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Abstract

In this paper, we present a novel learning method for
SVM regression ensemble used in multi-pose face
detection. Firstly, several view-specific SVM classifiers
are trained using corresponding positive and negative
examples. And then, an ensemble mechanism (SVM
regression) is trained to combine the results from the
view-specific SVCs. Experimental results show that the
detection accuracy of the ensemble is better than the
view-specific SVCs. Moreover, the SVR ensemble does not
need extra pose estimation process prior to the
classification; it generates pose information in addition to
its detection result.

Keywords

Multi-View Face Detection, Support Vector
Classification/Regression, Wavelet Transform, Ensemble

1. Introduction

The problem of face detection has been studied for
many years. To date, current systems are quite limited in
that detection is only possible in regions associated with a
frontal view of a person's face. It is very clear that the
pure frontal face detection technique is quite limiting
because approximately 75% faces in one picture is non-
frontal. More recently there have been attempts to build a
face detection and recognition system that works with
faces rotated out of plane.

This paper is directed toward a face detection system
that overcomes the aforementioned limitations in prior
face detection systems. A system, termed a pose-adaptive
face detection system, is developed to detect non-frontal
faces as well as frontal ones, regardless of the scale or
illumination conditions associated with the face. In
addition, the techniques described in this paper can also
be used for pose information at the same time.

However, the task of detecting faces of various
poses from a single image has been remained a major
challenge because large changes in orientation
significantly changes the overall appearances of face.
Attempts have been made to view-based appearance
models using a set of view-labeled appearances[1-5]. It
should be mentioned here that Gong et al. investigated
multi-view face pose distribution[6], and further extended
SVMs to model the appearance of human faces which
undergo nonlinear change across multiple views. Their
approach uses inherent factors in the nature of the input
images and the SVM classification algorithm to perform
both multi-view face detection and pose estimation [7].
The SVM is based on Structural Risk Minimization
theory, what should be mentioned here is Osuna et al, who

has introduced a support vector machine(SVM) based
approach for frontal view face detection which is the first
application of SVM on face detection[8].

Gong et al. implemented a multi-view face detection
and recognition system under a support vector machine
framework and achieved better performance on video
sequences[9]. However, the problem will become even
more challenge when dealing with multi-scale, complexity
background and illuminating conditions in the real static
image.

Schneiderman and Kanade[10] use a statistical
model to represent the object's appearance over a small
range of pose variation, to capture variation in the
appearance of the object that cannot be modeled
explicitly. This includes variation in the object itself,
variation due to lighting, and small variations in pose.
Another statistical model is used to describe non-objects-
of-interest. Since each detector is designed for a specific
view of the object, multiple detectors that span a range of
the object's orientation are used. The results of these
individual detectors are then combined.

In this paper, we propose a new architecture of
SVM[10] which is called SVR ensemble to do the face
detection and pose estimation work in a single image. In
order to simplify the complexity of detection, we only
consider face rotating in depth, other degrees of freedom
such as image plane translation should be removed.

The paper is organized as follows: section 2 will
explain our approaches, including the theoretic
introduction of support vector classification. In section 3,
we will introduce the whole architecture of our system.
Section 4 will give some experimental results we have
achieved in multi-view face detection and pose estimation.

The conclusions are discussed in Section 5.

2. Support Vector Classification and
Regression

2.1 Support Vector Classification

Consider a two classes classification problem. Given

a set of training examples ),(,),,( 11 mm yxyx K ,

where n
i Rx ∈∈∈∈ is a feature vector, the examples are

labeled by }1,1{ −−−−++++∈∈∈∈iy . The support vector

machine[11,12] separate this two classes by an optimal
hyper-plane 0====++++•••• bXW , Then the optimal
classification function can be found by solving the
following constrained minimization.
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The SVM classification decision function has the
form as follows:

∑∑∑∑
====

====
n

i
iii XXkyxD

1

),()( αααα

To the linear SVM classifier, the decision function of
the optimal hyperplane is thus:
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To the nonlinear SVM classifier, there are a number
of kernel functions which have been found to provide
good generalisation capabilities, e.g. polynomials, Multi-
Layer Perception, Sigmod, Gaussian Radial Basis
Function. Here we explore the use of a Gaussian kernel
function(analogous to RBF networks) as follows:
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The corresponding decision function given by:
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Note that the number l of RBFs, the kernel centers,
which correspond to the support vectors, and the

coefficients iαααα are all automatically determined as a

result of quadratic optimization.

