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1 Introduction

Animated face models are essential to computer games, filmmaking, online chat, virtual presence, video
conferencing, etc. Generating realistic 3D human face models and facial animations has been a persistent
challenge in computer vision and graphics. So far, the most popular commercially available tools have
utilized laser scanners or structured lights. Not only are these scanners expensive, the data are usually quite
noisy, requiring hand touchup and manual registration prior to animating the model. Because inexpensive
computers and cameras are becoming ubiquitous, there is great interest in generating face models directly
from video images. In spite of progress toward this goal, the available techniques are either manually
intensive or computationally expensive.

The goal of our work is to develop an easy-to-use and cost-effective system that constructs textured 3D
animated face models from videos with minimal user interaction in no more than a few minutes. The user
interface is very simple. First, a video sequence is captured while the user turns his/her head from one side
to the other side in about 5 seconds. Second, the user browses the video to select a frame with frontal face.
That frame and its neighboring one (called two base images) pop up, and the user marks 5 feature points
(eye corners, nose top, and mouth corners) on each of them. Optionally, the user marks 3 points under the
chin on the frontal view image. After these manual steps, the program produces, in less than a minute,
a 3D model having the same face and structure as the user’s shows up on the screen and greets the user.
The automatic process, invisible to the user, matches points of interest across images, determines the head
motion, reconstructs the face in 3D space, and builds a photorealistic texture map from images. It uses
many state-of-the-art computer vision and graphics techniques and also several innovative techniques we
have recently developed specifically for face modeling. In this paper, we describe the architecture of our
system as well as those new techniques.

The key challenge of face modeling from passive video images is the difficulty of establishing accurate
and reliable correspondences across images due to the lack of texture in the facial skins. An additional
challenge introduced by our choice of system setup is the variation of facial appearance. To acquire multiple
views of the head, we ask the user to turn the head instead of moving the camera around the head or using
multiple cameras. This greatly reduces the cost; anyone having a video camera (e.g., a webcam) can use
our system. On the other hand, the appearance of the face changes in different images due to change in
relative lighting condition. This makes image correspondence an even harder problem. Fortunately, as
proven by an extensive set of experiments, we observe that even though it is difficult to extract dense 3D
facial geometry from images, it is possible to match a sparse set of corners and use them to compute head
motion and the 3D locations of these corner points. Furthermore, since faces are similar across people, the
space of all possible faces can be represented by a small number of degrees of freedom. We represent faces
by a linear set of deformations from a generic face model. We fit the linear face class to the sparse set of
reconstructed corners to generate the complete face geometry. In this paper, we show that linear classes
of face geometries can be used to effectively fit/interpolate a sparse set of 3D reconstructed points even
when these points are quite noisy. This novel technique is the key to rapidly generate photorealistic 3D
face models with minimal user intervention.

There are several technical innovations to make such a system robust and fast.

1. A technique to generate masking images eliminates most face-irrelevant regions based on generic
face structure, face feature positions, and skin colors. The skin colors are computed on the fly for
each user.

2. A robust head motion estimation algorithm takes advantage of the physical properties of the face
feature points obtained from manual marking to reduce the number of unknowns.

3. We fit a set of face metrics (3D deformation vectors) to the reconstructed 3D points and markers to
generate a complete face geometry. Linear face classes have already been used in (Blanz and Vetter,
1999), where a face is represented by a linear combination of physical face geometries and texture
images and is reconstructed from images in a morphable model framework. We use linear classes of
face metrics to represent faces and to interpolate a sparse set of 3D points for face modeling.

4. Finally, a model-based bundle-adjustment refines both the face geometry and head pose estimates
by taking into account all available information from multiple images. Classical approaches first
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refine 3D coordinates of isolated matched points, followed by fitting a parametric face model to
those points. Our technique directly searches in the face model space, resulting in a more elegant
formulation with fewer unknowns, fewer equations, a smaller search space, and hence a better posed
system.

In summary, the approach we follow makes full use of rich domain knowledge whenever possible in order
to make an ill-posed problem better behaved.

We provide several levels of details of our face modeling system. Section 4 provides an executive sum-
mary of our system. Section 5 describes the animated face model we use in our system. Section 6 is a
guided tour, examining the system step by step. Sections 7 through 10 describes details of our technical
contributions enumerated above. All of these exploit the rich generic knowledge of face structures. Sec-
tion 11 provides more experimental results. Related work on face modeling is reviewed in Section 2. We
give the conclusions and perspectives of our system in Section 12.

2 Previous Work

Facial modeling and animation has been a computer graphics research topic for over 25 years (DiPaola,
1991; Lanitis, Taylor and Cootes, 1997; Lee and Magnenat-Thalmann, 1998; Lee, Terzopoulos and Wa-
ters, 1993; Lee, Terzopoulos and Waters, 1995; Lewis, 1989; Magneneat-Thalmann, Minh, Angelis and
Thalmann, 1989; Parke, 1972; Parke, 1974; Parke and Waters, 1996; Platt and Badler, 1981; Terzopoulos
and Waters, 1990; Todd, Leonard, Shaw and Pittenger, 1980; Waters, 1987). The reader is referred to Parke
and Waters’ book (Parke and Waters, 1996) for a complete overview.

Lee et al. (Lee et al., 1993; Lee et al., 1995) developed techniques to clean up and register data generated
from laser scanners. The obtained model is then animated by using a physically based approach.

DeCarlo et al. (DeCarlo, Metaxas and Stone, 1998) proposed a method to generate face models based on
face measurements randomly generated according to anthropometric statistics. They were able to generate
a variety of face geometries using these face measurements as constraints.

A number of researchers have proposed to create face models from two views (Akimoto, Suenaga and
Wallace, 1993; Ip and Yin, 1996; Dariush, Kang and Waters, 1998). They all require two cameras which
must be carefully set up so that their directions are orthogonal. Zheng (Zheng, 1994) developed a system
to construct geometrical object models from image contours, but it requires a turn-table setup.

Pighin et al. (Pighin, Hecker, Lischinski, Szeliski and Salesin, 1998) developed a system to allow a
user to manually specify correspondences across multiple images, and use vision techniques to compute
3D reconstructions. A 3D mesh model is then fit to the reconstructed 3D points. They were able to generate
highly realistic face models, but with a manually intensive procedure.

Our work is inspired by Blanz and Vetter’s work (Blanz and Vetter, 1999). They demonstrated that
linear classes of face geometries and images are very powerful in generating convincing 3D human face
models from images. We use a linear class of geometries to constrain our geometrical search space. One
main difference is that we do not use an image database. Consequently, the types of skin colors we can
handle are not limited by the image database. This eliminates the need for a fairly large image database
to cover every skin type. Another advantage is that there are fewer unknowns since we need not solve
for image database coefficients and illumination parameters. The price we pay is that we cannot generate
complete models from a single image.

Kang et al. (Kang and Jones, 1999) also use linear spaces of geometrical models to construct 3D face
models from multiple images. But their approach requires manually aligning the generic mesh to one of
the images, which is in general a tedious task for an average user.

