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Abstract

This paper gives an accessible (but still technical) self-contained
proof to the fact that the intersection probabilities for planar Brown-
ian motion are given in terms of the intersection exponents, up to a
bounded multiplicative error, and some closely related results. While
most of the results are already known, the proofs are somewhat new,
and the paper can serve as a source for the estimates used in our paper
[10] on the analyticity of the Brownian intersection exponents.

1 Introduction

In a recent series of papers [7, 8, 9, 10], the authors rigorously derived the
values for the intersection exponents for planar Brownian motion. Among
other things, we prove in these papers that the Hausdorff dimension of the
outer boundary of a planar Brownian path is 4/3 (see [11] for an overview).
This paper is complementary to these papers in that it proves some estimates
about the Brownian intersection probabilities that do not depend on knowing
their exact values.

The intersection exponents are defined as the asymptotic rate of decay
of certain non-intersection probabilities. The main results in this paper give
estimates for the actual probabilities in terms of these asymptotic exponents.

∗Duke University, Research supported by the National Science Foundation
†Microsoft Research
‡Université Paris-Sud
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For example, it is easy to show by subbadditivity that the probability that
the paths of two independent planar Brownian motions started from uniform-
independent points on the unit circle will not intersect before hitting the
circle of radius R is R−ξ+o(1) as R→∞ (this is the definition of the exponent
ξ = ξ(1, 1)). We show that in fact the probability is equal to u(R)R−ξ , where
u(R) ∈ [1/c, c] for some constant c independent of R ≥ 1.

This, and most other results proven here have been derived before by
Lawler (see [4] and reference therein). However, these earlier treatments were
a little complicated at times (one reason is that they simultaneously treated
both the planar and three-dimensional cases) and hence it seems worthwhile
to have a self-contained account of these results. We will not make any
use of our recent papers [7, 8, 10, 9]; instead this paper can be considered
as a prerequisite to [10]. The results presented here are used in [10] to
prove analyticity of the mappings λ 7→ ξ(k, λ) on (0,∞). “Up-to-constants”
estimates are also instrumental in relating the intersection exponent to the
Hausdorff dimension of exceptional sets of the Brownian path, see, e.g., [3].

We will concentrate on the intersection exponents ξ(2, λ) which are rel-
evant for analyzing the outer boundary of Brownian paths. However, the
proofs, with only minor changes, adapt easily to other Brownian intersection
exponents (see Section 7).

For all r ≥ 0, let Cr denote the circle of radius exp(r) about zero. Let
Y 0, Y 1, Y 2 be independent planar Brownian motions starting at 0. Define for
j = 0, 1, 2, and r ∈ R,

T jr = inf{t > 0 : Y j
t ∈ Cr}

and the paths

Yjr = Y j [T j0 , T
j
r ]

(one could equivalently have taken Brownian motions started uniformly on
the unit circle up to their hitting time of Cr). We define the random variable
(depending on Y1

r and Y2
r ),

Zr = Zr(Y1
r ,Y2

r ) := P[Y0
r ∩ (Y1

r ∪ Y2
r ) = ∅ | Y1

r ,Y2
r ].

This is the probability, given Y1
r and Y2

r , that another Brownian motion
started uniformly on the unit circle reaches Cr without intersecting the paths
Y1
r and Y2

r . We define for all λ > 0,

ar = ar(λ) = E[(Zr)
λ].
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Note that when λ is an integer, then ar is the probability that λ independent
copies of Y0

r do not intersect Y1
r ∪Y2

r . It is straightforward to show that there
exists a constant ξ, usually denoted by ξ(2, λ), such that

lim
r→∞

(ar)
1/r = e−ξ.

One of the main goals of the present paper is to present a short and self-
contained proof of estimates for ar (and alternative closely related quantities)
up to multiplicative constants. In particular:

Theorem 1.1. For every λ0 > 0, there exist constants 0 < c1 < c2 < ∞
such that for every 0 < λ ≤ λ0 and every r ≥ 2,

c1e
−rξ(2,λ) ≤ ar(λ) ≤ c2e

−rξ(2,λ).

This theorem is a slight improvement over the estimate given for ar in [4].
In that paper, it was shown that for every 0 < λ1 < λ2 < ∞, one can find
constants c1, c2 that work for all λ ∈ [λ1, λ2]. The approach we give in this
paper gives the stronger result that the constants can be chosen uniformly in
(0, λ0]. An advantage of Theorem 1.1 is that the following is an easy corollary
obtained by fixing r and letting λ→ 0+.

Corollary 1.2. There exist constants 0 < c1 < c2 <∞ such that

c1e
−rξ(2,0) ≤ P[Zr > 0] ≤ c2e

−rξ(2,0),

where ξ(2, 0) := limλ→0+ ξ(2, λ).

Note that Zr > 0 means that Y1
r ∪ Y2

r does not disconnect C0 from Cr.
This corollary was derived in [3] for the disconnection exponent ξ0 defined
by e−ξ0 = limr→∞P[Zr > 0]1/r. However, a more complicated argument
was needed [4] to prove ξ0 = limλ→0+ ξ(2, λ). Using Theorem 1.1, this is
immediate.

Although we do not prove it in this paper, it can actually be shown that
quantities like erξ(2,λ)ar approach a limit (see the end of Section 6).

Another goal of the present paper is to clarify and summarize the equiv-
alence between the definitions of the exponents in terms of Brownian excur-
sions, Brownian motions, extremal distance, and discuss the influence of the
starting points, etc. In fact, we will first focus on another quantity br defined
in terms of Brownian excursions and extremal distance, show up-to-constants
estimates for br and then deduce the estimates for ar.
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2 Preliminaries

Before studying non-intersection probabilities, we first review a few easy facts
concerning Brownian excursions and extremal distance.

