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Camera calibration has been studied extensively in computer vision and photogrammetry, and
the proposed techniques in the literature include those using 3D apparatus (two or three planes
orthogonal to each other, or a plane undergoing a pure translation, etc.), 2D objects (planar
patterns undergoing unknown motions), and 0D features (self-calibration using unknown scene
points). This paper yet proposes a new calibration technique using 1D objects (points aligned
on a line), thus filling the missing dimension in calibration. In particular, we show that camera
calibration is not possible with free-moving 1D objects, but can be solved if one point is fixed.

A closed-form solution is developed if six or more observations of such a 1D object are made.
For higher accuracy, a nonlinear technique based on the maximum likelihood criterion is then
used to refine the estimate. Besides the theoretical aspect, the proposed technique is also
important in practice especially when calibrating multiple cameras mounted apart from each
other, where the calibration objects are required to be visible simultaneously.
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1 Introduction

Camera calibration is a necessary step in 3D computer vision in order to extract metric information from
2D images. Much work has been done, starting in the photogrammetry community (see [1, 3] to cite a
few), and more recently in computer vision ([8, 7, 19, 6, 21, 20, 14, 5] to cite a few). According to the
dimension of the calibration objects, we can classify those techniques roughly into three categories.

3D reference object based calibration.Camera calibration is performed by observing a calibration ob-
ject whose geometry in 3-D space is known with very good precision. Calibration can be done very
efficiently [4]. The calibration object usually consists of two or three planes orthogonal to each other.
Sometimes, a plane undergoing a precisely known translation is also used [19], which equivalently
provides 3D reference points. This approach requires an expensive calibration apparatus and an
elaborate setup.

2D plane based calibration. Techniques in this category requires to observe a planar pattern shown at a
few different orientations [22, 17]. Different from Tsai’s technique [19], the knowledge of the plane
motion is not necessary. Because almost anyone can make such a calibration pattern by him/her-self,
the setup is easier for camera calibration.

Self-calibration. Techniques in this category do not use any calibration object, and can be considered as
0D approach because only image point correspondences are required. Just by moving a camera in
a static scene, the rigidity of the scene provides in general two constraints [14, 13] on the cameras’
internal parameters from one camera displacement by using image information alone. Therefore,
if images are taken by the same camera with fixed internal parameters, correspondences between
three images are sufficient to recover both the internal and external parameters which allow us to
reconstruct 3-D structure up to a similarity [12, 10]. Although no calibration objects are necessary, a
large number of parameters need to be estimated, resulting in a much harder mathematical problem.

Other techniques exist: vanishing points for orthogonal directions [2, 11], and calibration from pure rota-
tion [9, 16].

To our knowledge, there does not exist any calibration technique reported in the literature which uses
one-dimensional (1D) calibration objects, and this is the topic we will investigate in this paper. In particular,
we will consider 1D objects composed of a set of collinear points. Unlike techniques using 3D reference
objects, other techniques requires taking several snapshots of calibration objects or the environment. This
is the price we pay, although insignificant in practice, by using poorer knowledge of the observation. This
is also the case with calibration using 1D objects.

Besides the theoretical aspect of using 1D objects in camera calibration, it is also very important in
practice especially when multi-cameras are involved in the environment. To calibrate the relative geometry
between multiple cameras, it is necessary for all involving cameras to simultaneously observe a number of
points. It is hardly possible to achieve this with 3D or 2D calibration appariftose camera is mounted
in the front of a room while another in the back. This is not a problem for 1D objects. We can for example
use a string of balls hanging from the ceiling.

The paper is organized as follows. Section 2 examines possible setups with 1D objects for camera cal-
ibration. Section 3 describes in detail how to solve camera calibration with 1D objects. Both closed-form
solution and nonlinear minimization based on maximum likelihood criterion are proposed. Section 4 pro-
vides experimental results with both computer simulated data and real images. Finally, Section 5 concludes
the paper with perspective of this work.

