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Abstract

We present a fast training algorithm for the kernel Fisher discriminant
classifier. It uses a greedy approximation technique and has an empirical
scaling behavior which improves upon the state of the art by more than
an order of magnitude, thus rendering the kernel Fisher algorithm a viable
option also for large datasets.

1 Introduction

Kernel Fisher Discriminant (KFD) [8, 9] is a nonlinear generalization of Fisher’s
Discriminant [2, 4]. The nonlinearity is introduced by the use of kernel functions
[6], in analogy to Support Vector Machines (SVMs) [1], Kernel PCA [10] and
various other techniques.

On a large number of benchmarks, KFD has shown classification accuracies on a
par with SVMs. In addition, unlike SVMs, the outputs of KFD lend themselves
to a probabilistic interpretation: empirically, the distributions of the two classes
projected onto the Fisher direction of discrimination can be approximated very
well by Gaussians, which allows the estimation of conditional class probabilities.
In this sense, KFD can be considered a “probabilistic variant” of SVMs (cf. also
[13]). Unfortunately, so far, there has been no efficient algorithm for KFD — all
the known algorithms effectively scaled like O(¢3), where £ is the sample size. In
the current paper, we propose a much more efficient algorithm, utilizing sparse
greedy approximation techniques [12, 11].

2 The Kernel Fisher Discriminant Revisited

For some set X, let {x; € X|i = 1,...,£} be our training sample and y €
{—1,1}* be the vector of corresponding class labels. Furthermore define 1 € R*
as the vector of all ones, and let 1, ,1_ € R’ be the positive and negative parts
of 1,ie. 1; = max(y,0), 1- = max(—y,0). In the linear case, it is known that
Fisher’s discriminant is computed by maximizing the coefficient
w'Spw

J(w) = (1)

w!Sww
of between and within class variance, i.e. Sp = (my —m_)(m; —m_)" and
Sw =3, (X —my)(xi —my) + 35, (% — mo)(x; —m_)T, where
m denotes the sample mean for class +1.

It can be shown that this approach results in the optimal (in this case linear)
decision for two Gaussian distributions with equal covariance structure. In spite
of the fact that Fisher’s discriminant often yields useful results even when this
assumption is violated, its basic limitation is that the discriminating direction
is linear. To overcome this limitation, [8] proposed to use the same approach
as in Support Vector Machines [1] or Kernel PCA [10]: kernel functions. In a
nutshell, the idea is to first apply a nonlinear mapping ® : X — F to the data



and then to perform the same linear algorithm on the mapped data. If F is
sufficiently rich, this increases the chance of finding a good linear, separating
direction in the mapped space. This linear direction in the feature space F then
implicitly yields a nonlinear direction in the input space. To avoid having to
work in F explicitly, we use the kernel trick, i.e. we choose a feature space whose
dot product can be computed by a kernel k : X x X — R,

k(xi, %) = (2(x) - D(x5)),

and formulate everything in terms of dot products in F, i.e. in kernels on X x X.

3 Fisher’s Discriminant in Feature Space

To solve Fisher’s problem in a kernel feature space F one needs a formulation
which makes use of the training samples only in terms of dot products. One can
prove [8] that the solution w € F of (1) can be expanded as

¢
W= Zi:l a;®(x;), o €R (2)

It is straightforward to find an expression similar to (1) for the coefficients a
[8]. However, here we will use a different formulation for finding e, building
on the following observation: the goal of Fisher’s discriminant is to find a one
dimensional projection on which the class means are far apart while the within
class variance is small.

In [7] it was shown that KFD can be cast in a slightly generalized form as the
following convex, quadratic optimization problem:

. 1 2 C
min €12+ 5 Pa) )
subject to:
Ka+1b = y+¢ (3a)
1h¢=0, 1"¢=0. (3b)

Here, C is a regularization constant, and P a regularization functional [8, 3]
which we assume to be quadratic in the following, e.g. P(a) = ||a||? or P(ax) =
a'Ka. The projection of a test point onto the discriminant is computed by
(w-®(x)) =, & k(x;,x). The program essentially states that the output for
each training sample should be close to its label, where we penalize the squared
error of the deviation (constraint (3a)), and that the average deviation from the
label should be zero, separately for each class (constraints (3b)).

However, for large data sets, solving (3) is expensive in terms of time and
memory. Contrary to SVMs, the solutions are not sparse and deriving efficient
decomposition techniques for the programming problem is difficult. In [7], it was
proposed to use a ¢ regularizer in (3) as an approximation to a £y regularizer
which would just count the number of non zero elements in . While this solved



the problem of non-sparsity and was a promising candidate to use chunking
techniques there was no really efficient algorithm yet.