Throughout the paper, for all r < r′, Cr will denote the circle of radius
exp(r) about 0, and A(r, r′) will denote the open annulus between Cr and Cr′.
D(z, δ) will denote the open disk of radius δ about z. It will be sometimes
more convenient to work in the cylindrical metric. We will then implicitely
use the fact that for all ε > 0, when δ is sufficiently small, for all z = eu ∈ Cr,

D(z, δer(1− ε)) ⊂ {ev : |v − u| < δ} ⊂ D(z, δer(1 + ε)).

2.1 Excursion measure and conformal invariance

Let Y be a Brownian motion starting at the origin, let Tr be its hitting time
of the circle Cr and define

Sr = sup{t < Tr : Yt ∈ C0}.
The paths

Bt := Yt, Sr ≤ t ≤ Tr, (2.1)

are called “Brownian upcrossings” of the annulus A(0, r). We will not care
about the time-parameterization of the upcrossings; in particular, it does not
matter if the ‘starting-time’ of the upcrossings is called 0 or Sr.

This probability measure on Brownian upcrossings is very closely related
to the Brownian excursion measure that we used in the papers [5, 6, 7, 8].
The excursion measure on the annulus A(0, r) is the upcrossing probability
normalized so that the total mass is 2πr−1.

We now briefly recall some of the properties of these measures. First,
there are various equivalent ways of defining them. Define the excursion
measure on A(0, r) starting at z ∈ C0 by

µz,r = ε−1 lim
ε→0

µz,r,ε

where µz,r,ε is the measure obtained from starting a Brownian motion at
(1 + ε)z, killing it upon leaving A(0, r), and restricting to those paths that
exit A(0, r) at Cr. Then the excursion measure on A(0, r) is given by∫ 2π

0

µexp(iθ),r dθ. (2.2)
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Yet another equivalent way to define the probability measure on upcross-
ings is to identify upcrossings with the process Rt = exp(U1

t + iU2
t ) where U1

is a three-dimensional Bessel process started at 0, and U2 an independent
Brownian motion started uniformly on [0, 2π], stopped at the first time it
hits the circle Cr (i.e., at the first time U1 hits r) (see e.g. [13] for definition
and properties of Bessel processes).

When r < r′, define the excursion measure and the upcrossing probabil-
ity on A(r, r′) as the measure (or law) of er times a Brownian upcrossing
in A(0, r′ − r). It is easy to see (for instance using the definition of the
upcrossings in terms of Bessel processes) that if B is a Brownian upcross-
ing of A(r, r′), then the time-reversal of 1/B is a Brownian upcrossing of
A(−r′,−r).

One can in fact define excursion measures in any open planar domain.
In the papers [5, 6, 7, 8] we used Brownian excursion measures in simply
connected planar domains. Just as in [5], in the present paper, we will
need to use this measure only in some particular simply connected domains.
Suppose O is a simply connected subset of A(r, r′), and define ∂1 := ∂O∩Cr
and ∂2 := ∂O ∩ Cr′ . Let Φ denote a conformal map from O onto the unit
disk. We say that O is a path domain in A(r, r′) if Φ(∂1) and Φ(∂2) are two
arcs of positive length. We call ∂3 and ∂4 the two other parts of ∂O (possibly
viewed as sets of prime ends). The excursion measure in O can be defined
as the excursion measure in A(r, r′) restricted to those upcrossings that stay
in O.

An important property of the excursion measure is its conformal invari-
ance: if F is a conformal transformation taking a path domain O to another
path domain O′ in such a way that F (∂1) = ∂ ′1 and F (∂2) = ∂ ′2 (with obvious
notation) then the image of the excursion measure on O by F is the excursion
measure on O′. See for instance [5, 6] for a proof of this fact.

2.2 Extremal distance and excursions

For any path domain O, there exists a unique positive real L such that O
can be mapped conformally onto the half-annulus O′L = {exp(u + iθ) : 0 <
u < L and 0 < θ < π} in such a way that ∂1 and ∂2 are mapped onto the
semi-circles (or equivalently, such that O can be mapped conformally onto
the rectangle RL := (0, L)× (0, π) in such a way that ∂1 and ∂2 are mapped
onto the vertical sides of RL). We call L = L(O) the π-extremal distance
between ∂1 and ∂2 in O. This is π times the extremal distance as in [1, 12].
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The excursion measure can also be defined on the rectangle RL by taking
image of the excursion measure in O′L under the logarithmic map. Alterna-
tively, it can directly be defined as π/ε times the limit when ε→ 0 of the law
of Brownian paths started uniformly on the segment [ε, ε+ iπ] and restricted
to the event where they exit the rectangle through [L,L+ iπ].

Since the excursion measure is invariant under conformal transformations,
its total mass depends only on L. By considering directly excursions in the
rectangle, it is easy to check that there exists a constant c such that for all
L ≥ 1, the total mass of the excursion measure in RL is in [c−1e−L, ce−L]. In
other words, up to multiplicative constants, e−L(O) measures the total mass
of the excursion measure in O.

Extremal distance in a simply connected domain O can be defined in a
more general context. For instance (see, e.g., [1]), suppose that V1 and V2

are arcs on the boundary of O, and let Γ denote the set of (smooth) paths
that disconnect V1 from V2 in O. For any piecewise smooth metric ρ in O,
define the ρ-area Aρ(O) :=

∫
O
ρ(x+ iy)2 dxdy of O and the length of smooth

curves γ, `ρ(γ) :=
∫
γ
ρ(z) d|z|. Then, define

L(O;V1, V2) := π inf
ρ
Aρ(O)

where the infimum is taken over the set of piecewise smooth metrics such that
for all γ ∈ Γ, `ρ(γ) ≥ 1. It is straightforward to check that this definition
generalizes the previous one (it is also invariant under conformal transfor-
mations, and if V1 and V2 are the vertical sides of O = RL, the infimum is
obtained for a constant ρ = 1/π).

