* = K [3].
There are important relations between optimization over K and its blocker K*. To
formulate them, we need the following notation. For ¢ € R™, ¢ > 0 we denote by ¢* the

vector (¢ ',...,¢,!). Furthermore, for c € R, let
L(K,c)=min{c'z: z € K}.

Lemma 1  For every recessive conver set K C R and c,d € R,

L(K,e)L(K*,d) < c'd. (2)
If ¢ > 0, then
1< L(K,e)L(K*,c") <n. (3)
Furthermore,
. T 1 * .G
min{c'z : € K} =max<{t: ~c€ K"} = max min —. (4)
t yeK* 1 Y;

Proof. (2) is due to Fulkerson [3]. The upper bound in (3) is a special case of (2),
while the lower bound follows since
T «T G
=D —xY; 2 Y > 1
(cTa)(c" 'y) ;cjm vj = Zm y
forall z € K and y € K*.

(4) By definition,
t<L(K,c) = c'x>t Vze K« (1/t)ce K*,

proving the first equality. The second is an immediate rewriting of the first. O

Combinatorial applications of blocking pairs of polyhedra involve blocking clutters.
A clutter is a hypergraph in which no edge is included in another. We may restrict our
attention to clutters, i.e.,; this is no loss of generality, since we are minimizing monotone
increasing objective functions, and so edges containing another edge play no role. The
rank r(H) of a clutter is the minimum cardinality of its edges. The blocking number
T(H) is the minimum cardinality of a set meeting all edges. We set n = |V]|.

The blocking clutter H® of H consists of those minimal subsets of V' which intersect
every member of H. It is not difficult to see that in this case H is the blocking clutter
of H®. The pair of clutters (H,H?) is called a blocking pair. Clearly r(H®) = T(H).



Define D(H) as the dominant of the convex hull of incidence vectors of edges of H.

For c € RY and A C V, we use the notation c(A4) = 3, 4 ¢;. Define
L(H,c) = min{c(A): A€ H} =L(D(H),c).
It is easy to see that for every clutter H, we have
D) C (D)), (5)

or equivalently,

D(H) C (D(H"))". (6)
We say that H has the Maz-Flow-Min-Cut property if equality holds here. In more
explicit terms, this means that for every weighting w : V — R4, the minimum weight
of an edge of H? is equal to the maximum of > Y5 where y ranges over all weightings
y: E(H") — Ry with the property that 3, y; < w; for each i € V.
There are various characterizations of clutters with the Max-Flow-Min-Cut property.

Among others, Lehmann [10] proved that if H has this property then so does its blocking

clutter H°. See [6] for more information.

3 Energy

Let K C R™ be a closed convex set and ¢ € R™, ¢ > 0 a vector of weights. The energy
of K with respect to c is defined as

8(K,c):min{Zcia:? cxz € K}

In particular, the energy of K with respect to the all-1 vector ¥ is the squared distance
of K from the origin. Note that since the objective function is strictly convex, there is
always a unique optimum solution.

The energy of a convex set and its blocker are closely related.

Lemma 2

E(K,)E(K*,c") = 1.
It is interesting that equality holds here, while for the minima of linear functions, only
the rather week inequalities in (3) can be claimed.
Proof. First, let z € K and y € K*. Then

(ZCﬂ?) (21:;.%2> 2 Xi:(@mi) <\/lczyz> = Z;mzyz > 1.

g



Hence E(K,c)E(K*,c*) > 1.
Second, let w € K attain the minimum in the definition of £ = £(K,¢), i.e.
Zciu? =£.
i
The ellipsoid defined by 3, c;z? < € and the convex set K have no interior point in
common, but they touch each other at u, and hence the tangent hyperplane of the

ellipsoid at point u separates them. By elementary geometry, this tangent hyperplane

is 'z = 1, where v; = (1/€)c;u;. We have
vz <1 for all z € K,

whence v € K*. Thus
min E eyl ye K* ) < E e l? = i E il = l
- v T vt g2 - e g

which proves that £(K,¢)E(K*,c¢*) < 1. O

From the proof above, we can read off the following complementary slackness con-

ditions:

Lemma 3 Leta € K and b € K*. Then a is the optimizing vector for E(K,c) and b
is the optimizing vector for E(K*,c*) if and only if a'b = 1, and the vector (c;a;) is

parallel to b.