Guenter et al. (Guenter, Grimm, Wood, Malvar and Pighin, 1998) developed a facial animation captur-
ing system to capture both the 3D geometry and texture image of each frame and reproduce high quality
facial animations. The problem they solved is different from what is addressed here in that they assumed
the person’s 3D model was available and the goal was to track the subsequent facial deformations.

Fua et al. (Fua and Miccio, 1998; Fua and Miccio, 1999; Fua, Plaenkers and Thalmann, 1999; Fua,
2000) have done impressive work on face modeling from images, and their approach is the most similar to
ours in terms of the vision technologies exploited. There are three major differences between their work
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and ours: face model representation, model fitting, and camera motion estimation. They deform a generic
face model to fit dense stereo data. Their face model contains a lot of free parameters (each vertex has
three unknowns). Although some smoothness constraint is imposed, the fitting still requires many 3D
reconstructed points. With our model, we only have about 60 parameters to estimate (see Section 5), and
thus only a small set of feature points is necessary. Dense stereo matching is usually computationally more
expensive than feature matching. Our system can produce a head model from 40 images in about two
minutes on a PC with 366 MHz processor. Regarding camera motion estimation, they use a regularized
bundle-adjustment on every image triplet, while we first use a bundle-adjustment on the first two views
and determine camera motion for other views using 3D head model, followed by a model-based bundle
adjustment (see Section 10).

3 Notation

A vector is denoted by a boldface lowercase letter such asp or by an uppercase letter in typewriter style
such asP. A matrix is usually denoted by a boldface uppercase letter such asP.

We denote the homogeneous coordinates of a vectorx by x̃, i.e., the homogeneous coordinates of an
image pointp = (u, v)T arep̃ = (u, v, 1)T , and those of a 3D pointP = (x, y, z)T areP̃ = (x, y, z, 1)T .
A camera is described by a pinhole model, and a 3D pointP and its image pointp are related by

λp̃ = APMP̃ , (1)

whereλ is a scale, andA, P andM are given by

A =




α γ u0

0 β v0

0 0 1


 , P =




1 0 0 0
0 1 0 0
0 0 1 0


 , and M =

(
R t
0T 1

)
.

The elements of matrixA are the intrinsic parameters of the camera and matrixA maps the normalized
image coordinates to the pixel image coordinates (see e.g. (Faugeras, 1993)). MatrixP is the perspective
projection matrix. MatrixM is the 3D rigid transformation (rotationR and translationt) from the ob-
ject/world coordinate system to the camera coordinate system. For simplicity, we also denote the nonlinear
3D-2D projection function (1) by functionφ such that

p = φ(M, P) . (2)

Here, the internal camera parameters are assumed to be known, although it is trivial to add them in our
formulation.

When two images are concerned, a prime′ is added to denote the quantities related to the second image.
When more images are involved, a subscript is used to specify an individual image.

The fundamental geometric constraint between two images is known as theepipolar constraint(Faugeras,
1993; Zhang, 1998a). It states that in order for a pointp in one image and a pointp′ in the other image to
be the projections of a single physical point in space, or, in other words, in order for them to be matched,
they must satisfy

p̃′T A′−T EA−1p̃ = 0 , (3)

whereE = [tr]×Rr is known as the essential matrix,(Rr, tr) is the relative motion between the two
images, and[tr]× is a skew symmetric matrix such thattr × v = [tr]×v for any 3D vectorv.

4 System Overview

Figure 1 outlines the components of our system. The equipment includes a computer and a video camera
connected to the computer. We assume the camera’s intrinsic parameters have been calibrated, a reasonable
assumption given the simplicity of calibration procedures (see e.g. (Zhang, 2000)).

The first stage is video capture. The user simply sits in front of the camera and turns his/her head
from one side all the way to the other side in about 5 seconds. The user then selects an approximately
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Figure 1: System overview

frontal view. This splits the video into two subsequences referred to as theleft andright sequences, and the
selected frontal image and its successive image are called thebase images.

The second stage is feature-point marking. The user locates five markers in each of the two base images.
The five markers correspond to the two inner eye corners, nose tip, and two mouth corners. As an optional
step, the user can put three markers below the chin on the frontal view. This additional information usually
improves the final face model quality. This manual stage could be replaced by an automatic facial feature
detection algorithm.

The third stage is the recovery of initial face models. The system computes the face mesh geometry
and the head pose with respect to the camera frame using the two base images and markers as input. This
stage of the system involves corner detection, matching, motion estimation, 3D reconstruction and model
fitting.

The fourth stage tracks the head pose in the image sequences. This is based on the same matching
technique used in the previous stage, but the initial face model is also used for increasing accuracy and
robustness.

The fifth stage refines the head pose and the face geometry using a recently developed technique called
model-based bundle-adjustment(Shan, Liu and Zhang, 2001). The adjustment is performed by considering
all point matches in the image sequences and using the parametric face space as the search space. Note that
this stage is optionally. Because it is much more time consuming (about 8 minutes), we usually skip it in
live demos.

The final stage blends all the images to generate a facial texture map. This is now possible because the
face regions are registered by the head motion estimated in the previous stage. At this point, a textured 3D
face model is available for immediate animation or other purposes (see Sect. 11.1).

In Sect. 6, we will describe in more details the techniques used in our system.

5 Facial Geometry Representation

Before going further, let us describe how a face is represented in our system.
Faces can be represented as volumes or surfaces, but the most commonly used representation is a

polygonal surface because of the real-time efficiency that modern graphic hardware can display (Parke and
Waters, 1996). A polygonal surface is typically formed from a triangular mesh. The face modeling problem
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is then to determine the 3D coordinates of the vertices by using 3D digitizers, laser scanners, or computer
vision techniques.

If we treat the coordinates of the vertices as free parameters, the number of unknowns is very large and
we need a significant amount of data to model a face in a robust way. However, most faces look similar
to each other (i.e., two eyes with a nose and mouth below them). Thus the number of degrees of freedom
needed to define a wide rage of faces is limited. Vetter and Poggio (Vetter and Poggio, 1997) represented
an arbitrary face image as a linear combination of a few hundred prototypes and used this representation
(called linear object class) for image recognition, coding, and image synthesis. Blanz and Vetter (Blanz and
Vetter, 1999) used a linear class of both images and 3D geometries for image matching and face modeling.
The advantage of using a linear class of objects is that it eliminates most of the non-natural faces and
significantly reduces the search space.