Using rectangles, it is easy to see that this definition is equivalent to the
more usual definition (see [1]) of extremal distance in terms of the family of
curves connecting V1 to V2 in O (i.e. L(O;V1, V2) is the maximum over all
metrics ρ with Aρ(O) = 1 of the square of the ρ-distance between V1 and V2

in O).
It is straightforward to see that L(O;V1, V2) satisfies monotonicity rela-

tions: if O′ ⊂ O, ∂ ′1 ⊂ ∂1, and ∂ ′2 ⊂ ∂2, then L(O′; ∂ ′1, ∂
′
2) ≥ L(O; ∂1, ∂2); and

if C is a simple curve in O connecting ∂3 and ∂4, O′ is the connected compo-
nent of O \C whose boundary contains ∂1, and O∗ is the component of O \C
whose boundary contains ∂2, then L(O; ∂1, ∂2) ≥ L(O′; ∂1, C) +L(O∗;C, ∂2).
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2.3 A few simple lemmas

We will need a few simple technical facts about extremal distance. It will be
more convenient here to work with the cylindrical metric. Let Õ be a path
domain on A(0, r) (with ∂̃1, . . . , ∂̃4 being the four parts of ∂Õ). Throughout
this section, we will use a simply connected set O such that exp(O) = Õ.
We define ∂1, . . . , ∂4 the parts of O corresponding to ∂̃1, . . . , ∂̃4, and we will
suppose that ∂3 is ‘below’ ∂4 (i.e. that z1 := ∂3 ∩ {<(z) = 0} lies below
z2 := ∂4 ∩ {<(z) = 0}). Note that ∂3 ∩ ∂4 = ∅ (while it was possible that
∂̃3 ∩ ∂̃4 6= ∅). The following lemmas will be formulated in terms of O, and
applied later to Õ = exp(O). We will not bother to choose optimal constants
as only their existence will be needed.

Lemma 2.1. Suppose that for some δ < r − 1, D(z1, 4δ) ∩ ∂4 = ∅ and
D(z2, 4δ) ∩ ∂3 = ∅. Then,

L(O \ [D(z1, δ)∪D(z2, δ)]; ∂1, ∂2) ≤ L(O; ∂1, ∂2) + 6π2.

Proof. Let O′ be the domain O \ [D(z1, δ) ∪ D(z2, δ)] and write ∂ ′1 =
[z1 + iδ, z2 − iδ], ∂ ′2 = ∂2, ∂ ′3, ∂

′
4 for the corresponding boundaries. Let ρ be

the extremal metric for finding the length of the collection Γ of curves in O
connecting ∂3 and ∂4 (note that ρ is the conformal image of a multiple of the
Euclidean metric in the rectangle, and therefore ρ is smooth) so that

Aρ(O) = π−1L(O; ∂1, ∂2).

If we let Γ′ be the collection of curves in O′ connecting ∂ ′3 and ∂ ′4, and

ρ′ = max{ρ, δ−1[1D(z1,2δ) + 1D(z2,2δ)]}

in O′, then every curve in Γ′ has length at least one in the metric ρ′. Hence

L(O′; ∂ ′1, ∂
′
2) ≤ πAρ′(O′)
≤ π[Aρ(O) + 2(4π − π)]

= L(O; ∂1, ∂2) + 6π2.

Lemma 2.2. For all δ > 0, there exists c(δ) such that if V ⊂ ∂1 is a segment
of length at least δ, if dist(V, ∂3 ∪ ∂4) > δ and if the δ-neighborhood of V
disconnects ∂3 from ∂4 in O ∩ ((0, δ)×R), then

L(O;V, ∂2) ≤ L(O; ∂1, ∂2) + c(δ).
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Proof. Let ρ denote the extremal metric in O associated to L(O; ∂1, ∂2)
(i.e., any path from ∂3 to ∂4 in O has ρ-length at least one, and Aρ(O) is
minimal), and define

ρ′ = max{ρ, δ−11(0,δ)×R].

Any path disconnecting V from ∂2 has ρ′-length at least one, so that L(O;V, ∂2) ≤
πAρ′(O) and the lemma follows.

Lemma 2.3. Suppose that 1 < s < r − 1, and that for some small δ, ∂ ′3 :=
∂3∩ ((s− δ, s+ δ)×R) and ∂ ′4 := ∂4∩ ((s− δ, s+ δ)×R) are both of diameter
smaller than δ1/6 and at distance at least δ1/7 from each other. Let V denote
the segment in O ∩ {Re(z) = s} that disconnects ∂1 from ∂2 (it is unique
because of the previous conditions). Then, for some C(δ),

L(O; ∂1, ∂2) ≤ L(O ∩ ((0, s)× R); ∂1, V ) + L(O ∩ ((s, r)× R);V, ∂2) + C(δ).

Proof. Let O1 and O2 denote the sets O∩((0, s)×R) and O∩((s, r)×R).
Let ρ1 (resp., ρ2) denote the extremal metric in O1 associated to L(O1; ∂1, V )
(resp., in O2 associated to L(O2;V, ∂2)). Let V = O ∩ ((s − δ, s + δ) × R).
Note that (since expO = Õ) the euclidean area of V is at most 4πδ. Define

ρ = max(ρ1, ρ2, (1/δ)1V).

