Dynamic Points-To Sets. A Comparison with Static Analyses and Potential
Applicationsin Program Under standing and Optimization

Markus Mock”, Manuvir Das*, Craig Chambers', and Susan J. Eggers’

"Department of Computer Science and Engineering
University of Washington
Box 352350, Seattle WA 98195-2350
{mock, chambers, eggers} @cs.washington.edu

*Microsoft Research
Redmond, WA 98052
manuvir@microsoft.com

UW CSE Technical Report 01-03-01
Microsoft Research Technical Report MSR-TR-2001-38
March 2001

Dynamic Points-To Sets: A Comparison with Static Analyses and Potential
Applicationsin Program Under standing and Optimization

Markus Mock”, Manuvir Das*, Craig Chambers', and Susan J. Eggers’

*Department of Computer Science and Engineering
University of Washington
Box 352350, Seattle WA 98195-2350
{mock, chambers, eggers} @cs.washington.edu

Abstract

In this paper, we compare the behavior of pointers
in C programs, as approximated by static pointer
analysis agorithms, with the actual behavior of pointers
when these programs are run. In order to perform this
comparison, we have implemented several well known
pointer analysis algorithms, and we have built an
instrumentation infrastructure for tracking pointer
values during program execution.

Our experiments show that for a number of
programs from the Spec95 and Spec2000 benchmark
suites, the pointer information produced by static
pointer analyses is far worse than the actual behavior
observed a run-time. These results have two
implications. First, a tool like ours can be used to
supplement static program understanding tools in
situations where the static pointer information is too
coarse to be usable. Second, a feedback-directed
compiler can use profile data on pointer values to
improve program performance, by ignoring aliases that
do not arise at run time (and inserting appropriate run-
time checks to ensure safety). For example, we were
able to obtain a factor of 6 speedup on a frequently
executed routine from m88ksim.

1. Introduction

Many programming languages in use today, such as
C, dlow the use of pointers. Pointers are used
extensively in C programs to simulate call-by-reference
semantics in procedure calls, to emulate object-oriented
dispatch via function pointers, to avoid the expensive
copying of large objects, to implement list, tree, or other
complex data structures, and as references to objects
allocated dynamically on the heap. While pointers are a
useful and powerful feature, they also make programs
hard to understand, and often prevent an optimizing
compiler from making code-improving transformations.

In an attempt to compensate for these negative
effects, many pointer analysis algorithms have been
devised over the past decade
[1,3,4,6,7,10,11,16,18,19,20]. These algorithms try to
give a conservative approximation of the possible sets
of variables, data structures, or functions a particular
pointer could point to at a specific program point; these
are referred to as points-to sets. These sets can be used,
for instance, by an optimizing compiler to determine

*Microsoft Research
Redmond, WA 98052
manuvir@microsoft.com

that two expressions might be aliased, i.e., refer to the
same object.

Severa classes of pointer analysis algorithms have
been designed. While flow- and context-sensitive
agorithms potentially produce more precise results,
they generally do not scae well. In addition, recent
work [5,9] suggests that for typical C programs (e.g.
SPEC benchmarks) Das's fast and highly scalable
agorithm produces results as good as those of a context-
sensitive a gorithm. However, even its points-to sets are
often still on the order of tens or even hundreds of
objects. Clearly, such points-to sets are too large to be
very useful in a program understanding tool, where the
user might like to know what objects a pointer store
might modify.

Instead of designing yet another pointer analysis
algorithm, we wanted to find out how well the statically
computed pointsto set agree with actual program
behavior, i.e., how many different objects are referenced
a a particular pointer dereference compared to the
number of objects in the points-to set computed by a
state-of-the-art pointer analysis agorithm. Dynamic
points-to sets may tell us how close actual algorithms
are to the theoretical opti mum?, and they can aso be
used to improve program understanding tools, and
enable dynamic optimizations that take alias
relationships into account.

For example, instead of presenting the user with
hundreds of potential candidate targets of a pointer
dereference * p, the program understanding tool could
use the dynamically observed targets of * p and present
those to the user; in addition, when the static and
dynamic sets agree, it could also inform the user that the
static information is in fact optimal and not just a
conservative approximation. Moreover, in some
situations the potentially unsound dynamic sets are
more useful for program understanding than optimal
points-to sets: if the user is interested in what a pointer
pointed to in aparticular program run, for instance when
debugging a program, it is actualy more useful to

1 Since the dynamic pointsto set sizes may be distinct for
different inputs, they are potentially unsound and could be
smaller than the optimal sound solution, which in general is
not computable, since pointer-analysis has been shown to be
undecidable [15]. For programs exercising alarge fraction of
their execution paths, such as the SPEC benchmarks,
however, we expect the dynamic sets to be not much smaller
than an optimal solution.

present only the dynamically observed targets rather
than all potential targets for al possible executions as
an optimal (undecidable) static analysis would.