It will not be needed in this paper, but it should be noted that, if K is given by
a well-guaranteed separation oracle (see [6] for details), then £(K,¢) can be computed
to arbitrary precision in oracle-polynomial time. This follows from the fact that the
objective function ), c;x7 is convex and easily computable.

There are some (easy) relations between the £ and &:

Lemma 4 Let |c|; denote the £1-norm of ¢, then

L(K,c)?

E(K,c) >
(K,c) ok

If all extreme points of K are contained in [0,1]", then
E(K,c) < L(K,c).

Proof. The first inequality is just Cauchy-Schwartz, the second follows by considering

an extreme point & of K minimizing ¢'x, and using that 2? < z;. O



We conclude with a few combinatorial examples where the energy of a polytope is

meaningful.

Example 1 Flows in undirected graphs and electrical resistance. We start
with out introductory example of paths in an undirected graph G = (V| E) connecting
two nodes s,t € V. Let H be the clutter whose vertices are the edges of G, and whose
edges are the s —t paths in G. The blocking clutter H® consists of all cuts separating s
and ¢ (and minimal with respect to inclusion). It is well known (equivalent to the Max-
Flow-Min-Cut Theorem) that D(H) is a polyhedron in RK defined by the inequalities
in >1
ieC
for every cut C separating s and t. Thus D(H)* = D(H’), and so H has the Max-
Flow-Min-Cut property (this is where this name comes from).

Now let a number c. > 0 be associated with every edge e. Then L(D(H),c) is the
length of the shortest path between s and ¢ (if the ¢, are interpreted as “lengths”).
Moreover, £(D(H?),c) is the minimum capacity of a cut separating s and ¢ (if the ¢;
are interpreted as “capacities”).

The energy E(D(H),c) is, as remarked in the introduction, the electrical resistance
between s and ¢ (if the ¢; are interpreted as "resistances”). This can be derived from
Thompson’s principle of minimum energy; since I don’t know a good reference, let me
sketch a proof. First, notice that every flow of value 1 from s to ¢ can be written as a
convex combination of s —t paths; conversely, every convex combination of s — ¢ paths
majorizes some flow of value 1 from s to ¢ (it is not equal because of cancellations on

edges used by different paths in different directions). So

E(D(H),c) = min{cha:g: x € D(H)}

eclE

min{Zc@fe2 : fis an s-t flow of value 1} .

eCE
To be precise, we need a reference orientation for the edges to specify f, but because
of the squaring, this orientation does not matter. Now > _c.f?2 is the energy of f if f
is considered an electric current, and by Thompson’s principle, it is minimized when f
is the true current. Since the intensity of this current between s and t is 1, its energy

is the resistance between s and ¢.



Example 2 Flows in directed paths and traffic jams. Let the directed graph
G = (V, A) describe a network, and let each edge ij have a length ¢;; > 0. But unlike
in the standard shortest path problem, the length has the following (perhaps more
realistic) meaning: if an edge has length ¢;, and z units of flow (say, 2 cars) enter it in
unit time, then the time needed to get through is c;;#. We want to find a flow of value
1 from s to ¢t that minimizes the average time a car has to travel from s to ¢t. Let us
call this minimum the congestion delay time from s to t.

Flows from s to ¢ of value 1 form a convex polytope P C RA. Let K — D(P) be its

dominant.

Proposition 5 The congestion delay time from s to t is given by the energy E(K,c).
Furthermore, the minimizing vector a € K gives a flow in which every car spends exactly

this time traveling.

Proof. Let € K be any flow of value 1 from s to £. Let y;; = c;;25;. We can write o
as a convex combination of paths from s to t: @ = >, axvk, where oy >0, >, o = 1,
and each vy, is the incidence vector of an s—¢ path. Think of the path v, as the route of
a car. The time this car spends on the trip is >~, ; CijTij where the summation extends
over all edges of the path. We can write this as vzy. If we average this over all v;, we
get Y, ouviy =2y = 2ij cija:?j. The minimum of this (over all choices of z € K is
indeed £(K,c).