2.2 Support Vector Regression

To support vector regression, the output of a SVM
can be defined as any real value[13], assuming a set of

training examples ),(,),,( 11 mm yxyx K is given,

where n
i Rx ∈∈∈∈ is a feature vector. The linear SVM

regression function is bXWxD ++++••••====)( . Then the

optimal regression function can be found by solving the
following constrained minimization.
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Additionally, the above formula can be generalizaed
to nonlinear regression as follows:
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3. Multi-view Face Detection and Pose
Estimation in SVM Framework

Our face detection system is depicted in Figure 1. In
Figure 1, the subwindow is a small rectangle area of input
image which may contain face. We use wavelet transform
to extract features of the subwindow under different
viewpoint. Then the features are input in 3 view-based
SVM classifiers. The raw output of 3 set of SVM
classifiers then input in an ensemble SVR to give the final
result.

Subwindow

Frontal

SVC
Frontal feature

Profile feature

Half profile feature

Result
Profile

SVC

Half profile

SVC

Ensemble

SVR

Figure 1. System diagram of the Multi-view Face Detection System
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The architecture of each view-specific SVC set is
consisted of two layer SVM classifiers. The first layer is
several linear SVM classifier. The input feature vector is
selected from the different combination of the wavelet
transform coefficient. The second layer is a nonlinear
SVC which use RBF kernal. The first layer of the SVC
give a rough estimation of whether the given region of an
input image depict an face or not. Generally speaking, we
need train several such linear SVCs using different feature
vector. All the detected subwindow from the first layer
SVC is inputted into the second layer SVC and made the
final decisions. As the second layer SVC is a nonlinear
SVC, it will use much more time to decide whether the
inputted subwindow of the given image depicted a face or
not, by using the first layer SVC, we may expect that the
second layer SVC need not search all the image for the
candidate subwindow. But only make decisions on the
output of the first layer SVC. Thus increase the overall
efficiency of the system. Once all the view-specific SVM
classifiers have been trained, an ensemble mechanism is
brought on-line and the set of feature vectors associated

with each respective training image is, in turn,
simultaneously input into the appropriate view-specific
SVC. The output of each SVM classifier is used to train
the ensemble SVM regression. It is noted that the training
examples set of ensemble SVR should be different from
the training examples set of View-specific SVCs.

The system is now ready to accept prepared input
image regions, and to indicate if the region depicts a face,
as well as indicating the pose range exhibited by the face.
Each input image region extracted in the foregoing
manner from any scale version of the input image is
abstracted in a way similar to the training images to
produce a set of feature vectors, which are, in turn,
simultaneously input into the first level SVCs and then to
the second level ensemble SVR. For each feature vector
set input the system, an output is produced from the
ensemble having one active node. The active node will
indicate first whether the region under consideration
depicts a face, and secondly, if a face is present, into what
pose range the pose of the face falls.

3.1 Feature Extraction

Because wavelets are a type of multi-resolution
function approximation that allow for the hierarchical
decomposition of signal.

Figure 2. Three types of 2-dimensional Haar
wavelets (a)”vertical” (b) “horizontal”, (c)”

diagonal”

When applied at different scales, wavelets encode
information about an image from the coarse
approximation all the way down to the fine details. The
Haar wavelet are a natural and the simplest set basis
functions which encode differences in average intensities
between different regions. Harr transform shifts each
wavelets by n , the quadruple density transform shifts the

wavelet by n2
4
1

in each direction, shown in Figure 2. So

Haar wavelets of two different scales(4*4 and 2*2) are
used to generate a multi-scale representation of the
images. At each scale, three different orientations of Haar
wavelets are used. In this manner, information about how
gray varies in the horizontal, vertical, and diagonal
direction are obtained.

The Harr wavelet transform formula is described as
follows:

)12()2()( 11 −−−−−−−−==== xNxNxHψψψψ

)2()( 2
' xNxH ====ψψψψ

The subwindow is clipped to the dimensions 20*20
such that different viewpoint face can be centered and
approxiamtely of the same size. The selection of wavelets
feature coefficients under different viewpoints is different.
This is due to the fact that the important wavelet
coefficients that are consistent along the ensemble of face
images are comprised of strong response in the
coefficients corresponding to the sides of the organs and
weak response in the coefficients along the face cheek
areas and forehead areas.