It is easy to check that any path joining ∂3 to ∂4 in O has ρ-length at least
1 (either, it stays in one of the three sets O1, O2 or V , or it contains a path
joining {<(z) = s} to {|<(z)− s| = δ}). Therefore,

L(O; ∂1, ∂2) ≤ πAρ(O) ≤ L(O1; ∂1, V ) + L(O2;V, ∂2) + C(δ).

2.4 Extending excursions

Let 0 < r < r′. A consequence of the strong Markov property of planar
Brownian motion and of the second definition of the Brownian excursion
measure is that if B is a Brownian upcrossing of A(0, r) defined under the
excursion measure, and if one starts from its endpoint (on Cr) another inde-
pendent planar Brownian motion killed at its first hitting of Cr′ , restricted to
the event that it does not intersect C0 (note that this is an event of probabil-
ity r/r′), then the concatenation of the upcrossing with the Brownian path
is exactly defined under the Brownian excursion measure in A(0, r′).
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In particular, this shows that if B is an Brownian upcrossing of A(0, r′)
(defined under the probability measure on upcrossings), then it can be de-
composed into two parts: A Brownian upcrossing of A(0, r) and a Brownian
motion started from the end-point of the first part, conditioned to hit Cr′
before C0.

This can also be formulated easily in terms of the definition of Brownian
upcrossings using three-dimensional Bessel processes. In particular, it shows
that it is possible to define on the same probability space a process (Rt, t ≥ 0)
started uniformly on the unit circle, such that for each r > 0, the process
R stopped at its hitting time Tr of the circle Cr is a Brownian upcrossing of
A(0, r). We will use the σ-field Fr generated by (Rt, t ≤ Tr) in Section 6.

Another simple consequence of the strong Markov property of planar
Brownian motion is the fact that conditionaly on Y (Sr) (which has uniform
law on C0), the Brownian upcrossing Y [Sr, Tr] is independent from the initial
part Y [0, Sr]. Consider now the event H = Hr that Y [T0, Sr] does not
contain a closed loop about zero contained entirely in the annulus A(−1, 0).
This event is independent of the upcrossing Y [Sr, Tr] so that on this event,
the measure on upcrossings is the same as the upcrossing probability or
the excursion measure except that it has a slightly different normalization
constant i.e., its total mass mr is the probability of Hr. We claim there is a
constant c such that c−1r−1 ≤ mr ≤ cr−1. The lower bound can for instance
be derived by considering the event {Y [T0, Tr]∩A(−1, 0) ⊂ D(Y (T0), δ)} for
some fixed δ < 1/4. For the upper bound, let k denote the total number of
times the Brownian motion goes from C0 to C−1 before time Tr. Every time
the path goes from C0 to C−1 there is a positive probability, say ρ of forming
a closed loop in A(−1, 0). From this and the strong Markov property, we get
P(Hr ∩ {k = l}) ≤ (1− ρ)lr−1, and summing over l gives the upper bound.

We note that we have just proved that for all δ < 1/4, there is a c′ =
c′(δ) such that conditioned on the event Hr, the probability that Y [T0, Tr] ∩
A(−1, 0) ⊂ D(Y (T0), δ) is at least c′.

3 Lower bound

From this point on, we fix a λ0 and consider λ ∈ (0, λ0]. Constants are
allowed to depend on λ0 but not on λ.

Suppose that B1 and B2 are two independent Brownian upcrossings of
the annulus A(0, r) defined using the Brownian motions Y 1 and Y 2. Let O1
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and O2 be the components of A(0, r) \ (B1 ∪B2) which are at zero distance
from Cr. We choose O1 in such a way that it has the positively oriented arc on
Cr from the endpoint of B1 to the endpoint of B2 as part of its boundary. For
j = 1, 2, let Ljr = L(Oj) be π times the extremal distance between C0 ∩ ∂Oj

and Cr ∩ ∂Oj in Oj . Note that C0 ∩ ∂Oj is a.s. either empty or an arc, and
Cr ∩ ∂Oj is a.s. an arc (note that in this case Oj is a.s. a path domain).
When ∂Oj ∩ C0 = ∅, set Ljr :=∞. Let Lr := min{L1

r, L
2
r}, and let O := Oj

when Lr = Ljr <∞. Define

br = br(λ) = r−2E[exp(−λLr)].

The goal of the next two sections is to define the intersection exponent
ξ(2, λ) in terms of br, and to prove the following estimates for br.

Theorem 3.1. For any λ > 0, there exists ξ(2, λ) ∈ (0,∞) such that e−ξ(2,λ) =

limr→∞ b
1/r
r . Furthermore, for any λ0 > 0, there exist constants c1 and c2

such that for all λ ∈ (0, λ0], and for all r ≥ 0,

c1e
−rξ(2,λ) ≤ br(λ) ≤ c2e

−rξ(2,λ).

In the present section, we will derive the lower bound and the next section
will be devoted to the (harder) upper bound, and we will relate ar to br
in the subsequent section. Note that br is decreasing in r because of the
monotonicity properties of extremal distance.

For any positive integer n, let En denote the event that neither Y 1[T 1
0 , T

1
n ]

nor Y 2[T 2
0 , T

2
n ] hit the circle C−1. Note that P(En) = 1/(n+ 1)2 and that En

is independent from Y 1[S1
n, T

1
n ] and Y 2[S2

n, T
2
n ]. Hence

E[e−λLn1En ] = n2bn/(n+ 1)2.

We call b#
n this quantity.