To prove the second statement, suppose that = above is the minimizing vector. By
Lemma 3, the vector (1/£(K,c))y belongs to K*. Hence vy > 1 for every vertex v of

K. Furthermore, we have
L=aTy=> awjy>> or=1,
k k

and thus v]y = 1 for every vertex vy, that occurs in the representation of z, i.e., which

is the route of a car. O

Example 3 Multiterminal flows and hitting times in random walks. Let
G = (V,E) be a connected undirected graph, and choose a node ¢ € V. Assign a value
o; > 0 to each node i so that >~ 03 = 1.

Let K C Rf consist of all capacities that admit a flow with supply o; at each node
1 and demand 1 at ¢. It is not hard to see that K is a recessive polyhedron, and the

vertices of K are vectors supported on spanning trees. Given the spanning tree, the



flow along its edges with the given supplies and demand is uniquely determined, and it
gives the corresponding vertex of K. It follows that for a vector w € Rf of ”lengths”,
L(K,w) is the average distance of a node (chosen from the distribution ¢) from the
node ¢.

The blocker K* of K consists of vectors z € RK which can be described as follows:
if we view z;; as the length of an edge ij, then the average distance of a node i (chosen
with probability o;) from node ¢ is at least 1. It is not hard to verify that K* consists

of all vectors z € Rf such that there exists a vector x € RK such that
i

for each i5 € F.

The vertices of K* are of the form ﬁxv(s), where S C V\{t}, S # 0 (these vectors
are obviously in K*, but not all of them are vertices in general). Thus L(K % w) is the
answer to a certain isoperimetric problem: find the minimum of w(V(S))/a(S) over all
sets SCV\{¢t}, S#0.

The reason for considering this not too exciting extension of example 1 is that the
energy of K is interesting. Consider the random walk on G; the stationary probability
of node 7 is m; = d;/(2m), where d; is the degree of the node i and m is the number of
edges.

Let us choose a random node from the stationary distribution m, and walk until we
hit the node ¢. The expected number H(m,t) of steps is an important parameter in the
theory of random walks.

Aldous and Fill [1] (Chapter 3, Proposition 37) state, as a version of Thompson’s
formula, that H(7,t) is the minimum of 2m ", jcB fizj, where the minimum extends over
all flows with supply m; at each node 7 and demand 1 at node ¢. In our formulation,
this means that

H(m,t) = E(K,2mi¥). (7)

They also state a dual form:

2m
H(mt) =max{ ———— : a4 =0, mr; =1 .
{ZijeE(mi —z;)? ;

It is not hard to see that this is equivalent to

1

H(r,t) = E(K*,(1/2m)K)’

which is equivalent to (7) by Lemma 2.



Example 4 Let G = (V, E) be a bipartite graph with bipartition V = AU B, where
|A| = |B| = k; assume that G has a perfect matching. Consider the clutter H of all
perfect matchings. Then D(#) is the dominant of the perfect matching polytope. By
Konig’s Theorem, the blocking clutter of H consists of sets of the form E(X,Y"), where
X CAY CBand|X|+|Y]|=k+1 (here E(X,Y) denotes the set of edges between
X and Y).

The energy of the polyhedron D(#H) was studied by Frank and Karzanov [7]. Among
others, they gave a combinatorial polynomial time algorithm to find the distance of the

polyhedron from the origin.

4 A stochastic optimization problem

Let K be a recessive convex set in R? and let the W;, 1 <4 < n be random variables
whose joint survival function is log-concave. We set W = (W1,...,W,,) and w; = E(W;).

Consider the optimum
LK,W) =min{W'z : ze€ K},

This is a random variable, and we are interested in its expectation. Finding the exact
value of the expectation E(L(K,W)) is difficult in general, and it belongs to the field
of stochastic optimization. It is interesting to point out that log-concave functions play
an important role in this field; see Prékopa [12] for a survey. In this paper, we are
interested in obtaining bounds on E(L(K,W)).

We start with two simple bounds valid for every recessive convex set K.

Proposition 6
1

W < E(L(K,W)) < L(K,w).