2 Preliminaries

We examine possible setups with 1D objects for camera calibration. We start with the notation used in this
paper.

1An exception is when those apparatus are made transparent; then the cost would be much higher.



2.1 Notation

A 2D point is denoted byn = [u,v]”. A 3D point is denoted byt = [X, Y, Z]”. We usex to denote the
augmented vector by adding 1 as the last elem@nt [u, v,1]7 andM = [X, Y, Z,1]T. A camera is mod-
eled by the usual pinhole: the relationship between a 3D pbartd its image projectiom (perspective
projection) is given by
a Y U
sm=A[R t]M, withA =10 8 wu (1)
0 0 1

wheres is an arbitrary scale factofR, t), called the extrinsic parameters, is the rotation and translation
which relates the world coordinate system to the camera coordinate system, ianchlled the camera
intrinsic matrix, with (ug,vo) the coordinates of the principal point,and the scale factors in image
andv axes, andy the parameter describing the skew of the two image axes. The task of camera calibration
is to determine these five intrinsic parameters.

We use the abbreviatioA =7 for (A=) or (AT)~ 1.

2.2 Setups With Free-Moving 1D Calibration Objects

We now examine possible setups with 1D objects for camera calibration. As already mentioned in the
introduction, we need to have several observations of the 1D objects. Without loss of generality, we choose
the camera coordinate system to define the 1D objects; ther@&orel andt = 0 in (1).

Two points with known distance. This could be the two endpoints of a stick, and we take a humber
of images while waving freely the stick. LatandB be the two 3D points, and andb be the observed
image points. Because the distance betweandB is known, we only need 5 parameters to defirend

B. For example, we need 3 parameters to specify the coordinateinahe camera coordinate system,
and 2 parameters to define the orientation of the ABe On the other hand, each image point provides
two equations according to (1), giving in total 4 equations. Gixewbservations of the stick, we have

5 intrinsic parameters anglN parameters for the point positions to estimate, i.e., the total number of
unknowns is5 4+ 5N. However, we only havé N equations. Camera calibration is thus impossible.

Three collinear points with known distances. By adding an additional point, say;, the number of
unknowns for the point positions still remains the same, 5.6:,5N, because of known distances®fo

A andB. For each observation, we have three image points, yielding inGdfagéquations. Calibration

seems to be plausible, but is in fact not. This is because the three image points for each observation must
be collinear. Collinearity is preserved by perspective projection. We therefore only have 5 independent
equations for each observation. The total number of independent equatioris,always smaller than the
number of unknowns. Camera calibration is still impossible.

Four or more collinear points with known distances. As seen above, when the number of points in-
creases from two to three, the number of independent equations (constraints) increases by one for each
observation. If we have a fourth point, will we have in tod&f independent equations? If so, we would

be able to solve the problem because the number of unknowns remains the sarfie; b&v,, and we

would have more than enough constraintd/if> 5. The reality is that the addition of the fourth point or

even more points does not increase the number of independent equations. It will alwaysfteany

four or more collinear points. This is because the cross ratio is preserved under perspective projection.
With known cross ratios and three collinear points, whether they are in space or in images, other points are
determined exactly.

2.3 Setups With 1D Calibration Objects Moving Around a fixed Point

From the above discussion, calibration is impossible with a free moving 1D calibration object, no matter
how many points on the object. Now let us examine what happens if one point is fixed. In the sequel,



without loss of generality, point is the fixed point, ané is the corresponding image point. We need 3
parameters, which are unknown, to specify the coordinatdsiofthe camera coordinate system, while
image pointa provides two scalar equations according to (1).

Two points with known distance. They could be the endpoints of a stick, and we move the stick around
the endpoint that is fixed. L& be the free endpoint anl, its corresponding image point. For each
observation, we need 2 parameters to define the orientation of th&Biard therefore the position &f
because the distance betweeandB is known. GivenN observations of the stick, we have 5 intrinsic
parameters, 3 parameters foand2 N parameters for the free endpoint positions to estimate, i.e., the total
number of unknowns i8 + 2N . However, each observation bfprovides two equations, so together with

a we only have in tota? + 2N equations. Camera calibration is thus impossible.