Lemma 3.2. There exists a constant c such that for all n,m ≥ 1,

bm+n+1 ≤ cbmbn.

Proof. First consider the event H1
n ∩ H2

n that neither Y 1[T 1
0 , T

1
n ] nor

Y 2[T 2
0 , T

2
n ] contains a closed loop in A(−1, 0) that surrounds C−1. The pre-

vious considerations show that Ln is independent from H1
n ∩H2

n so that

b∗n := E[e−λLn1H1
n∩H2

n
] ≤ P[H1

n ∩H2
n]E[e−λLn] ≤ cbn. (3.1)

10



Once we have this, to get the lemma we split the upcrossings into the pieces
up to T jm and from T jm+1 to T jm+n+1. Monotonicity of extremal distance gives

b#
m+n+1 ≤ cb#

mb
∗
n,

from which the lemma follows.

Using this lemma, we can now define ξ(2, λ) by e−ξ(2,λ) = limn→∞ b
1/n
n

and get bn ≥ ce−nξ(2,λ) for some c, which gives the lower bound in Theorem
3.1 for integer n’s. By considering Brownian motions restricted to stay in the
upper or lower half-plane we get the crude estimate ξ(2, λ) ≤ 2 +λ ≤ 2 +λ0.
We will use this fact implicitely in our estimates when we write e−ξ(2,λ) ≥ c.
This is obvious, but it is important that the constant can be chosen uniformly
for 0 < λ ≤ λ0. In this case c = e−(2+λ0) suffices. In particular, since br is
decreasing in r, it suffices to prove the theorem for integer values of r.

In Section 4.1 we will need the following lemma. Since the proof is very
similar to that of (3.1) we include it here. If ε > 0, let En,ε be the event that
neither Brownian motion hits C−1+ε before reaching Cn.

Lemma 3.3. There is a constant c such that for every ε ∈ (0, 1/4),

E [ e−λLn (1En − 1En,ε) ] ≤ cεb#
n .

Proof. First note that En \ En,ε is independent of Ln so that the left-
hand side is equal to P[En \ En,ε]E[e−λLn]. Moreover, P[En] = 1/(n + 1)2

and P[En,ε] = (1− ε)2/(n + 1− ε)2 ≥ (1− cε)P[En].

4 The upper bound

Our goal in this section is to derive the upper bound in Theorem 3.1. It
suffices to give an upper bound for b̃n := n−2E[exp(−λL1

n)] since b̃n ≤ bn ≤
2b̃n. The basic strategy is to find a sequence (bδn)n≥1 such that:

• For all n ≥ 1, bδn ≤ b̃n.

• There is a c1 such that for all n,m ≥ 1,

bδn+m+2 ≥ c1b
δ
nb
δ
m. (4.1)
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• For all n ≥ 1,

#{j ∈ {1, . . . , n} : bδj ≥ b̃j/2} ≥ 3n/4. (4.2)

Suppose we find such a sequence bδn. It is then easy to check that limn→∞(bδn)1/n =
limn→∞(bn)1/n = e−ξ(2,λ), and using (4.1), that there is a constant c3 such
that for all n ≥ 1,

bδn ≤ c3e
−nξ(2,λ).

Also, (4.2) implies that for each n ≥ 2 there is a j ∈ {1, . . . , n−1} such that

bδj ≥ bj/2, bδn−j ≥ bn−j/2,

and hence

b̃n+2 ≤ bn+1 ≤ cbjbn−j ≤ 4cbδjb
δ
n−j ≤ 4cc−1

1 bδn+2 ≤ 4c3cc
−1
1 e−ξ(2,λ)(n+2).

This establishes the upper bound.

4.1 Nice configurations

Throughout this section, we will use Brownian upcrossings B1 and B2 of
annuli A(r, r′). For convenience, we use the convention that Bj is started at
time zero on Cr, and that T jr′′ denotes the first time at which Bj hits Cr′′.

We define a class of “nice” configurations for pairs of Brownian upcross-
ings B1, B2 of A(r, r′) for r′ − r > 1. More precisely, we say that the config-
uration is δ-nice at the beginning if:

• L1 <∞;

• d(B1(0), B2(0)) > δ1/8er.

• For all η < δ, Bj[0, T j
r+η1/2] ⊂ D(Bj(0), η1/4er) for j = 1, 2.

• For all η < δ, Bj[T j
r+η1/2, Tr+1] ∩A(r, r+ 4η) = ∅ for j = 1, 2.

• Bj[T jr+1, T
j
r′] ∩A(r, r + 4δ) = ∅ for j = 1, 2.

12



Here we write L1 = L1(r, r′) for the appropriate π-extremal distance. Note
that (and this is the reason for which we introduce conditions with η < δ)
if a domain is δ-nice at the beginning, then it is δ′-nice at the beginning for
any δ′ < δ.

Note also that the second, third and fourth conditions are only onB1[0, T 1
r+1]

and B2[0, T 2
r+1]. If we use U(δ) to denote the event that all these three con-

ditions hold, then, as the law of Bj[0, T jr+1] is that of a Brownian upcrossing
of A(r, r + 1), we get easily that

P[U(δ)]→ 1 (4.3)

as δ → 0+, uniformly in r′ > r + 1. In particular, almost surely, the con-
figuration of a pair of Brownian upcrossings is δ-nice at the beginning for
sufficiently small δ.

Analogously, we can define the notion of “δ-nice at the end” and we say
that the configuration is δ-nice if it is δ-nice at the beginning and at the end.

Suppose now that B1 and B2 are two independent Brownian upcrossings
of A(0, n). Note that when the configuration is δ-nice, then one can find a
subarc of length at least δ on C0∩∂O1

n that satisfies the conditions of Lemma
2.2. Also, O1

n satisfies the conditions of Lemma 2.1. We shall use this later
on.