These upper and lower bounds can be rather week. Our main result is that under
an assumption that includes the combinatorially interesting case when K™ has integral

vertices, a better lower bound can be given:

Theorem 7 Let K C R be a recessive convex polyhedron, and let W be a nonnegative
random vector whose survival function P(W > t) is log-concave (as a funclion of t €

R ). Assume that every non-zero entry of every vertex of K* is at least 1. Then

E(L(K,W)) = E(K,W).

10



The proof will be given in section 6; here we make a few remarks. By Lemmas 2
and 4,
1 1

= >
EHE) = e wm) 2 LK)’

showing that the bound in theorem 7 is always better than the bound in Lemma 6. Let

us compare the bounds and the actual expectation in the case of a simple example.

Example 5 Let n=k? (k> 2) and consider the polyhedron K C R" defined by the

inequalities
z1+ ...t 21, xpqp1+ .. Xk 2 1, T—Dkt1 T .-+ T2 2 1.

The vertices of K are all 0-1 vectors containing exactly one 1 in each of the blocks
{@1, b {zern 2o b, {Tg—1)k+1, -T2 }. The vertices of K* are all 0-1 vectors
which are 1 in one of these blocks and 0 outside.

It is clear from the symmetries that the minima in both L(K,¥) and £(K ) are
attained by the vector (1/k,1/k,...,1/k), and hence

L(K,K) = % —k E(KH) = % ~1

Similarly, we get that
L(K* W) =k, E(K* ) =1.

Let Wq,...,W,, be independent exponentially distributed random variables with
expectation 1. The value of E(L(K,W)) is easy to compute:

k—1
KW)= in Wip. s
E( ’ ) e~ 121;2]6 k47>
and hence by proposition 8
k—1 )
E(L(K,W)) = gE <1I<nj12kMk+j> —k- L= 1

The expectation of L(K* W) is more difficult to compute, but for our purposes it is

enough to note that
E—1

LK™ W) = min, 2 Wik,

and (for large k) each sum on the right hand side is highly concentrated around its

expectation k, showing that

E(C(K*,W)) ~ k.

11



The lower bounds on E(L(K,W)) and on E(L(K*,W)) provided by Lemma 6 and
the Main Theorem are 1/r and 1, respectively, so the Main Theorem is better. The
upper bound given by Lemma 6 is k. So we see that for L(K, W), our new lower bound
is tight, but for L(K* , W), it is far from the truth. We’ll discuss more interesting

examples in section 7.

5 A probabilistic lemma

We prove a lemma about nonnegative log-concave random variables. FExamples of
such variables include those uniformly distributed on [0, a] for some a, or exponentially

distributed with some parameter. First, let us quote the following well-known fact.

Proposition 8 Let Wy, ..., W, be independent, exponentially distributed random vari-

ables. Then min{W1y,... W, } is also exponentially distributed, with expectation

| 1\

The following lemma extends this fact, at least in an inequality form, to random

variables that are not necessarily independent and can have a more general distribution.

Lemma 9 Let W;, 1 < i < n be nonnegative random variables, and suppose that their

joint survival function

S(t1,...,tn) =P(W1 > tq,..., W, > t,)

is log-concave. Then min{Wi,... W, } also has a log-concave survival function, and
) -1
E(min W;) > .
0% (S 50
Proof. The first assertion is trivial, since the survival function of min{W,..., W, } is

S(t,...,t), which is log-concave.
To prove the bound on the expectation, set w; = E(W;). For n = 1 the assertion is

trivial. First we settle the case n = 2. In this case,

E(min{Wl, Wg}) =

0\8

P(min{W,, Wy} > t)dt — / S(t,t)dt
0

while

wr = E(W;) = /P(W1 > t)dt — /S(t,O) dt,

12



and similarly
(%] :/S(O,t)dt
0

So the assertion is equivalent to the following inequality:

—1

7S(t,t)dt 12 7S(t,0)dt 1+ 7S(O,t)dt (8)

This inequality could be proved using the Localization Lemma from [8], but we
can give a simple direct proof. We may assume that S is positive, strictly monotone
decreasing and continuous. (It is easy to approximate a general S by such a function).
We define a parametrization of the axes as follows: for 0 < z < 1, let a = a(z) and

b = b(x) be defined by

a b
/S(t,O)dt:mwl, /S(O,t)dt:mwg.
0 0
Obviously,
d w1y d W

- a

=" " 5a0 @™ 50
Let ¢(z) = a(z)b(z)/(a(z) + b(z)). Then

a

(c,c) = L(a,O)Jr P>

T (0,b).