Three collinear points with known distances. As already explained in the last subsection, by adding an
additional point, sag, the number of unknowns for the point positions still remains the sames #&V.

For each observatiot, provides two equations, butonly provides one additional equation because of the
collinearity ofa, b andc. Thus, the total number of equationig- 3N for NV observations. By counting

the numbers, we see that if we have 6 or more observations, we should be able to solve camera calibration,
and this is the case as we shall show in the next section.

Four or more collinear points with known distances. Again, as already explained in the last subsection,

The number of unknowns and the number of independent equations remain the same because of invariance
of cross-ratios. This said, the more collinear points we have, the more accurate camera calibration will be
in practice because data redundancy can combat the noise in image data.

3 Solving Camera Calibration With 1D Objects

In this section, we describe in detail how to solve the camera calibration problem from a number of obser-
vations of a 1D object consisting of 3 collinear points moving around one of them. We only consider this
minimal configuration, but it is straightforward to extend the result if a calibration object has four or more
collinear points.

3.1 Basic Equations

Refer to Figure 1. Point is the fixed point in space, and the stidi3 moves around. The length of the
stick AB is known to beL, i.e.,
[B—All=L. )

The position of point is also known with respect tbandB, and therefore
C= AsA+ ABB, (3)

where\ 4 and )\ g are known. IfC is the midpoint ofAB, thenA 4 = Ag = 0.5. Pointsa, b andc on the
image plane are projection of space poifts andc, respectively.
Without loss of generality, we choose the camera coordinate system to define the 1D objects; therefore,
R =TIandt = 0in (1). Let the unknown depths far, B andC be z 4, zp andz¢, respectively. According
to (1), we have

A= ZAA71&~1 (4)
B=z:5A'b (5)
C= ZcA716 . (6)
Substituting them into (3) yields N
ZcC = zalaa+ zgAgb (7)



4 (fixed point)

Figure 1: lllustration of 1D calibration objects

after eliminatingA—! from both sides. By performing cross-product on both sides of the above equation
with ¢, we have B
zada(@x¢€) +zpAp(bx¢)=0.

In turn, we obtain

__ZAﬁﬁxa-@xE)
TS (b xS (bxe) ®)

From (2), we have B
A= (zpb — z43)|| = L.

Substitutingz g by (8) gives

Al(a4 2ARXO B XY V=L,
ZA|| (a )\(bx ] )||

This is equivalent to

22hTATA Th =12 (9)
with _
s(@axc) - (bxc)~
As(bx¢) - (bx¢)
Equation (9) contains the unknown intrinsic paramete@nd the unknown depth,, of the fixed pointa.
It is the basic constraint for camera calibration with 1D objects. Vdetgiven by (10), can be computed
from image points and knowh, and\g. Since the total number of unknowns is 6, we need at least six
observations of the 1D object for calibration. Note tAat” A actually describes the image of the absolute
conic [12].

h=a+ (10)



3.2 Closed-Form Solution

Let
By1 B2 DBis
B = A_TA_l = B12 B22 ng (11)
Bis B2z Bss
1 0 voy—uof3
a? , a?p a2
_ _aziﬂ a’;[p +é _ ’Y(U(;’é;goﬁ) _Z% ) (12)
voy—uoB _ Y(Wovy—uoB) wg (voy—uof3)? ﬁ
0 a?ﬁo Ot2ﬁ2 /8% Ot2ﬁ2 +ﬂg +1
Note thatB is symmetric, and can be defined by a 6D vector
b = [B11, Bia, Baz, Bi3, Bes, Bas)” . (13)

Leth = [hq, ho, k3], andx = 2% b, then equation (9) becomes
vix =17 (14)

with
v = [h2,2h1ho, h3, 2h1hs, 2hohs, B2]T .