3.2 Classifier design

Because faces in images could have different
viewpoints. The difference between them is significant. So
we have to design view-based SVM classifiers to deal
with them separately, and then, the problem is how to
combine the classifiers together. Thus the classifier of the
system consists of view-based SVM classifiers and
ensemble SVM Regression.

3.2.1. View-specific SVC. Generally Speaking, the
standard method for N-class SVCs is to construct N
SVCs. The ith SVC will be trained with all of the
examples in the ith class with positive labels, and all other
examples with negative labels. The output of each SVM
classifier is the distance of the test point from the
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corresponding decision hyperplane. This distance is a
rough measure of how “well” a test point fits into its
designated class. SVCs trained in this way can be refer as
1-v-r SVCs(one-versus-rest).The final output of the N 1-v-
r SVCs is the class that corresponds to the SVC with the
highest output value. Unfortunately, there is no bound on
the generalization error for the 1-v-r SVCs.

In our system, the SVCs for each view have been
trained respectively. The positive examples are the
normalized face images from the corresponding view. The
negative examples are selected from images that do not
contain faces. It is note that the negative examples of each
view-specific SVC do not contain any faces of other view.
For example, in order to train the half profile SVC, we use
a set of half profile face images as positive examples, and
the negative examples contains only non-face patterns, but
not face images of frontal view and profile view.

It is due to the face patterns of each view are similar
with each other. Generally speaking, they share some
common features. While the face patterns and non-face
patterns are much different from each other. So for the
view-specific SVC, the main task is to distinguish faces of
corresponding view and non-face as well as reduce the
missing face rate, but not necessary distinguish faces of
different view too clearly. That’s to say, each view-
specific SVM classifier can be trained using the same
negative examples set.

3.2.2. Linear SVC to speed-up. From the decision
function listed in section 2, it is easy to see that the
computational cost of nonlinear SVC is very high. To
increase the speed of the detection, a linear SVC is added
to each view-specific classifier as a fast face/nonface filter.
Therefore, the actual view-specific SVC consists of two
layer SVCs, a linear one and a kernel one. The filtering
using the linear can discard most of the false alarms with a
small computational cost, and significantly reduce the
number of subwindows passed to the much more costly
nonlinear kernel SVC. This will be illustrated using
experiments.

3.2.3. Ensemble mechanism. When we use multiple
learning systems to learn to solve a certain problem, the
information present to those learning systems are uniform
(or near uniform). So, all the learning systems have equal
right to “express” their “opinion” on the problem. In his
situation, voting could work. On the contrary, when the
information present to the learning systems are different to
some extent, they only have right to “express” their
“opinion” to their special problem, that is, a sub-problem.
Thus, we should add the ensemble mechanism to get the
final decisions. Accordingly, when we have trained the
view-specific SVCs, the other thing we should concern

about is to train the ensemble mechanism to fusing the
decisions we got from the view-specific SVM classifiers
and give the combination result.

As the face examples of other view is not served as
the negative examples of current view, so actually each
SVC is not trained exclusively, so to some degree, the
decision space is overlapped. That is to say, each SVC has
the redundancy decision ability, it is possible that the
frontal view SVC can give the positive answer when the
probe image is a half profile image, so as to other view-
specific SVMs. In addition, this redundancy is difficult to
formulation, as it is very difficult to lump several feature
together due to their diversified forms. In order to fusing
all the information from the view-specific SVMs, an
ensemble mechanism should be introduced.

In this work, SVM regression is used to do the
ensemble task. The raw outputs of the SVM classifiers of
each view are fed into the ensemble SVM regression to
get the final result. We define 4 distinct values of the
SVR output, namely {-1,1,2,3} to represent the non-face,
frontal, half profile, and profile faces, respectively.

For example, when a person’s frontal face fed into
the classifier, the raw output of the view-based SVCs may
be [0.5 -0.3 0.3], then the raw vector input in the ensemble
SVR, we should get 1, it denotes the subwindow may
contains a frontal face. If raw vector is [-0.1 -2 -0.5], the
output Ensemble SVR should be -1, here it denotes the
subwindow contains no face.