Thus the line 27 = x5 intersects the segment connecting (a,0) to (0,b) at the point

(c,c). Hence by log-concavity,

b a

S(e,) > S(a,0)7 S(0,b)7%. 9)
Furthermore, we have
da db wyb? woa’
d 0t % $(,0) " S(0,b)
4. dz de  _ ) )
dx (a+b)2 (a+b)2

By the inequality between arithmetic and geometric means,

b a
d 1 wib \ Tt [/ waa \ ot?
Les . 10
da:c_a+b<5'(a,0)> <S(0,b)> (10)

We want to estimate

/S(t,t) dt = /S(c(m),c(m))%dm. (11)

13



Here the integrand can be estimated as follows, using (9) and (10):

) o
de b o1 wib TP [ waa ) @
e S a g
S(C,C) dr = S’(a,O) +bS(0’b) +b a+b <S(a,0)> <S(Oab)>
- aj;b(uﬂb)ggg(u&a)giz~

Applying the inequality between geometric and harmonic means, we get

de 1 at+b wiWsy

) 2 = .
dx a+bbw%b+aw%ﬂ w1 + we

Hence we get from (11) that

wW1Ws

)
w1 +wo

/S(t,t) dt >
0

which proves the lemma for n = 2.

Now the general case follows by induction. Let n > 2 and set Y = min{Xo,..

By the induction hypothesis,

The joint survival function
P(X1>t,Y >s)=P(X1 >t,X5>s,...,X, > 8) =S(t,s,...,8)
of X7 and Y is log-concave. Hence by the case n = 2,
E(min{X;,X2,...,X,}) = E(min{X;,Y})

1 1
N R A
E(Wl) E() wy wa

1
W,

This proves the lemma.

6 Bounds on the expected minimum: proofs

6.1 Proof of Proposition 6
First, by Lemma 1,

W;
L(K,W) > min —
voY

for every y € K*. Thus by Lemma 9, it follows that

E(C(K,W)) > (Z Z) - (Zwy) :

14
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The maximum of this lower bound is clearly 1/C(K™*, w*). O

By lemma 1, part (2), this lemma also implies

E(C(K,W)) > %L‘,(K,w).

6.2 Proof of Theorem 7

Let a be the vector attaining the minimum in the definition of £ = £(K,w). By Lemma
2, we have

“1 1

. 2 *
min —y; K*=—.
{Z WV e } -

=1

Let b be the vector in K* attaining this minimum. Then we have b; = w;a; /€.

We can write b as a convex combination of vertices v7 of K*:

P P
_ gyd . R
*E o7, ay; >0, Eajfl.
Jj=1 Jj=1

T

Since a"b = 1 and a"v/ > 1, we must have a'v7 = 1 for all j.

For every given outcome of the W; and any vector z € K, we have

m*ZWa:zb Zvjaj ZO‘JZU ijl gzajzvizzji

i =1 i

Since z € K and v/ € K*, we have > a:lvf > 1, and hence

Ww;
Wl >& g o mm :
j=1 i vy 7>0 wzaz

Thus
. T Wi
LIKW)=min{W'a : z€ K} > E o, mm

2 v >0 Wi

=1

Taking expectation and using Lemma 9, we get

Now here we have

and so

15



7 Combinatorial applications

Theorem 7 applies to every clutter H = (V,E) (ie., E C 2Y). Let (as before)
W1, . ..,W™ be non-negative random variables with log-concave joint survival func-
tion, and w; = E(W;). We are interested in estimating E(L(H,W)). Unfortunately,
we cannot directly apply Theorem 7 to L{D(H), W), since the blocker of D(#) has, in
general, not only 0-1 vertices. But it does if ‘H has the Max-Flow-Min-Cut property.
Thus Theorem 7 implies:

Corollary 10 Let H = (V,E) be a clutter with the Max-Flow-Min-Cut property. Let

W € RY be non-negative random vector with log-concave survival function. Then
E(L(H,W)) = E(D(H),w).