To obtain dynamic points-to information in this
study, we used a slightly modified version of the Calpa
instrumentation tool [13] to observe the dynamic
points-to sets of a set of programs taken from the
SPEC95 and SPEC2000 benchmark suites. The static
average points-to set sizes ranged from 1.0 to 21.2 for
the best of the scalable static pointer analysis algorithm
we used, while the dynamic points-to set sizes were on
average (geometric mean) a factor of 3.3 smaller.
Additionally, for the large majority (over 98%) of
dereferences the dynamic points-to sets were actualy
singletons. This means that in 98% of the time a tool
similar to ours integrated into a program understanding
tool, would be able to exactly tell the user the target of a
dereference, a much higher fraction than what is
possible with static analysis aone (41% of
dereferences) demonstrating the substantial benefit to
program understanding systems.

Furthermore, dynamic optimizers can take
advantage of the fact that a dereference accesses only
one object at run time. Having smaller dynamic points-
to sets may cause fewer expressions to be aliased in a
program, which may allow the optimizer do a better
job; Section 2 shows an example of exploiting dynamic
aliasinformation and the ensuing performance benefits.

This paper makes the following contributions:

* wepresent atool to observe points-to information at
run time;

* we show that dynamic pointsto sets are almost
always (98% of thetime) of size 1, with the average
size being close to 1 across all dereferences
executed at run time, even though the static points-
to sets are an order of magnitude larger in general;

e we show that these results can be used to improve
both program understanding tools and dynamic
program optimizers.

The rest of the paper is organized as follows: in
Section 2 we present an example illustrating the
optimization potential of dynamic pointer information.
We describe our instrumentation methodology in
Section 3. Section 4 discusses our experimental results.
Section 5 discusses related work, and in Section we
present our conclusions.

2. Optimization Example

The following example illustrates the potential

benefits of exploiting dynamic pointer information:
void align(uint* low, uint* high, uint*
result, uint diff) {
for (*result = 0; diff>0; diff--) {
*result |= *low & 1;
*|ow >>= 1;
*low | = *hi gh << 31;
*hi gh >>= 1;

The example shows a simplified version of a
routine found in the m88ksim SPEC95 benchmark. The
routine is called from a number of places in the code
and none of the static alias analyses we looked at was
able to determine that at run time the arguments | ow,
hi gh, and result were not aliased. Therefore, a
code optimizer would have to assume, for instance, that
thestore*r esul t might overwrite the value of * | ow,
preventing a register allocation of *1 ow. Similarly
*hi gh or*r esul t cannot be allocated to registersin
routine al i gn, but have to be reloaded from memory
each time.

If dynamic points-to sets are available, however,
and indicate, that | ow, hi gh, and resul t are not
diased, a feedback-directed optimizer could allocate
the arguments to registers, inserting a run-time check to
ensure that the arguments are in fact not aliased. If the
aliasing check fails, the slower code version, where the
arguments are reloaded before each use, would be
executed instead. The resulting code would look as
follows:

void align_opt(uint* low, uint* high,
uint* result, uint diff) {

i f ALI ASED(I ow, high, result) {

/* slow version with reloading */

} else {

/* fast register-allocated version*/

}

Note that dynamic pointsto information is
required to ensure that this transformation will be
beneficial. The execution time penalty incurred by the
run-time check that assures soundness will only be
recouped if the faster code version is selected
sufficiently often at run time, which is unknown in the
absence of profile information.

We hand-simulated register-allocation for the
example by loading the arguments into local variables
and storing them back before procedure return. To
make the transformation sound, we also inserted a
check at the beginning of the routineto test whether the
arguments are aliased. On a Compag True64 Unix
workstation with an Alpha 21264 processor running at
667 Mhz compiled with the vendor compiler and
optimization flags -O2, this resulted in a speedup of

6.2. This speedup clearly demonstrates the potential
benefits of using dynamic pointer information.

3. Instrumentation

We used the Calpa instrumentation tool [13] to
instrument our applications. In the Capa [12,13]
system, the instrumenter is used to obtain a vaue
profile of the variables and data structures of a
program. When a variable or data structure is accessed
via a pointer p, the instrumenter inserts a cal to a
runtime library function that compares the pointer
value to the addresses of potential target data structures
or variables for that pointer dereference; the potential
target objects are identified by a static dias analysis
that is run before the instrumenter. Once the actual
target object has been identified, the object’s vaue
profile is updated.