When N images of the 1D object are observed, by stackirsgich equations as (14) we have

Vx = L%1, (15)

whereV = [vy,...,vy]T and1 = [1,...,1]T. The least-squares solution is then given by
x=L*(VTv)~lvTy . (16)
Oncex is estimated, we can compute all the unknowns based-en%b. Letx = [x1, 22, ..., 2] .

Without difficulty, we can uniquely extract the intrinsic parameters and the degpés

vo = (xoxy — 2125) /(T123 — x%)

ZA = \/$6 — [37421 + vo(z2w4 — 2175)] /71
a=/za/z1
8= \/zA:m/(fL“wS — x3)

v = —x902B/24

ug = yvo/o — 2402 )24 .

At this point, we can computeg according to (8), so pointsandB can be computed from (4) and (5),
while pointC can be computed according to (3).

3.3 Nonlinear Optimization

The above solution is obtained through minimizing an algebraic distance which is not physically meaning-
ful. We can refine it through maximum likelihood inference.

We are givenV images of the 1D calibration object and there angoints on the object. Point is
fixed, and point8 andC moves around.. Assume that the image points are corrupted by independent
and identically distributed noise. The maximum likelihood estimate can be obtained by minimizing the
following functional:

N

> (lai = ¢(A, 87 + [Ibi — H(AB)|* + [lei — (A, C)) 17

i=1



where¢(A, M) (M € {A,B;,C;}) is the projection of poini onto the image, according to equations (4) to
(6). More preciselyp(A, M) = iAM, wherez,, is thez-component of1.
The unknowns to be estimated are:

e 5 camera intrinsic parametess 3, v, uo anduvg that define matrixA ;
e 3 parameters for the coordinates of the fixed paint
e 2N additional parameters to define poiBtsandcC; at each instant (see below for more details).

Therefore, we have in tot&l + 2N unknowns. Regarding the parameterizationf@ndC, we use the
spherical coordinates andé to define the direction of the 1D calibration object, and psiig then given
by
sin 0 cos ¢
B=A+ L |sinfsin¢
cos @

whereL is the known distance betwearandB. In turn, pointC is computed according to (3). We therefore
only need 2 additional parameters for each observation.

Minimizing (17) is a nonlinear minimization problem, which is solved with the Levenberg-Marquardt
Algorithm as implemented iMinpack [15]. It requires an initial guess &k, A, {B;,C;|i = 1..N} which
can be obtained using the technique described in the last subsection.

4 Experimental Results

The proposed algorithm has been tested on both computer simulated data and real data.

4.1 Computer Simulations

The simulated camera has the following propetty= 1000, 8 = 1000, v = 0, up = 320, andvy = 240.
The image resolution i640 x 480. A stick of 70 cm is simulated with the fixed poiatat [0, 35, 150]7".
The other endpoint of the stick & andC is located at the half way betwearandB. We have generated
100 random orientations of the stick by samplihin [r/6, 57/6] and¢ in [, 2] according to uniform
distribution. Points\, B, andC are then projected onto the image.

Gaussian noise with 0 mean andstandard deviation is added to the projected image paintsand
c. The estimated camera parameters are compared with the ground truth, and we measure their relative
errors with respect to the focal length Note that we measure the relative errorsig, vo) with respect
to «, as proposed by Triggs in [18]. He pointed out that the absolute errétsg jmg) is not geometrically
meaningful, while computing the relative error is equivalent to measuring the angle between the true optical
axis and the estimated one.

We vary the noise level from 0.1 pixels to 1 pixel. For each noise level, we perform 120 independent
trials, and the results shown in Fig. 2 are the average. Figure 2a displays the relative errors of the closed-
form solution while Figure 2b displays those of the nonlinear minimization result. Errors increase almost
linearly with the noise level. The nonlinear minimization refines the closed-form solution, and produces
significantly better result (with 50% less errors). At 1 pixel noise level, the errors for the closed-form
solution are about 12%, while those for the nonlinear minimization are about 6%.