Let

bδn = n−2E[e−λL
1
n1δ−nice].

Lemma 4.1. For every ε > 0, there is a δ0 > 0 such that for all δ ∈ (0, δ0),

b̃n − bδn ≤ εbn−2.

Proof. Let V = Vn,δ be the event that the configuration is not δ-nice at
the beginning, and let U = Un,δ be the U(δ) as above. By symmetry and
the time-reversal property of upcrossings, it suffices to show that for all δ
sufficiently small,

n−2E[e−λL
1
n1V ] ≤ ε

2
bn−2.

Note that V ∩ {L1
n <∞} ⊂ U c ∪ V1 where

V1 =
2⋃
j=1

{B[jT j1 , T
j
n] ∩ A(0, 4δ) 6= ∅}.

13



The strong Markov property, decompositions of Brownian upcrossings and
monotonicity of extremal distance, combined with (4.3) imply that

n−2E[e−λL
1
n1Uc] ≤ cP(U c)bn−2.

On the other hand, Lemma 3.3 establishes that

n−2E[e−λL
1
n1V1 ] ≤ cδbn−1 ≤ cδbn−2.

Corollary 4.2. For all δ sufficiently small, (4.2) holds.

Proof. First, we claim that for all n sufficiently large

#{j ∈ {1, . . . , n} : bj+2 ≥ cbj} ≥ .9n, (4.4)

where c = e−80(2+λ0). To see this, assume not. Then, for infinitely many n’s,
there exists at least .05n exceptional even values or at least .05n exceptional
odd values j in {1, · · · , n} scuh that bj+2 ≤ cbj in which case

bn+2 ≤ e−80(2+λ0)(.05n) ≤ e−2(2+λ0)n ≤ e−2ξ(2,λ)n

and this contradicts the lower bound on bn+2. By changing the value of c, we
can conclude that (4.4) in fact holds for all n ≥ 1. Hence, Lemma 4.1 (for
ε = c/4) implies that for all δ sufficiently small, at least 90% of the integers
j in {1, . . . , n},

b̃j − bδj ≤ cbj−2/4 ≤ bj/4 ≤ b̃j/2

so that bδj ≥ b̃j/2.

4.2 Pasting

The goal is now to paste together nice configurations in order to get a lower
bound for bδn+m+2 in terms of bδn and bδm. In order to do this, we will define
“very nice configurations”.

From now on, we fix a small value of δ such that (4.2) holds. We say
that a configuration of pairs of upcrossings (B1, B2) of A(r, r′) is “very nice
at the end” if

• L1 <∞;

14



• Bj(T jr′−(1/3), T
j
r′) ⊂ A(r′ − (1/2), r′), j = 1, 2.

• B1 ∩A(r′ − 1
5
, r′) ⊂ {z : − 1

10
≤ arg(z) ≤ 1

10
};

• B2 ∩A(r′ − 1
5
, r′) ⊂ {z : − 1

10
≤ | arg(z)− π| ≤ 1

10
}.

• | arg(B1(T 1
r′))| ≤ 1/20, | arg(B2(T 2

r′))− π| ≤ 1/20.

Note that there is no δ in this definition. Let

βδn = n−2E[exp{−λL1
n}1δ−nice at the beginning and very nice at the end].

However, by symmetry, the expectation is the same if we require the config-
uration to be δ-nice at the end and “very nice at the beginning.” The goal
is to paste together some configurations in A(0, n+ 1) that are “very nice at
the end” with configurations in A(n + 1, n + m + 2) that are “very nice at
the beginning.”

Suppose that z1 and z2 are on Cn+1, and let us now define βδn+1(z1, z2)
just as βδn+1 except that the upcrossings are conditionned to end at z1 and
z2. In particular, since the law of the endpoints are uniform on Cn+1, βδn+1

is the mean of βδn+1(z1, z2), when z1 and z2 are integrated over Cn+1 × Cn+1.
Note that βδn+1(z1, z2) = 0 as soon as (z1, z2) /∈ Q := {en+1+iθ : |θ| < 1/20}×
{en+1+iθ : |θ − π| < 1/20}.

If α ∈ (0, π), the probability that a complex Brownian motion starting at
ε ∈ (0, 1) reaches the unit circle without leaving the wedge {z : | arg(z)| ≤ α}
is at least επ/(2α) (this is easy for α = π/2 and can be established for other α
by considering the map z 7→ zπ/(2α)). Such considerations show easily that
if the configuration of upcrossings of A(0, n) is δ-nice, then with probability
at least c′δc, one can extend the upcrossings up to the circle Cn+1 in such
a way that the extensions first remain in different wedges (and also leave
an empty wedge between them), that all the wedges intersect A(n − 1, n)
only inside the disks of radius δ around the points Bj(T jn) and such that
the obtained configuration of upcrossings of A(0, n + 1) is very nice at the
end. Furthermore, Lemmas 2.1, 2.3 and 2.2 show that we can also impose
that e−L

1
n+1 ≥ c′e−L

1
nδc. Finally, note that the weighted densities of the

endpoints (on these configurations) on Cn+1 are bounded away from zero on
Q. Combining all this, we get that for any (z1, z2) ∈ Q,

βδn+1(z1, z2) ≥ c′δcbδn = c′′bδn (4.5)
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(recall that δ is fixed). Now we consider Brownian upcrossings B1 and B2 of
A(0, n+ 1 + 1 + n′) that are decomposed as follows: A Brownian upcrossing
of A(0, n+1), an intermediate part and a final Brownian upcrossing of A(n+
1, n + 1 + 1 + n′). By restricting ourselves only to the cases where the first
parts create a δ-nice configuration at the beginning and are very nice at the
end, where the intermediate parts are of diameter smaller than δen+1/10 and
where the final parts are very nice at the beginning and δ-nice at the end,
using Lemmas 2.1, 2.3 and 2.2 again, we get that

bδn+n′+2 ≥ cbδnb
δ
n′

for some c(δ) (we omit the details here). This establishes (4.1) and finishes
the proof of the upper bound.