Using a {y regularizer or to add a nonlinear constraint of the form: Find a
solution o with at most m non—zero elements, would in principle be optimal.
Unfortunately, such an approach is impossible to deal with analytically. Find-
ing the true optimal solution would require to search the space of all possible
solutions which make use of m possible «;, i.e. one had to solve (i) problems.
We will presently derive an algorithm which might be viewed as a greedy ap-
proximation to such a solution. Along the lines of [11, 12], we will iteratively
approximate the solution to (3) with as few non-zero «; as possible.

4 The Algorithm

To proceed, let us rewrite (3). Define

(el [t [ [ 1K
a_[a} C_[ KTy} Ai_[KHJ H‘[KH Kk +cp)s W

Here, ¢4 denotes the number of samples in class =1. Then the problem (3) can
equivalently be rewritten as:

1
min  -a'Ha—cla+ ¢ (5)
a 2 2
subject to:
Ala—t, = 0 (5a)
Alat+r¢. = 0. (5b)

Forming the Lagrangian of (5) with multipliers A
1 14
L(a, Ay, M) = 3 "Ha—cla+ M\ (Ala—0)+A_(Ala+0)+ 2 (6)

and taking derivatives with respect to the primal variables a one obtains the
dual

1 14
max —_—= THa — A+£+ + )\_é_ + - (7)
. a,)\+,)\_ 2 2
subject to:
Ha—C+ ()\+A+ +)\_A_) = 0. (8&)
Now we use the dual constraint (8a) to solve for a, i.e.
a=H '(c—(OMyAL +XA_A)). (8)

This equation is well defined if H has full rank (see (4)). If not we can still
perform this step as we will approximate H ! instead of computing it directly.



Resubstituting (8) into the dual problem (which has no constraints left) yields
the following problem in the two variables A4 and A_:

1 [A+]T {ALH—1A+ ALH—lA_] [A+]

BT M| |ATH AL ATH AL A

(9)
P ] - b &

(_+cHTA_ | [A_ 2 2

This problem can be solved analytically, yielding values for Ay and A_ which
substituted into (8) yield values for a or @ and b, respectively.

A Sparse Greedy Approximation. Of course, this problem is no easier
to solve than the original one nor does it yield a sparse solution: H~! is an
(£+1) x (£+1) matrix and for large datasets its inversion is not feasible, neither
in terms of time nor memory cost. Now, the idea is to use the following, greedy
approximation scheme (cf. [11]). Instead of trying to find a full set of £ «;’s for
the solution (2), we approximate the optimal solution by a shorter expansion
containing only m < ¢ terms.

Starting with an empty solution m = 0, select in each iteration a new sample
x; (or an index ¢) and resolve the problem for the expansion (2) containing this
new index and all previously picked indices; stop as soon as a suitable criterion
is satisfied. This approach would still be infeasible in terms of computational
cost if we had to solve the full quadratic program (5) anew in each iteration or
invert H in (8) and (9). But with the derivation made before it is possible to
find a close approximation to the optimal solution in each iteration at a cost of
O(kfm?) where k is a user defined value (see below).

Writing down the quadratic program (3) for KFD when the expansion for the
solution is restricted to an m element subset Z C [¢]

W7 = ZO&J@(XZ‘) (10)

i€l

of the training patterns amounts to replacing the ¢ x ¢ matrix K by the £ x m
matrix K™, where K77 = k(x;,x;), i = 1,...,£ and j € Z. Analogously, we
can derive the formulation (5) using the matrix K™ in (4). The problem is of
order m X m now. Assume we already know the optimal solution (and inverse
of H) using m kernel-functions. Then H~! for m + 1 samples can be obtained
by a rank one update of the previous H ! using only m basis functions: The
following Lemma (e.g. [5]) tells us how to obtain the new H 1.

Lemma 1 (Sherman—Woodbury—Formula). The inverse of a symmetric,
positive matrix can be computed as:

{H B}_l_{H‘l—s—(H—lB)y(H—lB)T —y(H1B)
BT Cc] ~(y(H'B)) g ’

where v = (C — BTH1B)~1.