4.2 Real Data

For the experiment with real data, | used three toy beads from my kids and strung them together with a
stick. The beads are approximately 14 cm apart (Les 28). | then moves the stick around while trying

to fix one end with the aid of a book. A video of 150 frames was recorded, and four sample images are
shown in Fig. 3. A bead in the image is modeled as a Gaussian blob in the RGB space, and the centroid of
each detected blob is the image point we use for camera calibration. The proposed algorithm is therefore
applied to the 150 observations of the beads, and the estimated camera parameters are provided in Table 1.
The first row is the estimation from the closed-form solution, while the second row is the refined result after
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Table 1: Calibration results with real data.

Solution « Ié] ~ Uug Vg

Closed-form 889.49 818.59 -0.1651 (9C°P1297.47 234.33
Nonlinear 838.49 799.36 4.1921 (89°FJ2 286.74 219.89
Plane-based 828.92 813.33 -0.0903(90)01305.23 235.17

Relative difference 1.15% 1.69%  0.52% (29 2.23% 1.84%

Frame 90 Frame 140

Figure 3: Sample images of a 1D object used for camera calibration.



Figure 4: A sample image of the planar pattern used for camera calibration.

nonlinear minimization. For the image skew parametewe also provide the angle between the image
axes in parenthesis (it should be very close t9)90

For comparison, we also used the plane-based calibration technique described in [22] to calibrate the
same camera. Five images of a planar pattern were taken, and one of them is shown in Fig. 4. The calibra-
tion result is shown in the third row of Table 1. The fourth row displays the relative difference between the
plane-based result and the nonlinear solution with respect to the focal length (we use 828.92). As we can
observe, the difference is about 2%.

There are several sources contributing to this difference. Besides obviously the image noise and impre-
cision of the extracted data points, one source is our current rudimentary experimental setup:

e The supposed-to-be fixed point was not fixed. It slipped around on the surface.
e The positioning of the beads was done with a ruler using eye inspection.

Considering all the factors, the proposed algorithm is very encouraging.

5 Conclusion

In this paper, we have investigated the possibility of camera calibration using one-dimensional objects.
One-dimensional calibration objects consist of three or more collinear points with known relative position-
ing. In particular, we have shown that camera calibration is not possible with free-moving 1D objects, but
can be solved if one point is fixed. A closed-form solution has been developed if six or more observations
of such a 1D object are made. For higher accuracy, a nonlinear technique based on the maximum likelihood
criterion is used to refine the estimate. Both computer simulation and real data have been used to test the
proposed algorithm, and very encouraging results have been obtained.

Camera calibration has been studied extensively in computer vision and photogrammetry, and the pro-
posed techniques in the literature include those using 3D apparatus (two or three planes orthogonal to each
other, or a plane undergoing a pure translation, etc.), 2D objects (planar patterns undergoing unknown mo-
tions), and 0D features (self-calibration using unknown scene points). This proposed calibration technique
uses 1D objects (points aligned on a line), thus filling the missing dimension in calibration. Besides the
theoretical aspect, the proposed technigue is also important in practice especially when calibrating multiple
cameras mounted apart from each other, where the calibration objects are required to be visible simultane-
ously.

Currently, we are planning to work on the following two problems:

e This paper has only examined the minimal configuration, that is, 1D object with three points. With
four or more points on a line, although we do not gain any theoretical constraints, we should be able

10



to obtain more accurate calibration results because of data redundancy in combating noise in image
points.

e The proposed algorithm assumes that the fixed point is visible by the camera. It would be more
flexible for camera calibration if the fixed point could be invisible. In that case, we can for example
hang a string of small balls from the ceiling, and calibrate multiple cameras in the room by swinging
the string.
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