Instead of representing a face as a linear combination of real faces, we represent it as a linear combi-
nation of a neutral face and some number of facemetricswhere a metric is vector that linearly deforms a
face in a certain way, such as to make the head wider, make the nose bigger, etc. To be more precise, let’s
denote the face geometry by a vectorS = (vT

1 , . . . ,vT
n )T wherevi = (Xi, Yi, Zi)T (i = 1, . . . , n) are the

vertices, and a metric by a vectorM = (δv1, . . . , δvn)T , whereδvi = (δXi, δYi, δZi)T . Given a neutral

faceS0 = (v0
1
T
, . . . ,v0

n
T )T , and a set ofm metricsMj = (δvj

1

T
, . . . , δvj

n
T )T , the linear space of face

geometries spanned by these metrics is

S = S0 +
m∑

j=1

cjMj subject tocj ∈ [lj , uj ] (4)

wherecj ’s are the metric coefficients andlj anduj are the valid range ofcj . In our implementation, the
neutral face and all the metrics are designed by an artist, and it is done once. The neutral face (see Figure 2)
contains 194 vertices and 360 triangles. There are 65 metrics. We can easily add more metrics if we need
finer control.

Figure 2: Neutral face.

6 A Tour of The System Illustrated With A Real Video Sequence

We now go through each step of the system using a real video sequence as an example. The video was
captured in a normal room by a static camera while the head was moving in front. There is no con-
trol on the head motion, and the motion is unknown, of course. The video sequence can be found at
http://research.microsoft.com/˜zhang/Face/duane.avi
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Figure 3: An example of two base images used for face modeling. Also shown are five manually picked
markers indicated by yellow dots.

6.1 Marking and Masking

The base images are shown in Figure 3, together with the five manually picked markers. We have to
determine first the motion of the head and match some pixels across the two views before we can fit an
animated face model to the images. However, some processing of the images is necessary because there are
at least three major groups of objects undergoing different motions between the two views: background,
head, and other parts of the body such as the shoulder. If we do not separate them, there is no way to
determine a meaningful head motion. The technique, to be described in Sect. 7, allows us to mask off most
irrelevant pixels automatically. Figure 4 shows the masked base images to be used for initial face geometry
recovery.

Figure 4: Maskedimages to be used in two-view image matching. See Sect. 7 for the technique used in
obtaining the masked images.

Optionally, the user can also mark three points on the chin in one base image, as shown with three large
yellow dots in Fig. 5. Starting from these dots, our system first tries to trace strong edges, which gives
the red, green and blue curves in Fig. 5. Finally, a spline curve is fit to the three detected curves with an
M-estimator. The small yellow dots in Fig. 5 are sample points of that curve. Depending on the face shape
and lighting condition, the three original curves do not necessary represent accurately the chin, but the final
spline represents the chin reasonably well. The chin curve will be used in face model fitting to be described
in Sect. 6.5.
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Figure 5: Marking the lower part of the face with three points (shown in large yellow dots). This is an
optional step. See text for explanation.

Figure 6: The set of matches established by correlation for the pair of images shown in Figure 3. Red dots
are the detected corners. Blue lines are the motion vectors of the matches, with one endpoint (indicated by
a red dot) being the matched corner in the current image and the other endpoint being the matched corner
in the other image.

6.2 Matching Between the Two Base Images

One popular technique of image registration is optical flow (Horn and Schunk, 1981; Barron, Fleet and
Beauchemin, 1994), which is based on the assumption that the intensity/color is conserved. This is not the
case in our situation: the color of the same physical point appears to be different in images because the
illumination changes when the head is moving. We therefore resort to a feature-based approach that is more
robust to intensity/color variations. It consists of the following steps: (i) detecting corners in each image;
(ii) matching corners between the two images; (iii) detecting false matches based on a robust estimation
technique;(iv) determining the head motion; (v) reconstructing matched points in 3D space.

Corner detection. We use the Plessey corner detector, a well-known technique in computer vision (Harris
and Stephens, 1988). It locates corners corresponding to high curvature points in the intensity surface if
we view an image as a 3D surface with the third dimension being the intensity. Only corners whose pixels
are white in the mask image are considered. See Figure 6 for the detected corners of the images shown in
Figure 3 (807 and 947 corners detected respectively).
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Figure 7: The final set of matches after discarding automatically false matches for the pair of images shown
in Figure 3. Green lines are the motion vectors of the matches, with one endpoint (indicated by a red dot)
being the matched corner in the current image and the other endpoint being the matched corner in the other
image.

Corner matching. For each corner in the first image, we choose an11× 11 window centered on it, and
compare the window with windows of the same size, centered on the corners in the second image. A zero-
mean normalized cross correlation between two windows is computed (Faugeras, 1993). If we rearrange
the pixels in each window as a vector, the correlation score is equivalent to the cosine angle between two
intensity vectors. It ranges from -1, for two windows which are not similar at all, to 1, for two windows
which are identical. If the largest correlation score exceeds a prefixed threshold (0.866 in our case), then
that corner in the second image is considered to be thematch candidateof the corner in the first image.
The match candidate is retained as amatchif and only if its match candidate in the first image happens to
bethe corner being considered. This symmetric test reduces many potential matching errors.

For the example shown in Figure 3, the set of matches established by this correlation technique is shown
in Figure 6. There are 237 matches in total.

False match detection. The set of matches established so far usually contains false matches because
correlation is only a heuristic. The only geometric constraint between two images is the epipolar constraint
(3). If two points are correctly matched, they must satisfy this constraint, which is unknown in our case.
Inaccurate location of corners because of intensity variation or lack of strong texture features is another
source of error. We use the technique described in (Zhang, 1998a) to detect both false matches and poorly
located corners, and simultaneously estimate the epipolar geometry (in terms of the essential matrixE).
That technique is based on a robust estimation technique known as theleast median squares(Rousseeuw
and Leroy, 1987), which searches in the parameter space to find the parameters yielding the smallest value
for themedianof squared residuals computed for the entire data set. Consequently, it is able to detect false
matches in as many as 49.9% of the whole set of matches.

For the example shown in Figure 3, the final set of matches is shown in Figure 7. There are 148
remaining matches. Compared with those shown in Figure 6 89 matches have been discarded.

6.3 Robust Head Motion Estimation

We have developed a new algorithm to compute the head motion between two views from the correspon-
dences of five feature points including eye corners, mouth corners and nose top, and zero or more other
image point matches.

If the image locations of these feature points are precise, one could use a five-point algorithm to com-
pute camera motion. However, this is usually not the case in practice since the pixel grid plus errors
introduced by a human do not result in feature points with high precision. When there are errors, a five-
point algorithm is not robust even when refined with a bundle adjustment technique. The key idea of our
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Figure 8: Reconstructed corner points. This coarse mesh is used later to fit a face model.

algorithm is to use the physical properties of the feature points to improve robustness. We use the property
of symmetry to reduce the number of unknowns. We put reasonable lower and upper bounds on the nose
height and represent the bounds as inequality constraints. As a result, the algorithm becomes significantly
more robust. This algorithm will be described in Sect. 8.

6.4 3D Reconstruction.

Once the motion is estimated, matched points can be reconstructed in 3D space with respect to the camera
frame at the time when the first base image was taken. Let(p,p′) be a pair of matched points, andP be
their corresponding point in space. 3D pointP is estimated such that‖p− p̂‖2 + ‖p′− p̂′‖2 is minimized,
wherep̂ andp̂′ are projections ofP in both images according to (1).