For this study we changed the instrumenter to
simply count how often each potential target object of a
pointer dereference was accessed during a program run.

For this purpose the instrumenter inserts an array
of counter variables at each load or store instruction; a
distinct array variable is created for each dereference
point, and its size is made equal to the size of the static
pointsto set a the particular dereference. The
instrumenter also inserts a call to a library routine that
matches the pointer address with the addresses of the
potential target objects at the dereference. At run-time
this matching routine returns an integer which
identifies which object matched, and the corresponding
counter isincremented. For example, apointer store* p
= val ischanged to:

tenp = match_object(p, object_addrs[]);
counter[tenp] ++;
*p = val

where obj ect _addrs[] is a data structure
created and updated by code inserted by the
instrumenter to always contain the addresses of the
variables or data structures that p might refer to at that
point. For example, if the static pointsto set sizefor p
is{x, y, z},object_addrs[] would contain
{&, &y, &z}; both object_addrs[] and
count er are specific to the particular program point?.

Once the program has finished, the contents of all
counter variables are written out to disk. Using a map
file that maps a particular counter variable to the
corresponding static points-to set, the dynamic points-
to set is computed as the set of objects that had a non-
zero counter value. For instance, if the values of the

1 To be able to match data structures on the heap, the
instrumenter instruments calls to memory allocation
routines such as mal | oc, associating the returned address
with the allocation site (for which the alias analysis created
adistinct symbol).

counter array in the example are {0, 100, 200},
we know that variable x was never accessed, y was
accessed 100 times, and variable z 200 times at that
dereference. Therefore, the dynamic points-to set for
*p would be {y, z} with a dynamic points-to set size
of 2.

Since the counters also tell us how often a
particular dereference was executed (in the example
300 times), we can use these execution frequencies to
compute a weighted average of all dereferences
executed in the program. For instance, there is only one
other dereference *q in the program which is executed
200 times and has a dynamic points-to set size of 1, the
(unweighted) points-to average would be 1.5, whereas
the weighted average would be 1.6. Since this measure
gives more importance to heavily executed
dereferences, the weighted average may be more
significant in a context where not only the points-to set
size but also the execution frequency is relevant, for
instance in dynamic optimizations.

4. Experiments

To compare static and dynamic points-to sets, we
first ran an alias analysis on each application. We used
the fast and scalable agorithms proposed by
Steensgaard [18] and Das[4], as well as an extension of
Steensgaard’s algorithm proposed by Shapiro and
Horwit [16], where feasible within time and memory-
constraints?. Both the points-to algorithms and the
instrumentation tool are implemented using the
Machine SUIF infrastructure [8,17].

For each algorithm we measure the points to set
sizes at each executed dereference point in the program
(aload or a store instruction in the SUIF intermediate
representation), and compute the average over al
dereference points; in addition we compute an average
weighted by the execution frequency of each
dereference.

4.1 Workload

Our workload consists of the SPEC95 (m88ksim,
perl) and SPEC2000 (the others) benchmarks shown in
Table 1. With each benchmark we list a short
description of the benchmark, the number of lines of C
code (in thousands), and the static average dereference
size® for each pointer analysis algorithm.

2 The Shapiro-Horwitz agorithm is parameterized by the
number of symbol categories, and the number of runs. We
randomly assigned symbols to 5 categories, and ran the
algorithm 2 times, taking the intersection of the resulting
points-to sets as the final result.

L Aver age der eference size
Program Description KLOC OLF Steensgaar d Shapiro-Horwitz
equake selsmic wave propagations 12 1.02 1.05 1.02
simulation
art image recognition, neura net- 12 122 1.35 1.09
works
mcf combinatorial optimization 19 2.88 2.88 2.88
bzip2 compression 3.9 1.01 1.88 1.01
gzip compression 7.6 7.42 35.2 244
parser Word processing 10.3 6.74 66.2
vpr FPGA circuit placement and 13.6 251 12.6
routing
m88ksim M otorola 88000 instruction 19.4 5.74 98.2
set simulator
perl perl interpreter 26.8 21.2 56.1
gap group theory interpreter 62.5 88.5

Table 1. Description of the Workload.