There are many combinatorial examples of blocking pairs of clutters with the Max-
Flow-Min-Cut Property: s — ¢ paths and s — ¢ cuts (directed or undirected), rooted
arborescences and rooted cuts, perfect matchings and odd cuts, T-joins and T-cuts
etc. For each of these, Theorem 7 applies, and we get a lower bound on the expected
minimum weight of an edge.

We can get a corollary valid for all clutters using (6):
L(H,W) > L(D(H®)*, W),

and since the blocker of D(H?)* is D(H"), which has 0-1 vertices, we get by Theorem

7
1

E(C(H,W)) 2 E(CL(D(H®)", W) = E(D(H®)",w) = E(DHY), w*)’

Thus we proved:

Corollary 11 Let H = (V,E) be any clutter. Let W € RY be non-negative random

vector with log-concave survival function. Then

1
E(LHW)) > i~
(WD 2 D)0
One advantage of this bound is that on the right hand side, the minimum is in the
denominator, so any y € D(H®) provides a lower bound. For example, assume that H

is k-colorable, i.e., V can be partitioned into k sets none of which spans and edge of

H. Then the vector (k — 1) is the sum of k vertices of H® (the incidence vectors of
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the complements of the color classes), and hence (1 —1/k)¥ € D(H®). Thus we get the

bound
k2
(k=1)237,1/wi’

It is perhaps more interesting to consider the case when V can be partitioned into k

E(C(H,W)) = (12)

sets, each intersecting every edge of k. Then the same argument gives
k2

>

T 2w

It may be interesting to elaborate upon the idea of symmetry used in Example 5.

E(L(H,W)) (13)

Let ‘H be a clutter admitting a vertex-transitive automorphism group. Assume that

w = K. Trivially,

The optimum in the definition of £(D(H),k) is attained when all variables are equal,

and for this case it is easy to figure out that this value is r(#)/n. So we get

Thus we get for clutters with a transitive automorphism group:

E(L(H,W)) =

7(H)? (14)

We note that both bounds (13) and (14) are tight for the complete multipartite hyper-
graph H on k classes of size k, which is just our example 5.

The case when H is the clutter of perfect matchings of a complete bipartite graph
is of special interest. Let W;j (i € A, j € B) be independent exponentially distributed
random variables with expectation 1. There is a conjecture about the expectation of

the minimum weight of a perfect matching:

2
E(L(D(H),W)) — % (k = o).
In this case, (14) applies and gives that
k2
E(L(D wy) > =1.
LOHW) 2

This is known, but it shows that our estimate is only a constant factor off the target.
In section 3 we saw some examples where the energy expressions in corollaries 10 and
11 was of combinatorial interest. We have discussed the connection between shortest

paths and resistance. From Example 2 we get the following inequality.
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Corollary 12 Let the edges of a directed graph have positive random “lengths”, whose
joint survival function is log-concave. Then the expected length of a shortest path be-
tween nodes s and t is bounded from below by the congestion delay time of the network

obtained by replacing each edge length by its expectation.

We can also apply our main theorem to Example 3, where the vertices of the dual
polyhedron are not integral, but still satisfy that their non-zero entries are larger than
1. We get that in a sense we can trade randomness in the edgelengths for randomness

in the paths.

Corollary 13 Let the edges of an undirected graph have positive random “lengths”,
whose expectation is 1 and whose joint survival function is log-concave. Then average
hitting time to a node t is bounded from above by 2| F| times the expected average distance

from t.

Finally, we note that we can also apply Theorem 7 to the polyhedron D(#)* (whose
blocker D(#) has 0-1 vertices), to get the inequality

E(L(D(H)",W)) = E(D(H)", w). (15)

However, the two sides don’t seem to have any direct combinatorial significance.

8 Concluding remarks

Fulkerson [4] also introduced antiblocking pairs of convex sets (essentially by reversing
the inequality sign in the definition of the blocker). Korner [9] introduced the important
notion of graph entropy, which was generalized to convex bodies by Csiszar, Korner,
Lovész, Marton and Simonyi [2]. Our notion of energy can be viewed as the analogue

of entropy in the blocking setting.
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