Two views of the 3D reconstructed points for the example shown in Figure 3 are shown in Figure 8.
The wireframes shown on the right are obtained by perform Delaunay triangulation on the matched points.
The pictures shown on the left are obtained by using the first base image as the texture map.

6.5 Face Model Fitting From Two Views

We now only have a set of unorganized noisy 3D points from matched corners and markers. The face
model fitting process consists of two steps: fitting to the 3D reconstructed points and fine adjustment using
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image information. The first consists in estimating both theposeof the head and the metric coefficients
that minimize the distances from the reconstructed 3D points to the face mesh. The estimated head pose is
defined to be the pose with respect to the camera coordinate system when the first base image was taken,
and is denoted byT0. In the second step, we search for silhouettes and other face features in the images and
use them, and also the chin curve if available from the marking step (Sect. 6.1), to refine the face geometry.
Details of face model fitting are provided in Section 9.

Figure 9 shows the reconstructed 3D face mesh from the two example images (see Figure 3). The mesh
is projected back to the two images. Figure 10 shows two novel views using the first image as the texture
map. The texture corresponding to the right side of the face is still missing.

Figure 9: The constructed 3D face mesh is projected back to the two base images.

Figure 10: Two novel views of the reconstructed 3D face mesh with the the first base image as texture.

6.6 Determining Head Motions in Video Sequences

Now we have the geometry of the face from only two views that are close to the frontal position. As can be
seen in Figure 10, for the sides of the face, the texture from the two images is therefore quite poor or even
not available at all. Since each image only covers a portion of the face, we need to combine all the images
in the video sequence to obtain a complete texture map. This is done by first determining the head pose for
the images in the video sequence and then blending them to create a complete texture map.

Successive images are first matched using the same technique as described in Section 6.2. We could
combine the resulting motions incrementally to determine the head pose. However, this estimation is quite
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noisy because it is computed only from 2D points. As we already have the 3D face geometry, a more
reliable pose estimation can be obtained by combining both 3D and 2D information, as follows.

Let us denote the first base image byI0, the images on the video sequences byI1, . . . , Iv, the relative

head motion fromIi−1 to Ii by Ri =
(
Rri tri

0T 1

)
, and the head pose corresponding to imageIi with

respect to the camera frame byTi. The algorithm works incrementally, starting withI0 andI1. For each
pair of images(Ii−1, Ii), we first use the corner matching algorithm described in Section 6.2 to find a set
of matched corner pairs{(pj ,p′j)|j = 1, . . . , l}. For eachpj in Ii−1, we cast a ray from the camera center
throughpj , and compute the intersectionPj of that ray with the face mesh corresponding to imageIi−1.
According to (1),Ri is subject to the following equations

APRiP̃j = λjp̃′j for j = 1, . . . , l, (5)

whereA, P, Pj andp′j are known. Each of the above equations gives two constraints onRi. We compute
Ri with a technique described in (Faugeras, 1993). AfterRi is computed, the head pose for imageIi in
the camera frame is given byTi = RiTi−1. The head poseT0 is known from Section 6.5.

In general, it is inefficient to use all the images in the video sequence for texture blending, because
head motion between two consecutive frames is usually small. To avoid unnecessary computation, the
following process is used to automatically select images from the video sequence. Let us call the amount
of rotation of the head between two consecutive frames therotation speed. If s is the current rotation speed
andα is the desired angle between each pair of selected images, the next image is selectedb(α/s)c frames
away. In our implementation, the initial guess of the rotation speed is set to 1 degree/frame and the desired
separation angle is equal to5 degrees.

Figure 11 and Figure 12 show the tracking results of the two example video sequences (The two base
images are shown in Figure 3). The images from each video sequence are automatically selected using the
above algorithm.

Figure 11: The face mesh is projected back to the automatically selected images from the video sequence
where the head turns to the left.
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Figure 12: The face mesh is projected back to the automatically selected images from the video sequence
where the head turns to the right.

6.7 Model-Based Bundle Adjustment

We now have an initial face model from two base images, a set of pairwise point matches over the whole
video sequence, and an initial estimate of the head poses in the video sequence which is obtained incremen-
tally based on the initial face model. Naturally, we want to refine the face model and head pose estimates
by taking into account all available information simultaneously. A classical approach is to perform bundle
adjustment to determine the head motion and 3D coordinates of isolated points corresponding to matched
image points, followed by fitting the parametric face model to the reconstructed isolated points. We have
developed a new technique calledmodel-based bundle adjustment, which directly searches in the face
model space to minimize the same objective function as that used in the classical bundle adjustment. This
results in a more elegant formulation with fewer unknowns, fewer equations, a smaller search space, and
hence a better posed system. More details are provided in Section 10.

Figure 13 shows the refined result on the right sequence, which should be compared with that shown in
Fig. 12. The projected face mesh is overlaid on the original images. We can observe clear improvement in
the silhouette and chin regions.

6.8 Texture Blending

After the head pose of an image is computed, we use an approach similar to Pighin et al.’s method (Pighin
et al., 1998) to generate a view independent texture map. We also construct the texture map on a virtual
cylinder enclosing the face model. But instead of casting a ray from each pixel to the face mesh and
computing the texture blending weights on a pixel by pixel basis, we use a more efficient approach. For
each vertex on the face mesh, we compute the blending weight for each image based on the angle between
surface normal and the camera direction (Pighin et al., 1998). If the vertex is invisible, its weight is set to
0.0. The weights are then normalized so that the sum of the weights over all the images is equal to 1.0.
We then set the colors of the vertexes to be their weights, and use the rendered image of the cylindrical
mapped mesh as the weight map. For each image, we also generate a cylindrical texture map by rendering
the cylindrical mapped mesh with the current image as texture map. LetCi andWi (i = 1, . . . , k) be the
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Figure 13: After model-based bundle adjustment, the refined face mesh is projected back to the automati-
cally selected images from the video sequence where the head turns to the right.

cylindrical texture maps and the weight maps. LetC be the final blended texture map. For each pixel
(u, v), its color on the final blended texture map is

C(u, v) =
k∑

i=1

Wi(u, v)Ci(u, v). (6)

Because the rendering operations can be done using graphics hardware, this approach is very fast.
Figure 14 shows the blended texture map from the example video sequences 11 and 12. Figure 15

shows two novels views of the final 3D face model. Compared with those shown in Fig. 10, we now have
a much better texture on the side.

7 Image Masking

As said earlier, there are at least three major groups of objects undergoing different motions between the
two views: background, head, and other parts of the body such as the shoulder. If we do not separate them,
there is no way to determine a meaningful head motion. Since the camera is static, we can expect to remove
the background by subtracting one image from the other. However, as the face color changes smoothly,
a portion of the face may be marked as background, as shown in Figure 16a. Another problem with this
image subtraction technique is that the moving body and the head cannot be distinguished.

As we have marked five points on the face, we can actually build a color model of the face skin. We
select pixels below the eyes and above the mouth, and compute a Gaussian distribution of their colors in
the RGB space. If the color of a pixel matches this face skin color model, the pixel is marked as a part of
the face. An example is shown in Figure 16b. As we can notice, some background pixels are marked as
face skin.