4.2 Dynamic Points-To Sets Results

To obtain the dynamic pointsto sets we
instrumented the applications as described in Section 3.
Then we ran the instrumented applications on the
SPEC-provided test inputs. We chose the test inputs
because the reference inputs take much longer to run,
and since the instrumentation slows down the
applications by about 2 orders of magnitude, running
the reference inputs was generally impractical.
However, we expect the results to be largely unchanged
for the larger reference inputs, which tend to run the
same program parts only more often. To confirm this
intuition, we ran bzip2 and mcf aso on the reference
inputs, and found the results to be same.

One of the most striking results of our experiments
is shown inTable 2, which shows the number of points-
to setsthat were singletons, i.e., that had asize of 1. For
the dynamic pointsto sets 90% to 100% were
singletons, with an average of 98% of all sets being
singletons. This means that in almost al cases a
program understanding tool that uses the dynamic
information could present the user with a single target
of a pointer dereference.

The number of singleton sets produced by static

3 The points-to set sizes that we report for Steensgaard’s and
Das' algorithm, are dightly different to the ones reported in
[4]. The differences come from a number of sources: (1) We
use a different intermediate representation for the C
programs. In particular, a structure field access s. f
typically creates a pointer dereference in our representation
but not in Das'. (2) We include one representative object for
al references to string constants which are not included in
Das's numbers, and (3) we include points-to set of calls
through function pointersin our counts.

anaysis is generally much smaller. For the OLF
algorithm, with the exception of bzip2 and equake,
where the number of dynamic and static singleton sets
differs only by 2, the number of singleton sets is a
factor of 1.3 to 10.2 smaller, representing only from
9.6% to 99.5% of all executed dereferences, with an
average percentage of singleton sets of 41%. For the
remaining 59% of dereferences, a program
understanding tool, or an optimizer with purely static
information, would deal with uncertainty (sets of size 2
or larger).

In Table 3 we compare the average sizes of the
dynamically observed pointsto sets for each
application with the average sizes of the static sets.
Whilein Table 1 the static points-to set sizes include all
dereference points, in Table 3 only those dereference
points are included, that were actually executed. This
dlows a comparison with dynamic points-to sets,
which are determinable only at executed dereferences.
We show average pointsto sets sizes, and (in
parentheses) a weighted average points-to-set size,
weighted by the execution frequency of each
dereference.

While the average dynamic points-to set sizes are
very close to 1, ranging from 1 to a maximum of 1.18,
the averages produced by static analyses are much
higher. For the generally most precise analysis, Das
One-Level Flow algorithm, the sizes were from 2.8 to
20 times larger, with the notable exception of bzp2 and
equake, where the OLF algorithm was able to produce
the same (bzip2) or almost the same (equake) result as
the dynamic points-to sets. On average the static points-
to sets were a factor of 3.3 larger (geometric mean).
Comparing the weighted average points-to sets sizes

improves the ratios for some programs (equake, art,
mcf, parser), whereas they get worse or stay the same
for the others. Figure 1 shows the unweighted average
points-to set sizes for the OLF agorithm and the
dynamic set sizes pictorially.

In the comparison of static to dynamic points-to set
sizes, Steensgaard’s algorithm fared much worse, with
ratios ranging from 1.8 to 88. Weighting the sizes by
the execution frequency had the same effect on the
ratios as for the OLF algorithm.

In general, the Shapiro-Horwitz algorithm
produced points-to sets larger than the OLF agorithm,
but smaller than the sets produced by Steensgaard.
Table 3 includes the numbers for those benchmarks for
which we were able to run the algorithm to completion
before running out of memory.

Number of Number of Percentage of

Program static dynamic . dynamic
. . singleton sets

singleton sets | singleton sets (weighted)
equake 393 395 100 (100)
art 92 124 100 (100)
mcf 171 431 100 (100)
bzip2 401 403 100 (100)
gzip 151 407 90.4 (97.1)
parser 448 2375 96.3 (87.7)
vpr 772 1773 98.0 (87.7)
m88ksim 576 1233 93.2 (99.3)
perl 169 1719 97.9 (95.3)
gap? 6690 99.7 (99.5)

Table2. Number of dereferenceswith
singleton dynamic points-to sets and
per centage of total dereferences

a.Dueto amemory leak bugin our OLF alias analysis, we
are unable to report OLF numbers for gap at this tim.
However, we'll have those numbers for the final version
of the paper, where we also plan to include at least one
other large application (mesa).