4. Experiments

4.1 Data preparation

A total of approximately 12000 multi-view face
examples and 84000 nonface examples are collected. This
is by cropping multi-view faces from VCD frames. We
select 1/3 of these examples to train the first level view-
specific SVM classifiers respectively, the other 1/3 to train
the second level ensemble SVM regression, and the last
1/3 to test the whole system. Each of the 3 SVM
classifiers is trained based on the face samples of the
corresponding view.

4.2 View-specific SVC

Here we trained three view-specific SVM classifiers
(corresponding to frontal, half-profile, profile), each SVM
classifier is trained based on the face samples of the
corresponding view. Each view-specific SVC include a
linear SVC and a kernel SVC, the linear SVC will sever as
a pre-filter of the face patterns and the nonface patterns to
increase the overall efficients of the whole system.

In order to test the filtrating ability of the linear
SVC, We run the linear SVC detector on 210 images to get the
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filter rate. The experimental result rare described in Figure
3.

0 5 10 15
85

90

95

100

Recall rate

Precision rate

% Filter rate

Figure 3. The Classification Ability of Linear
SVC

Here the recall rate is the precision for face patterns
while the precision rate is for all face and nonface
patterns. The filter rate is the rate of sub-windows
discarded as nonface pattern by linear SVC to all
subwindows to be examined by the combined classified.
We run the detector on 210 images to get this filter rate.

From Figure 3 we can see that the recall rate could
be improved 11.1% while the precision rate loses 6.1%.
The recall rate is even greater than 98.1%. The filter rate
is between 96% and 99.5% because most of the nonface
patterns could be easily classified from the face patterns.
Thus the times to compute the decision function will be
decreased greatly.

4.3 Ensemble SVR

In order to train the ensemble SVM regression , we
should first extract the corresponding features and feed
them to the first level view-specific SVCs and collect all
the output from each view-specific SVC, the real values
from the first level SVCs would be considered as the input
of the second level ensemble SVR.
The comparative table shows that the ensemble SVR can
achieve higher detection accuracy and lower false alarm
rate than simple voting of the output of the view-specific
SVCs, from Table 1, it is very clear that face detection
using ensemble SVR can fix more than 4.47% detection
errors and gives the right pose information at the same
time.

Table 1 Experimental results of Ensemble SVR

POSE
Frontal

face� Half Profile Profile Nonface� Detection Rate�

�

False Alarm Rate

Method\Test Set 1815 1176 1176 29910 / /

Vote ����� ���� ���� ��	��� 87.35% 1.09%

SVR ���
� ����� ���� ������ 91.82% 0.67%

4.4 Pose invariant face detection using view-
specific SVC + ensemble SVR

At the test stage, when one input image is given, we
scan all the image in different scale and get the current
sub-window and calculate the feature coefficients of the
sub-window, and then feed these feature coefficients to
the first level view-specific SVCs for classification and
then to the second level ensemble SVR for fusing. At last,
we can get whether the sub-window depict a face or not, if
the answer is yes, the pose information can also be
provided.

We Collected a test set for benchmarking multi-scale
face detection performance for out of plane rotation. This
test set consists of 50 images with 146 multi-view faces
that vary from frontal to side view. We gathered these
images from VCD. Of these faces 129 faces are detected
with correct pose estimation report, 17 false alarms.

Figure 4 shows some results of multi-view face
detection and pose estimation.

5. Conclusion

The main strength of the present method is the ability
to detect the location and estimate the pose of the face at
the same time. To do this, we first train several view-
specific SVM classifiers according to each view range,
and then, an ensemble mechanism (SVM Regression) is
introduced to combine the decisions we got from the
view-specific SVM classifiers and made the final
decisions.

To increase the detecting speed, we designed a two
layer SVM classifier as the view-specific SVM classifier.
The first layer of linear SVCs serves as a filter that can
discard many background subwindows in the search
procedure.
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The experimental results also show that our
ensemble architecture is effective. It is note that the
ensemble mechanism can achieve high detection accuracy,
more than 4.47% better than the results of the separate
SVM classifiers. In addition, it can also provide the pose
information of the corresponding faces.

Figure 4. Multi-scale face detection and pose
estimation result
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