Either union or intersection of the two mask images is not enough to locate the face because it will
include either too many (e.g., including undesired moving body) or too few (e.g., missing desired eyes and
mouth) pixels. As we already have information about the position of eye corners and mouth corners, we
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Figure 14: The blended texture image.

define two ellipses as shown in Figure 17a. The inner ellipse covers most of the face, while the outer ellipse
is usually large enough to enclose the whole head. Letde be the image distance between the two inner eye
corners, anddem, the vertical distance between the eyes and the mouth. The width and height of the inner
ellipse are set to5de and3dem. The outer ellipse is 25% larger than the inner one. Within the inner ellipse,
the ”union” operation is used. Between the inner and out ellipses, only the image subtraction is used,
except for the lower part where the ”intersection” operation is used. The lower part aims at removing the
moving body, and is defined to be0.6dem below the mouth, as illustrated by the red area in Figure 17a. An
example of the final mask is shown in Figure 17b.

8 Robust Head Motion Determination From Two Views

Our system relies on an initial face modeling from two base images, and therefore a robust head motion
determination is key to extract 3D information from images. This section describes an algorithm to compute
the head motion between two views from the correspondences of five feature points including eye corners,
mouth corners and nose top, and zero or more other image point matches.

8.1 Head Motion Estimation From Five Feature Points

We useE1, E2, M1, M2, andN to denote the left eye corner, right eye corner, left mouth corner, right
mouth corner, and nose top, respectively (See Figure 18). DenoteE as the midpoint ofE1E2 andM the
midpoint ofM1M2. Notice that human faces exhibit some strong structural properties. For example, left
and right sides are very close to being symmetric about the nose; eye corners and mouth corners are almost
coplanar. We therefore make the following reasonable assumptions:

• NM is perpendicular toM1M2,

• NE is perpendicular toE1E2, and
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Figure 15: Two novel views of the final 3D face model.

• E1E2 is parallel toM1M2.

Let π be the plane defined byE1, E2,M1 andM2 . Let O denote the projection of pointN on plan
π. Let Ω0 denote the coordinate system withO as the origin,ON as theZ-axis, OE as theY -axis.
In this coordinate system, based on the assumptions mentioned earlier, we can define the coordinates of
E1, E2,M1,M2, N as(−a, b, 0)T , (a, b, 0)T , (−d,−c, 0)T , (d,−c, 0)T , (0, 0, e)T , respectively. Thus, we
only need 5 parameters to define these five points in this local coordinate system, instead of 9 parameters
for generic five points.

Let t be the coordinates ofO in the camera coordinate system, andR the rotation matrix whose three
columns correspond to the three coordinate axes ofΩ0. We callT =

(
R t
0T 1

)
thehead pose transform. For

each pointP ∈ {E1, E2,M1,M2, N}, its coordinates in the camera coordinate system areRP + t.
Given two images of the head under two different poses (assuming the camera is static), letT =

(
R t
0T 1

)

andT′ =
(

R′ t′

0T 1

)
be the corresponding head pose transforms. For each pointPi ∈ {E1, E2,M1,M2, N},

if we denote its image point in the first view bypi and that in the second view byp′i, according to (2), we
have

pi = φ(T, Pi) and p′i = φ(T′, Pi) . (7)

Notice that we can fix one of thea, b, c, d, e since the scale of the head size cannot be determined from the
images. As is well known, each pose has 6 degrees of freedom. Therefore the total number of unknowns
is 16, and the total number of equations is 20. If we instead use their 3D coordinates as unknowns as
in any typical bundle adjustment algorithms, we would end up with 20 unknowns, the same number of
the available equations. By using the generic properties of the face structure, the system becomes over-
constrained, making the pose determination more robust.

To make the system even more robust, we add an inequality constraint one. The idea is to forcee to be
positive and not too large compared toa, b, c, d. This is obvious since the nose is always out of planeπ. In
particular, we use the following inequality:

0 ≤ e ≤ 3a (8)
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(a) (b)

Figure 16: (a) Mask obtained by subtracting images (black pixels are considered as background); (b) Mask
obtained by using a face skin color model (white pixels are considered as face skin).

(a) (b)

Figure 17: (a) Definition of face ellipses; (b) Final mask obtained with our preprocessing technique.

We chose3 as the upper bound ofe/a simply because it seems reasonable to us. The inequality constraint
is finally converted to equality constraint by using penalty function.

Pnose=





e2 if e < 0;
0 if 0 ≤ e ≤ 3a;
(e− 3a)2 if e > 3a.

(9)

In summary, based on equations (7), and (9), we estimatea, b, c, d, e, (R, t) and(R′, t′) by minimizing

F5pts =
5∑

i=1

wi(‖pi − φ(T, Pi)‖2 + ‖p′i − φ(T′, Pi))‖2) + wnPnose (10)

wherewi’s andwn are the weighting factors, reflecting the contribution of each term. In our case,wi = 1
except for the nose term which has a weight of 0.5 because it is usually more difficult to locate the nose
tip accurately than other feature points. The weight for penalty,wn, is set to 10. The objective function
(10) is minimized using a Levenberg-Marquardt method (More, 1977). As mentioned earlier, we seta to a
constant during minimization since the global head size cannot be determined from images.
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Figure 18: The new coordinate systemΩ0.

8.2 Incorporating Image Point Matches

If we estimate camera motion using only the five user marked points, the result is sometimes not very
accurate because the markers contain human errors. In this section, we describe how to incorporate the
image point matches (obtained as described in Sect. 6.2) to improve precision.

Let (pj ,p′j) (j = 1, . . . , K) be theK point matches, each corresponding to the projection of a 3D point
Pj according to the perspective projection (7). Obviously, we have to estimatePj ’s which are unknown.
Assuming that each image point is extracted with the same accuracy, we can estimatea, b, c, d, e, (R, t),
(R′, t′) and{Pj} (j = 1, . . . ,K) by minimizing

F = F5pts+ wp

K∑

j=1

(‖pj − φ(T, Pi))‖2 + ‖m′
j − φ(T′, Pi))‖2) (11)

whereF5pts is given by (10), andwp is the weighting factor. We setwp = 1 by assuming that the extracted
points have the same accuracy as those of eye corners and mouth corners. The minimization can again be
performed using a Levenberg-Marquardt method.

This is quite a large minimization problem since we need to estimate16+3K unknowns, and therefore
it is computationally expensive especially for largeK (usuallyK > 100). Fortunately, as shown in (Zhang,
1998b), we can eliminate the 3D points using a first order approximation. More precisely, it can be shown
that if pj andp′j are in normalized image coordinates, we have

‖pj − φ(T, Pi))‖2 + ‖m′
j − φ(T′, Pi))‖2 ≈

(p̃′Tj Ep̃j)2

p̃T
j ET ZZT Ep̃j + p̃′Tj EZZT ET p̃′j

whereZ =
(

1 0
0 1
0 0

)
, andE is the essential matrix between the two images, i.e.,E = [tr]×Rr. Here,

(Rr, tr) is the relative motion between two views. It is easy to see that

Rr = R′RT ,

tr = t′ −R′RT t .