5 Non-intersection probabilities

We now show how the preceeding results (and in particular the strong ap-
proximation for bδn) can be used to derive Theorem 1.1, and “up-to-constants
estimates” for other quantities closely related to an and bn.

Proof of Theorem 1.1. Let Bjr = Y j[Sjr , T
j
r ] denote the traces of the

upcrossings. For the upper bound, it suffices for example to remark that

Zr(Y1
r ,Y2

r ) ≤ P[B0
r ∩ (B1

r ∪ B2
r) = ∅ | B1,B2]

×P[Y 0[T 0
0 , S

0
r ] does not disconnect C0 from infinity]

×1
Y 1[T 1

0 ,S
1
r ] and Y 2[T 2

0 ,S
2
r ] do not disconnect C0 from Cr .

The first term is bounded above by cre−L. The second term is bounded by a
constant times 1/r. The last event is independent of L and has probability
bounded by cr−2. Therefore E[Zλ

r ] ≤ cbr.
For the lower bound, it suffices to use the lower bound for bδn and to realize

the Brownian paths Yj ’s using a Brownian crossing of the annulus together
with initial parts Y j[T j0 , S

j
n] of small diameter.

Note that the estimates (3.1) and (3.5) of [10] follow similarly. Analo-
gously, one can derive up-to-constants estimates if we prescribe the starting
points of Y 1, Y 2 and/or of Y 0 on the unit circle. For instance, if we define

Ẑn(Y1
n,Y2

n) = sup
z∈C0

P[Y0
n ∩ (Y1

n ∪ Y2
n) = ∅ | Y 0(T 0

0 ) = z,Y1
n,Y2

n]
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and
ân = sup

z1,z2∈C0
E[(Ẑn)λ | Y 1(T 1

0 ) = z1, Y
2(T 2

0 ) = z2],

Then an ≤ ân and a simple application of the strong Markov property shows
that ân ≤ can−1. In particular,

c′1e
−nξ(2,λ) ≤ ân ≤ c′2e

−nξ(2,λ),

for appropriately chosen c′1, c
′
2.

6 Separation lemma

In this section, we prove an important lemma that states that no matter
how bad O1

n is, then there is a good chance (with respect to the normalized
measure weighted by exp(−λL1

n+1)) that O1
n+1 is very nice at the end as

defined in Section 4.2. This lemma was the starting point for previous proofs
of ‘up-to-constants’ estimates, see [4]. While we do not need this lemma to
establish the estimates in this paper, we do use the lemma in [10] to prove
analyticity of λ 7→ ξ(2, λ) (which was used to determine the disconnection
exponents). For this reason, we include a proof here.

We use the notation of Section 4.2. We suppose that the upcrossings
B1, B2 of A(0, r) are defined in a compatible way in terms of Bessel pro-
cesses i.e., that both B1 and B2 are defined up to infinite time and that the
upcrossings B1(0, T 1

r ) and B2(0, T 2
r ) define the configuration at radius er (O1

r

and L1
r are then defined in terms of these configurations). Fr will denote the

σ-field generated by these two paths. Recall that for all r′ > r, condition-
aly on Fr, the law of Bj[T jr , T

j
r′] is that of a Brownian motion started from

Bj(T jr ) conditioned to hit Cr′ before C0.
Define the event ∆(r, δ) that the configuration in A(0, r) in δ-nice at the

end, and the event Gr that it is very nice at the end.

Lemma 6.1 (Separation Lemma). There exists c > 0 such that for all
n ≥ 1, for all λ ∈ (0, λ0],

E[1Gn+1e
−λL1

n+1 | Fn] ≥ cE[e−λL
1
n+1 | Fn]. (6.1)

Proof. We start by noting that estimates for Brownian motion in wedges
show, just as for (4.5), that there exist c, c′ such that for any ‘stopping radius’
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τ (i.e., stopping time for the filtration (Fs)s≥0), such that τ ∈ [n, n + 1/4]
almost surely,

E[1Gn+1e
−λL1

n+1 | Fτ ] ≥ c′δce−λL
1
τ1∆(τ,δ) (6.2)

(because if the configuration is δ-nice at radius τ , then one can extend it in
such way that it is very nice at radius n + 1). Hence it suffices to find δ0, c′′

and such a stopping radius τ such that

E[e−λL
1
τ1∆(τ,δ0) | Fn] ≥ c′′E[e−λL

1
τ | Fn]. (6.3)

For any positive integer m, let

τm = inf{s ≥ 0 : L1
n+s =∞ or ∆(n+ s, 2−m)}.

Note that if L1
n < ∞, then (up to a set of zero probability) τl = 0 for all

large enough l.
From the definition of δ-nice configurations, it is not difficult to see that

there exists m0 and ρ > 0 such that for all m ≥ m0,

P[τm ≤ 2−m/20 | Fn] ≥ ρ.

By iterating, we see that

P[τm ≥ m22−m/20 | Fn] ≤ e−am
2

,

for some positive constant a, and hence for all m ≥ m0,

E[e−λL
1
τm1τm≥m22−m/20 | Fn] ≤ e−am2

e−λL
1
n.