Note that for our case B is a vector and C' a scalar. This is an operation of cost
O(m?) as we already know the inverse of the smaller system. The last major
problem is to pick an index % in each iteration. Ideally one would choose the
i for which we get the biggest decrease in the primal-objective (or equivalently
as they are identical for the optimal coefficients a, the dual-objective (7)). But
this would mean that we have to compute the update H~' for all £ —m indices
which are unused so far — again, too expensive. One possible solution lies in a
second approximation. Instead of choosing the best possible index it is usually
sufficient to find an index for which with high probability we achieve something
close to the optimal achievement. It turns out [12] that it can be enough to
consider 59 randomly chosen indices from the remaining ones:

Lemma 2 (Maximum of Random Variables). Denote by p1, ..., pm identi-
cally distributed independent random variables with a common cumulative distri-
bution function F'. Then the cumulative distribution function of p = max;e[m) pi
is F™.

This means that for the uniform distribution on [0, 1] max;e[m p; is distributed
according to p™. Thus, to obtain an estimate that is with probability 0.95 among
the best 0.05 of all estimates, a random sample of size k := (log0.05/log 0.95) =
59 is enough.

Termination. Still open is the question when to stop. If one wanted to com-
pute the full solution this approach would not be very efficient as it would take
O(k£3) which is worse than the original problem. A principled stopping rule
would be to measure the distance of wz to the solution of the full problem and
then to stop when this falls below a certain threshold. Unfortunately the full
solution is, for obvious reasons, not available. Instead one could try to bound
the difference of the objective (3) for the current solution to the optimal value
obtained for the full problem as done in [11]. But again, in our case such an
approach would be infeasible. Instead we have chosen a very simple heuristic
which turned out to work well in the experiments: Stop when the average im-
provement in the dual objective (7) over the last p iterations is less than some
threshold 6. The longer the averaging process, the more confident we are that
the current solution is not at a plateau. The smaller the threshold, the closer we
are to the original solution (indeed, setting the threshold to zero forces the al-
gorithm to take all training samples into account). Still, this rule is sub-optimal
in that a good threshold for the problem at hand seems difficult to predict (see
experimental section).

The complete algorithm for a sparse greedy solution to the KFD problem is
schematized in Figure 1. It is easy to implement using a linear algebra package
like BLAS and has the potential to be easily parallelized (the matrix update)
and distributed.



arguments:
Sample X = {x1,...,%¢}, ¥y = {vy1,--.,Ye}
Maximum number of coefficients
or parameters of other stopping criterion: OPTS
Regularization constant C
% and kernel k
returns:
Set of indices [ and corresponding o’s.
Threshold b.
function SG-KFD(X,y,C,k,k, OPTS)
m«— 0
I—10
while termination criterion not satisfied do
S « (k elements from [{]\ )
0bjmax +— 00
for i €S do
Compute column ¢ of kernel matrix
Update inverse adding the i-th kernel, compute optimal a
Compute new dual objective
if dual objective < 0bjpax do
iopt i
0bjmax <+ dual objective
endif
endfor
Update inverse H and solution a with kernel iopt
I—1TU {iopt}
Check termination criterion
endwhile

Figure 1: The Sparse Greedy Kernel Fisher Algorithm

5 Obtaining Probabilities as Outputs

One of the advantages of KFD over e.g. SVM is that the outputs of KFD can
be interpreted in a probabilistic manner. If one is interested in probabilities
these are straightforward to obtain. Implicitly the optimization problem for
KFD assumes Gaussian distribution for the likelihood functions, an assumption
which is empirically supported by examining the output histograms on differ-
ent datasets: they exhibit a strong Gaussianity [7]. If we estimate mean and
variance of these Gaussians using the training data it turns out that the class
label is the mean (i.e. py =1, p— = —1), due to the constraints (3b), and that

. el el . 2 1 2
the variances of the class conditional densities are given by 0% = o1 Zy,;:l &;

2 _ _1 2 o i
and 02 = ;—— yie—1 &;. In some cases it might be advantageous to estimate

p+ and oy from a separate validation set in which case they can simply be




computed from the outputs

q(x) := (w~x)+b:Zaik(x,xi)+b

obtained by projecting this data set onto the direction w. No matter which
way the parameters are estimated, one obtains the following class-conditional
densities:

(q(x) — Mi)Q)

p(xly = £1) = p(e(x)|y = £1) = (271'03[)71/2 exp ( 307

The prior, if it is unknown for the problem at hand, can be estimated from the
training data, i.e. P(y = 1) = ¢+ /¢, {1 denoting the number of samples from
the respective class. Using Bayes’ theorem the conditional probabilities are then
given by:

plgly = £1)P(y = £1)
(¢ly =1)P(y=1)+plqly = —1)P(y = -1)’

where ¢ = ¢(x) is defined as above.