In summary, the objective function (11) becomes

F = F5pts+ wp

∑K
j=1

(p̃′Tj Ep̃j)2

p̃T
j ET ZZT Ep̃j + p̃′Tj EZZT ET p̃′j

(12)

Notice that this is a much smaller minimization problem. We only need to estimate 16 parameters as in the
five-point problem (10), instead of16 + 3K unknowns.

To obtain a good initial estimate, we first use only the five feature points to estimate the head motion
by using the algorithm described in Section 8.1. Thus we have the following two step algorithm:
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Step 1. Setwp = 0. Solve minimization problem (12).

Step 2. Setwp = 1. Solve minimization problem (12) using the result of step 1 as the initial estimates.

Notice that we can apply this idea to the more general cases where the number of feature points is not
five. For example, if there are only two eye corners and mouth corners, we’ll end up with 14 unknowns
and16 + 3K equations. Other symmetric feature points (such as the outside eye corners, nostrils, etc) can
be added to (12) in a similar way by using the local coordinate systemΩ0.

8.3 Experimental Results

In this section, we show some test results to compare our new algorithm with the traditional algorithms.
Since there are multiple traditional algorithms, we chose to implement the algorithm as described in
(Zhang, 1997). It works by first computing an initial estimate of the head motion from the essential ma-
trix (Faugeras, 1993), and then re-estimate the motion with a nonlinear least-squares technique.

We have run both the traditional algorithm and our new algorithm on many real examples. We found
many cases where the traditional algorithm fails while our new algorithm successfully produces reasonable
motion estimates. Figure 19 is such an example. The motion computed by the traditional algorithm is
completely bogus, and the 3D reconstruction gives meaningless results, but our new algorithm gives a
reasonable result.

In order to know the ground truth, we have also performed experiments on artificially generated data.
We arbitrarily select 80 vertices from a 3D face model (Figure 2) and project them on two views (the head
motion is eight degrees apart). The image size is 640 by 480 pixels. We also project the five 3D feature
points (eye corners, nose tip, and mouth corners) to generate the image coordinates of the markers. We
then add Gaussian noise to the coordinates(u, v) of the image points. The Gaussian noise has mean zero
and standard deviation ranging from 0.4 to 1.2 pixels. Notice that we add noise to the markers’ coordinates
as well. The results are plotted in Figure 20. The blue curve shows the results of the traditional algorithm
and the red curve shows the results of our new algorithm. The horizontal axis is the standard deviation
of the noise distribution. The vertical axis is the difference between the estimated motion and the actual
motion. The translation vector of the estimated motion is scaled so that its magnitude is the same as the
actual motion. The difference between two rotations is measured as the Euclidean distance between the
two rotational matrices. We compute the average of combined motion errors from 20 random trials for each
noise level. We can see that as the noise increases, the error of the traditional algorithm has a sudden jump
at certain noise level, indicating failures in several trials, while the errors of our new algorithm increase
much more slowly.

9 Face Model Fitting From Two Views

The face model fitting process consists of two steps: fitting to 3D reconstructed points and fine adjustment
using image information.

9.1 3D Fitting

Given a set of reconstructed 3D points from matched corners and markers, the fitting process searches for
both theposeof the face and the metric coefficients to minimize the distances from the reconstructed 3D

points to the face mesh. The pose of the face is the transformationT =
(

sR t
0T 1

)
from the coordinate

frame of the neutral face mesh to the camera frame, whereR is a3 × 3 rotation matrix,t is a translation,
ands is a global scale. For any 3D vectorP, we use notationT(P) = sRP + t.

The vertex coordinates of the face mesh in the camera frame is a function of both the metric coefficients
and the pose of the face. Given metric coefficients(c1, . . . , cm) and poseT, the face geometry in the
camera frame is given by

S = T(S0 +
m∑

j=1

cjMj). (13)
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Figure 19: Top row: a pair of images with five markers. Middle row: matched image points. Bottom row:
a novel view of the 3D reconstruction of the image matching points with the head motion computed by our
new algorithm. Note that the traditional motion estimation failed in this example.
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Figure 20: Comparison of the new algorithm with the traditional algorithm. The blue curve shows the
results of the traditional algorithm and the red curve shows the results of our new algorithm. The horizontal
axis is the standard deviation of the added noise. The vertical axis is the error of computed head motion.

Since the face mesh is a triangular mesh, any point on a triangle is a linear combination of the three triangle
vertexes in terms of barycentric coordinates. So any point on a triangle is also a function ofT and metric
coefficients. Furthermore, whenT is fixed, it is simply a linear function of the metric coefficients.

Let (P1, P2, . . . , Pn) be the reconstructed corner points, and(Q1, Q2, . . . , Q5) be the reconstructed mark-
ers. Denote the distance fromPi to the face meshS by d(Pi,S). Assume markerQj corresponds to vertex
vmj of the face mesh, and denote the distance betweenQj andvmj by d(Qj ,vmj ). The fitting process
consists in finding poseT and metric coefficients{c1, . . . , cn} by minimizing

n∑

i=1

wid
2(Pi,S) +

5∑

j=1

d2(Qj ,vmj ) (14)

wherewi is a weighting factor.
To solve this problem, we use an iterative closest point approach. At each iteration, we first fixT. For

eachPi, we find the closest pointGi on the current face meshS. We then minimize
∑

wid
2(Pi, Gi) +∑

d2(Qj ,vmj ). We setwi to be 1 at the first iteration and1.0/(1+d2(Pi, Gi)) in the subsequent iterations.
The reason for using weights is that the reconstruction from images is noisy and such a weight scheme is
an effective way to avoid overfitting to the noisy data (Fua and Miccio, 1999). Since bothGi andvmj are
linear functions of the metric coefficients for fixedT, the above problem is a linear least square problem.
We then fix the metric coefficients, and solve for the pose. To do that, we recomputeGi using the new
metric coefficients. Given a set of 3D corresponding points(Pi, Gi) and(Qj ,vmj ), there are well known
algorithms to solve for the pose. We use the quaternion-based technique described in (Horn, 1987).

To initialize this iterative process, we first use the 5 markers to compute an initial estimate of the
pose. In addition, to get a reasonable estimate of the head size, we solve for the head-size related metric
coefficients such that the resulting face mesh matches the bounding box of the reconstructed 3D points.
Occasionally the corner matching algorithm may produce points not on the face. In that case, the metric
coefficients will be out of the valid ranges, and we throw away the point that is the most distant from the
center of the face. We repeat this process until metric coefficients become valid.
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9.2 Fine Adjustment Using Image Information

After the geometric fitting process, we have now a face mesh that is a close approximation to the real face.
To further improve the result, we search for silhouettes and other face features in the images and use them,
together with the chin curve if available from the marking step (Sect. 6.1), to refine the face geometry. The
general problem of locating silhouettes and face features in images is difficult, and is still a very active
research area in computer vision. However, the face mesh that we have obtained provides a good estimate
of the locations of the face features, so we only need to perform search in a small region.