On the other hand, using estimates in wedges again, we see that for m ≥ m0,

E[e−λL
1
τm | Fn] ≥ c2−a

′m1∆(n,2−m−1)e
−λL1

n

so that there is a summable sequence {hm} such that

1∆(n,2−(m+1))E[e−λL
1
τm1τm≥m22−m/20 | Fn] ≤ hmE[e−λL

1
τm | Fn].

Similarly (starting at radius n+ τm+1 instead of n),

E[e−λL
1
τm1τm≤r(m) | Fn+τm+1 ] ≥ (1− hm)E[e−λL

1
τm | Fn+τm+1 ] 1τm+1≤r(m+1),

where r(m) =
∑∞

l=m l
22−l/20. If we let m be the smallest integer such that

r(m) < 1/4 and hl < 1 for all l ≥ m, then we get (6.3) with τ = n+(τm∧1/4),
δ0 = 2−m and c′′ =

∏∞
l=m(1− hl).
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If 1 ≤ n ≤ m, let

Rn,m = e(m−n)ξE[e−λLm | Fn] and R∗n,m = e(m−n)ξE[e−λLm1Gm | Fn].

Then, it follows from the lemma that there exists constants c5, c6 such that
for all m ≥ n+ 1,

R∗n,m ≤ Rn,m ≤ c6R
∗
n,m,

c5R
∗
n,n+1 ≤ Rn,m ≤ c6R

∗
n,n+1. (6.4)

This result is used in [10].

In [4, 10] it is in fact shown that the limit Rn = limm→∞Rn,m exists and
that

Rn,m = Rn[1 + εn,m],

where |εn,m| ≤ c1e−mc2 and c1, c2 depend only on λ0. Also, the limit

r = r(λ) = lim
n→∞

enξ(2,λ)bn

exists and

bn = re−nξ(2,λ)[1 + εn]

where |εn| ≤ c1e−mc2 .

7 Other exponents and exact values

The exponents ξ(2, λ) comprise just one family of Brownian intersection ex-
ponents. The proofs apply with minor modifications to these other expo-
nents. We review the results here.

Let p̄ = (p1, . . . , pl) be an l-tuple of positive integers and let λ̄ = (λ1, . . . , λl)
be an l-tuple of positive real numbers. Let

Y j,k
t , j = 1, 2, . . . , l, k = 1, 2, . . . , pj ,

be independent Brownian motions starting uniformly on C0. As before, let

T j,kn = inf{t > 0 : Y j,k
t ∈ Cn}.
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For any j = 1, . . . , l, define

Pjn =

pj⋃
k=1

Y j,k[0, T j,ln ].

Let En,p̄ be the event that the l packets of Brownian motions P1
n, . . . ,P ln

are disjoint and are ordered clockwise around the origin (i.e., that their in-
tersection with Cn are ordered clockwise on Cn). For each k = 1, . . . , l,
let Zk

n = Zk
n(P1

n, . . . ,P ln) denote the probability that a Brownian motion Y
started uniformly on the unit circle reaches Cn without intersecting ∪lj=1Pjn,
and in such a way that the endpoint of Y , Cn∩Pkn and Cn∩Pk−1

n are ordered
clockwise on the Cn (where P0

n = P ln). We then define

bn(λ1, p1, λ2, . . . , pl) = E[1En,p̄

l∏
j=1

(Zj
n)λj ].

Theorem 7.1. For every finite integers M and l, there exist constants 0 <
c1 < c2 <∞ such that the following is true. For all positive integers p1, . . . , pl
that are smaller than M , for all positive reals λ1, . . . , λl that are smaller than
M , there exists ξ = ξ(λ1, p1, . . . , λl, pl) such that for all n ≥ 1,

c1e
−ξn ≤ bn(λ1, p1, . . . , pl) ≤ c2e

−ξn.

Note (see [5]) that ξ(λ1, p1, λ2, . . . , λl, pl) is unchanged if we change the
order of the p’s and the λ’s. Hence, all bn’s (for different orderings of the p’s
and the λ’s) are multiplicative constants away from each other.

There are also other exponents called the half-space exponents (see [5] for
a precise definition). The methods of the present paper apply also for these
exponents. We leave the detailed statement to the interested reader.

Nowhere in this paper have we used the exact values of the exponents.
Rigorous determination of these values is the subject of the papers [7, 8, 9, 10].
In those papers we prove that

ξ(p1, λ1, . . . , pl, λl) = V [U(p1) + U(λ1) + · · ·+ U(λl)],

where

U(x) =

√
24x+ 1− 1√

24
and V (x) =

6x2 − 1

12
.

In particular,

ξ(2, λ) =
λ

2
+

11

24
+

5

24

√
24λ + 1.
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to appear.

[10] G.F. Lawler, O. Schramm, W. Werner (2000), Analyticity of planar
Brownian intersection exponents.
http://arxiv.org/abs/math.PR/0005295.

[11] G.F. Lawler, O. Schramm, W. Werner (2000), The dimension of the
planar Brownian frontier is 4/3, Math. Res. Lett., to appear.

[12] Pommerenke, Ch. (1992), Boundary Behaviour of Conformal Maps,
Springer-Verlag

[13] D. Revuz, M. Yor (1991), Continuous martingales and Brownian motion,
Springer.

21



Greg Lawler
Department of Mathematics
Box 90320
Duke University
Durham NC 27708-0320, USA
jose@math.duke.edu

Oded Schramm
Microsoft Corporation,
One Microsoft Way,
Redmond, WA 98052; USA
schramm@microsoft.com

Wendelin Werner
Département de Mathématiques
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