To find out how often the dynamic points-to
information may allow to establish that static points-to
sets are optimal, we counted the number of statically
computed sets that were identical to the dynamic sets.!
With the exception of bzip2 and equake, for which at
least 99.5% of the dereferences were optimal, the
percentages ranged from 74.2% (art) down to 9.8% for
perl, with an averge of 51.9% of optimal static points-
to sets. Consequently, for about one out of two

1 As mentioned in the introduction, the dynamic sets may be
smaller than the optimal setsif they are unsound. However,
static points-to sets that are equa to their dynamic
counterpart, must definitely represent optimal information.

dereferences a tool like ours would be able to establish
the optimality of the statically computed information

5. Related Work

As far as we know, our work represents the first
application of program instrumentation to observe
points-to sets at run time and compare them to their
static equivalents.

Previouswork in dynamic memory disambiguation
[2] attempted to improve execution time for numeric
programs with array accesses. They used compile-time
heuristics to select inner loops that might benefit from
optimization assuming no aliasing. Such loops are
duplicated, and at run time an aliasing check selects the
appropriate code version. To avoid slowdowns, their
heuristic had to be conservative, consequently, their
approach often achieved no speedups. Dynamic
diasing data is likely to expose many more
optimization opportunities than a purely static heuristic
alone.

Recently, Postiff et a. [14] have proposed a
hardware extension for processors to support register
alocation of variables that may possibly be aiased.
Using ahardware table and compiler support, loads and
stores to register-allocated aiased variables are
forwarded to the register in which they are allocated. In
their simulation they found areduction of up to 35% of
the loads and 15% of the stores. While their scheme
requires a change in the processor hardware, the
scheme we sketched in Section 2 requires no hardware
modifications.

Daset a. [5] looked at lower and upper bounds for
the number of possibly aliased data references in
procedures. Using pointsto sets to compute alias
relationships, they were able to show that with existing
static, scalable analyses the number of references
reported as aliased is very close to the lower bound.
However, they did not look dynamic points-to sets, and
their potential uses.

6. Conclusions

In this paper we have presented a comparison of
pointer analysis information produced by static
analyses and actual dynamically occurring behavior.
Using a sdlightly modified instrumentation tool
developed in the context of the Capa system, we

25

20 m Dynamic]
mOLF
15
10
5
o _
X < Q e
\@ fbi\' @) Qq/ L (%) \\Q \(Q QJ\ ’OQ)
> & N e S >
e& NS Qrg} %CS"‘ T O q;\Q}
<

Figure 1. Comparison of average static and dynamic points-to set size for each benchmark,

and the average over all benchmarks.
observed dynamically occurring points-to sets. We

Program Average Dynamic Static Size of Executed Dereferences ‘ ‘
Dereference Size | One-Level Flow Steensgaard Shapiro-Horwitz
equake 1(2) 1.01 (1.00) 1.02 (1.00) 1.01 (1.00)
art 10 1.26 (1.11) 1.37 (1.20) 1.15 (1.00)
mcf 1(2) 2.81 (2.63) 2.81(2.63) 2.81(2.63)
bzip2 10 1.00 (1.00) 1.82(1.23) 1.00 (1.00)
gzip 1.18 (1.06) 8.44 (7.85) 38.6 (49.8) 27.8 (37.6)
parser 1.12 (1.68) 6.81 (8.38) 66.6 (68.7)
vpr 1.03(1.01) 2.63 (2.95) 13.1 (15.9)
m88ksim 1.11(1.01) 6.3 (10.6) 93.3(137.8)
perl 1.04 (1.06) 21.2 (22.9) 57.3 (59.0)
gap 1.01 (1.03) 88.5(88.8)

Table 3. Dynamic ver susstatic points-to set Size average; averagesweighted by execution
frequency are shown in parentheses.

found that while static points-to sets even for the best
scalable algorithm are on the order of tens or hundreds
of objects per dereference, the actual dynamically
occurring sets are much smaller, with 98% of the sets
being singletons, and average sizes close to 1. This
suggests that a tool like ours can be used to supplement
program understanding tools and significantly enhance
their usefulness by improving on purely static
information. Furthermore, profile data on pointer
values can be exploited in feedback-directed
optimization with potentially high performance
benefits.
Acknowledgements

We would like to thank Mike Smith and Glenn

Holloway for Machine SUIF and technical help using
it.
References

[1] L. Anderson. Program Analysis and specialization for the C
programming language. Ph.D. thesis, DIKU, University of
Copenhagen, May 1994. DIKU report 94/19.