We use the snake approach (Kass, Witkin and Terzopoulos, 1988) to compute the silhouettes of the face.
The silhouette of the current face mesh is used as the initial estimate. For each point on this piecewise linear
curve, we find the maximum gradient location along the normal direction within a small range (10 pixels
each side in our implementation). Then we solve for the vertexes (acting as control points) to minimize
the total distance between all the points and their corresponding maximum gradient locations. In the case
where the user chooses to put 3 markers below the chin (an optional step), the system treats these 3 markers
as the silhouette points.

We use a similar approach to find the upper lips.
To find the outer eye corner (not marked), we rotate the current estimate of that eye corner (given by

the face mesh) around the marked eye corner by a small angle, and look for the eye boundary using image
gradient information. This is repeated for several angles, and the boundary point that is the most distant to
the marked corner is chosen as the outer eye corner.

We could also use the snake approach to search for eyebrows. However, our current implementation
uses a slightly different approach. Instead of maximizing image gradients across contours, we minimize
the average intensity of the image area that is covered by the eyebrow triangles. Again, the vertices of
the eyebrows are only allowed to move in a small region bounded by their neighboring vertices. This has
worked very robustly in our experiments.

We then use the face features and the image silhouettes (including the chin curve) as constraints in our
system to further improve the mesh. Notice that each vertex on the mesh silhouette corresponds to a vertex
on the image silhouette. We cast a ray from the camera center through the vertex on the image silhouette.
The projection of the corresponding mesh vertex on this ray acts as the target position of the mesh vertex.
Let v be the mesh vertex andh the projection. We have equationv = h. For each face feature, we obtain
an equation in a similar way. These equations are added to equation (14). The total set of equations is
solved as before, i.e., we first fix the poseT and use a linear least square approach to solve the metric
coefficients, and then fix the metric coefficients while solving for the pose.

10 Model-Based Bundle Adjustment

As mentioned in Sect. 6.7, we are interested in refining the initial face model as well as the head pose
estimates by taking into account all available information from multiple images simultaneously. In this
section, we briefly outline our model-based bundle adjustment. The interested reader is encouraged to
read (Shan et al., 2001) for details.

10.1 Problem Formulation

As described in Sect. 5, a face meshS is defined bym metric coefficients{cj |j = 1, . . . , m} according
to (4), where the vertices of the mesh are evaluated in the coordinate system where the neutral mesh and
metrics are designated. To complete define the face geometry in the camera coordinate system, we still
need to know the head poseT, for example, in the first base image. Thus, the face geometry given by (13),
i.e.,S = T(S0 +

∑m
j=1 cjMj), is the face mesh in the camera coordinate system. Therefore, including

the 6 parameters forT, the total number of model parameters isM = m + 6, and they are collectively
designated by vectorC. Let us denote the surface byS(C).

Furthermore, we assume there areQ semantically meaningful points (semantic pointsfor short){Qj |j =
1, . . . , Q} on the face. If there are no semantic points available, thenQ = 0. In our case,Q = 5 because
we use five semantic points: two inner eye corners, two mouth corners, and the nose tip. The relationship
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between thejth semantic pointQj and the face parametersC is described by

Qj = Q(C, j) . (15)

Obviously, pointQj ∈ S(C).
We are given a set ofN images/frames, and a number of points of interest across images have been

established as described earlier. Imagei is taken by a camera with unknown pose parametersMi which
describes the position and orientation of the camera with respect to the world coordinate system in which
the face mesh is described. A 3D pointPk and its image pointpi,k are related by (2), i.e.,pi,k = φ(Mi, Pk).

Because of occlusion, feature detection failure and other reasons, a point on the face may be observed
and detected in a subset of images. Let us call the set of image points corresponding to a single point on
the face afeature track. Let P be the total number of feature tracks,Θk be the set of frame numbers of the
kth feature track,pi,k (i ∈ Θk) be the feature point in theith frame that belongs to thekth feature track, and
Pk be the corresponding 3D point, which is unknown, on the face surface. Furthermore, we assume that
thejth semantic pointQj is observed and detected in zero or more images. LetTj be the, possibly empty,
set of frame numbers in whichQj are detected, andql,j (l ∈ Ωj) be the detected semantic point in thelth

frame.
We can now state the problem as follows:

Problem: GivenP tracks of feature points{pi,k|k = 1, . . . , P ; i ∈ Θk} andQ tracks of semantic points
{ql,j |j = 1, . . . , Q; l ∈ Ωj}, determine the face model parametersC and the camera pose parameters
M = [MT

1 , . . . , MT
N ]T .

Our objective is to solve this problem in an optimal way. Byoptimal we mean to find simultane-
ously the face model parameters and camera parameters by minimizing some statistically and/or physically
meaningful cost function. As in the classical point-based bundle adjustment, it is reasonable to assume that
the image points are corrupted by independent and identically distributed Gaussian noise because points
are extracted independently from images by the same algorithm. In that case, the maximum likelihood
estimation is obtained by minimizing the sum of squared errors between the observed image points and the
predicted feature points. More formally, the problem becomes

min
M,C,{Pk}




P∑

k=1

∑

i∈Θk

‖pi,k − φ(Mi, Pk)‖2 +
Q∑

j=1

∑

l∈Ωj

‖ql,j − φ(Ml, Qj)‖2



subject toPk ∈ S(C), (16)

whereQj = Q(C, j) as defined in (15). Note that although the part for the general feature points (the first
term) and the part for the semantic points (the second term) have the same form, we should treat them
differently. Indeed, the latter provides stronger constraint in bundle adjustment than the former. We can
simply substituteQj in the second part byQ(C, j) while Pk must be searched on the surfaceS(C).

We observe that in (16), unknown 3D points{Pk}, which correspond to feature tracks, are not involved
at all in the second term. Furthermore, in the first term, the second summation only depends on each
individualPk. We can therefore rewrite (16) as

min
M,C




P∑

k=1

(
min
Pk

∑

i∈Θk

‖pi,k − φ(Mi, Pk)‖2
)

+
Q∑

j=1

∑

l∈Ωj

‖ql,j − φ(Ml, Qj)‖2



subject toPk ∈ S(C). (17)

This property is reflected in the sparse structure of the Jacobian and Hessian of the objective function. As in
the classical bundle adjustment, exploiting the sparse structure leads a much more efficient implementation.
In (Shan et al., 2001), we use a first order approximation to eliminate the structure parameters{Pk}, thus
resulting in a much smaller minimization problem.

In most practical problems, not all possible values of parametersC are acceptable, and it is often neces-
sary or desirable to impose constraints. There are many forms of constraints: linear or nonlinear, equality
or inequality. The reader is referred to (Gill, Murray and Wright, 1981) for various techniques to deal
with constrained optimization problems. An important case is when a parametercm is subject to bounds:
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lm ≤ cm ≤ um. For each such constraint, we add to (16) two penalty terms for the lower and upper bound.
For the lower bound, the penalty term is defined by

pm =
{

0 if cm ≥ lm;
ρ(lm − cm)2 otherwise,

where the non-negative valueρ is the penalty parameter.