Py = £1[x) = P(y = +1|q) = p

6 Experimental evaluation

We now report the result of a small pilot experiment, carried out on a Pentium
111, 500 MHz and 512 MB memory running Linux. We illustrate that the run-
time behavior of our new algorithm improves significantly over the full quadratic
optimization of (3). Furthermore, we show that the approximation does not
significantly degrade the quality of the solutions.

To implement the new approach we used a single threaded, optimized BLAS.
Timings were measured with the system command clock(). We compared this
to an implementation of the quadratic program given by (3), which is partly in
matlab and calls external C functions for all time—-consuming operations. Here
timings were measured by the matlab command cputime(). The quadratic
optimizer used was loqo [14].

Timing First we compare the runtime of the new algorithm to the previ-
ous implementation. We used a one-against-the-rest task constructed from the
USPS handwritten digit data set. The data are N = 256 dimensional and the
set contains 7291 samples, categorized into ten classes. All experiments were
done with a Gaussian kernel exp(||x — y||?/(0.3 - N) and using a regularization
constant C' = 1. We compared against the program given by (3) with the reg-
ularizer P = ||a||?. The results of our findings are given in Figure 2. It is
important to keep in mind that the sparse greedy approach only needs to store
at most an m X m matrix, where m is the maximal number of kernel functions
chosen before termination. In contrast, previous approaches needed to store
£ x ¢ matrices.
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Figure 2: Runtime of sparse greedy KFD training. Depicted is the number
of samples in the training set versus the CPU time of the proposed algorithm
(dash dotted lines) and the QP formulation (3) (solid line). The estimates are
averages over ten trials, one for each of the ten one-against—the-rest problems
in the USPS database. The three lines for KFD are generated by requiring
different accuracies on the dual error function in the stopping criterion, namely
107*,a = 1,...,3 relative to the function value (in that order from bottom
to top). There is a speed-accuracy tradeoff in that for large a, the algorithm
converges more slowly. In the log-log plot it can be seen that the QP algorithm
roughly scales cubic in the number of samples while the new algorithm scales
with an exponent of about % for large sample sizes.

Performance As our new approach is an approximation to the original (the-
oretically exact) algorithm, the question arises how good the quality of this



approximation is. To this end, we repeated the above experiment on the USPS
database for different regularization constants C' = 1073,107%,107° and differ-
ent kernel widths ¢ = 0.3-N,0.4-N,0.5- N. The algorithm was terminated when
the average achievement in the dual objective over the last five iterations was
less than 1071, 1072,5-1073, 1073, respectively, relative to the objective or when
a maximum of 450 coefficients was found. As the purpose of this experiment
is to show that our new approach is capable of producing results comparably
to the full system no model selection was performed and just the best results
on the test set are reported (cf. Table 1). A small improvement in the test
error can be achieved using an optimized threshold b rather than the one given
by the algorithm itself. This optimized b is found by training a linear support
vector machine on the one dimensional outputs of the training date, i.e. we try
to find a threshold which maximizes the smallest distance of the projections to
the decision boundary (details e.g. in [8]).

Tolerance 1071 1072 5-1073 1073
test error with QP threshold 104% 6.4% 5.3% 4.1%
test error with optimized threshold | 10.3% 6.3% 5.3% 3.9%

Table 1: Minimal 10—class test error on the USPS dataset using the parame-
ters described in the text. Shown is the threshold on the improvement in the
dual objective used to terminate the algorithm (Tolerance), the test error using
the threshold given by the algorithm itself, and the test error using an extra,
optimized threshold b (see text). The best result of 3.9% is almost identical to
the result of 3.7% obtained on the same dataset using an expansion fixed to the
first 3000 training samples [9]. Note, moreover, that for our new algorithm, the
number of samples in the expansion (2) is less than 450 in each single classifier.

So far the best result for KFD on the USPS dataset (without using prior knowl-
edge) was 3.7% [9], using an expansion restricted to the first 3000 training
patterns. From Table 1 it can be seen that our new approach produces results
close to the QP solution, however, using a significantly smaller number of kernel
functions (less than 450 vs. 3000). It can be observed that the chosen precision
for the termination criterion is an important parameter. Still, although the high
precision of 102 takes longer to train, the runtime of our new approach is more
than ten times faster than solving the QP with 3000 patterns.

7 Conclusion

We presented a new algorithm for kernel Fisher discriminants. These algorith-
mic advances are crucial for the possibility of applying the KFD algorithms
to problems that had previously been beyond its reach. First, since it trains
significantly faster, and second, since it requires less memory.
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