[2] D. Bernstein, D. Cohen, and D. E. Maydan. Dynamic memory
disambiguation for array references. In Proceedings of the 27th
international symposium on Microarchitecture, pages 105-111,
1994,

[3]. D. Chai, M. Burke, and P. Carini. Efficient flow-sensitive
interprocedural computation of pointer-induced aliases and side
effects. In 2oth Annual ACM S GACT-SGPLAN Symposium on
the Principles of Programming Languages, pages 232-245, Jan.
1993.

[4] M. Das. Unification-Based Pointer Analysis with Directional
Assgnments. In Proceedings of the ACM SIGPLAN '00
Conference on Programming Language Design and
Implementation, pages 35-46, June 2000.

[5] M. Das, B. Liblit, M. Fahndrich, and J. Rehof. Estimating the
impact of scalable pointer analysis on optimization. Microsoft
Research Technical Report 2001-20. 2001.Submitted to SAS
2001.

[6] M. Emami, R. Ghiya, and L. J. Hendren. Context-sensitive
interprocedural points-to analysis in the presence of function
pointers. In S GPLAN ‘94 Conference on Programming
Language Design and Implementation, pages 242-256, June
1994. SIGPLAN Notices, 29(6)

[7] R.Ghiya and L.J. Hendren. Connection analysis. A practical
interprocedural heap analysis for C. International Journal of
Parallel Programming, 24(6):547-578, December 1996.

[8] G.Holloway and C. Young. The flow and analysis libraries of
machine SUIF. In Proceedings of the 2nd SUIF Compiler
Workshop, August 1997.

[9] M. Hind and A. Pioli. Which pointer analysis should | use? In
ACM SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA 2000), pages 113-123, Aug. 2000.

[10]W. Landi and B. Ryder. A safe approximate algorithm for
interprocedural pointer aliasing. In SSGPLAN ‘92 Conference on
Programming Language Design and |mplementation, pages 56-
67, June 1993. SIGPLAN NOtices 28(6)

[11] D.Liang and M. J. Harrold. Efficient points-to analysis for
whole-program analysis. In O. Nierstrasz and M. Lemoine,
editors, Lecture Notes in Computer Science, 1687, pages 199-
215, Springer-Verlag, Sept. 1999. Proceedings of the 7th
European Software Engineering Conference and ACM SIGSOFT
Foundations of Software Engineering.

[12] M. Mock, M. Berryman, C. Chambers, and S.J. Eggers. Calpa: A
tool for automating dynamic compilation. In 2nd Workshop on
Feedback-Directed Optimization, November 1999.

[13] M. Mock, C. Chambers, and S. J. Eggers: Calpa: A Tool for
Automating Selective Dynamic Compilation. In Proceedings of
the 33rd Annual Symposium on Microarchitecture, pages 291-
302, Dec. 2000

[14] M. Postiff, D. Greene, and T. Mudge. The store-load address
table and speculative register promotion. In Proceedings of the
33rd Annua Symposium on Microarchitecture, pages 235-244,
Dec. 2000

[15]G. Ramaingam. The undecidability of aliasing. ACM
Transactions on Programming Languages and Systems,
16(5):1467-1471, Sept. 1994

[16] M. Shapiro and S. Horwitz. Fast and Accurate Flow-Insensitive
PointsTo Analysis. In Conference Record of POPL '97:
Symposium on Principles of Programming Languages, January
1997.

[171M. D. Smith. Extending SUIF for machine-dependent
optimizations. In Proceedings of the first SUIF compiler
workshop, pages 14-15, 1996.

[18] B. Steensgaard. Points-to anaysis in amost linear time. In
Symposium on Principles of Programming Languages, pages
32-41, January 1996.

[19] R.P. Wilson and M. S. Lam. Efficient context-sensitive pointer
analysis for C program. In SIGPLAN ‘95 Conference on
Programming Language Design and Implementation, pages 1-
12, June 1995. SIGPLAN Notices, 30(6)

[20] S. H. Yong, SHorwitz, and T. Reps. Pointer analysis for
programs with structures and casting. In SIGPLAN ‘99
Conference on Programming Language Design and
Implementation, pages 91-103, 1999.