10.2 Comparison Between CBA and MBA

Compared with the classical point-based bundle adjustment (CBA), our model-based bundle adjustment
(16) (MBA) has a similar form except that we have model parametersC and that pointsPk are constrained
onS(C). In CBA, there are no model parameters but pointsPk are free. Although it appears that MBA has
more parameters to estimate, the real number of free parameters is usually smaller because of the constraint
on pointsPk. Indeed, the total number of free parameters in CBA is equal to6(N − 1) − 1 + 3P (“−1”
is due to the fact that the global scale cannot be determined), while the total number of free parameters in
MBA is equal to6(N − 1)− 1 + M + 2P because each point on a surface has two degrees of freedom. As
long asP > M (the number of feature tracks is larger than that of model parameters), the parameter space
for MBA is smaller than for CBA. In our typical setup,P > 1500 while M = 71.

10.3 Experimental Results

The reader is referred to (Shan et al., 2001) for a comparison between our MBA algorithm and the classical
bundle adjustment. In this section, we only show how the MBA improves the initial face models.

A typical sequence contains 23 to 26 images of resolution 640x480. The number of feature tracks
ranges from 1500 to 2400. There are 50 to 150 image matches between each pair of neighboring views.
For each sequence, the total running time of the MBA algorithm is about 6 to 8 minutes on a 850MHz
Pentium III machine. We have already seen an example in Section 6. Two more examples are shown
below. For each example, we show both the initial guesses (results from the rapid face modeling system)
and the final results from the MBA algorithm.

The first example is shown in Fig. 21. The left column is the initial guess. The right column is the
result from the MBA algorithm. The images in the middle are the acquired images. We can see that the
face of the initial guess is too narrow compared to the actual face, and there is a clear improvement with
the result from the MBA algorithm.

The second example is shown in Fig. 22. We can see that the profile of the initial guess is quite different
from the actual person. With MBA, the profile closely matches the profile of the actual person.

11 More Experimental Results

We have constructed 3D face models for well over two hundred people. We have done live demonstrations
at ACM Multimedia 2000, ACM1, CHI2001, ICCV2001 and other events such as the 20th anniversary of
the PC, where we set up a booth to construct face models for visitors. At each of these events, the success
rate is 90% or higher. In ACM1, most of the visitors are kids or teenagers. Kids are usually more difficult
to model since they have smooth skins, but our system worked very well. We observe that the main factor
for the occasional failure is the head turning too fast.

We should point out that in our live demonstrations, the optional model-based bundle adjustment is not
conducted because it is quite time consuming (about 6 to 8 minutes on a 850MHz Pentium III machine).
Without that step, our system takes about one minute after data-capture and manual marking to generate
a textured face model. Most of this time is spent on head tracking in the video sequences. All the results
shown in this section were produced in this way.

Figure 23 shows side-by-side comparisons of eight reconstructed models with the real images. Fig-
ure 24 shows the reconstructed face models of our group members immersed in a virtualized environment.
In these examples, the video sequences were taken using ordinary video camera in people’s offices or in
live demonstrations. No special lighting equipment or background was used.
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Figure 21: First textured face model. Left: initial guess; Middle: original images; Right: MBA.

Figure 22: Second textured face model. Left: initial guess; Middle: original images; Right: MBA.
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Figure 23: Side by side comparison of the original images with the reconstructed models of various people
in various environment settings.
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Figure 24: Face models of our group members in a virtualized environment.
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Neutral Happy Sad Thinking

Figure 25: Examples of facial animation with an animated face model built with our system.

11.1 Applications: Animation and Interactive Games

Having obtained the 3D textured face model, the user can immediately animate the model with the ap-
plication of facial expressions including smiles, sad, thinking, etc. The model can also perform text to
speech.

To accomplish this we have defined a set of vectors, which we callposemes. Like the metric vectors de-
scribed previously, posemes are a collection of artist-designed displacements, corresponding approximately
to the widely used action units in the Facial Action Coding System (FACTS) (Ekman and Friesen, 1978).
We can apply these displacements to any face as long as it has the same topology as the neutral face.
Posemes are collected in a library of actions, expressions, and visems.

Figure 25 shows a few facial expressions which can be generated with our animated face models. Note
that the facial expressions shown here are the results of geometric warping, namely, the texture image is
warped according to the desired displacement of the vertices. Facial expressions, however, exhibit many
detailed image variations due to facial deformation. A simple expression mapping technique based on ratio
images is described in (Liu, Shan and Zhang, 2001) which can generate vivid facial expression.

An important application of face modeling is interactive games. You can import your personalized
face model in the games so that you are controlling the “visualized you” and your friends are seeing
the “visualized you” play. This would dramatically enhance the role-playing experience offered in many
games. Figure 26 shows a snapshot of an online poker game, developed by our colleague Alex Colburn,
where the individualized face models are built with our system.

12 Conclusions and Future Work

We have developed a system to construct textured 3D face models from video sequences with minimal user
intervention. With a few simple clicks by the user, our system quickly generates a person’s face model
which is animated right away. Our experiments show that our system is able to generate face models for
people of different races, of different ages, and with different skin colors. Such a system can be potentially
used by an ordinary user at home to make their own face models. These face models can be used, for
example, as avatars in computer games, online chatting, virtual conferencing, etc.

Besides use of many state-of-the-art computer vision and graphics techniques, we have developed sev-
eral innovative techniques including intelligent masking, robust head pose determination, low-dimensional
linear face model fitting, and model-based bundle adjustment. By following the model-based modeling
approach, we have been able to develop a robust and efficient modeling system for a very difficult class of
objects, namely, faces.

Several researchers in computer vision are working at automatically locating facial features in im-
ages (Shakunaga, Ogawa and Oki, 1998). With the advancement of those techniques, a completely auto-
matic face modeling system can be expected, even though it is not a burden to click just five points with
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Figure 26: An online poker game with individualized face models.

our current system.
The current face mesh is very sparse. We are investigating techniques to increase the mesh resolution

by using higher resolution face metrics or prototypes. Another possibility is to compute a displacement
map for each triangle using color information.

Additional challenges include automatic generation of eyeballs and eye texture maps, as well as accu-
rate incorporation of hair, teeth, and tongues. For people with hair on the sides or the front of the face,
our system will sometimes pick up corner points on the hair and treat them as points on the face. The
reconstructed model may be affected by them. Our system treats the points on the hair as normal points on
the face.

The animation of the face models is pre-designed in our system. In many other applications, it is
desirable to understand the facial expression in a real video sequence and use it to drive the facial animation.
Some work has been done in that direction (Essa and Pentland, 1997; Black and Yacoob, 1997; Guenter et
al., 1998; Tao and Huang, 1999; Tian, Kanade and Cohn, 2001).
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