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| ncremental Motion Estimation through L ocal Bundle Adjustment

Abstract

We propose a new incremental mation estimation algorithm to deal with long image sequences. It
applies to a diding window of triplets of images, but unlike previous approaches, which rely on point
matches across three or more views, we also use those points shared only by two views. This is
important because matches between two views are more common than those across more views. The
problemisformulated as a series of local bundle adjustments in such a way that the estimated camera
motions in the whole sequence are consistent with each other. Two implementations are described.
The first is an exact one, which, based on the observation of the sparse structure of the adjustment
network, embeds the optimization of 3D structure parameters within the optimization of the camera
pose parameters. This optimization embedding considerably reduces the minimization complexity.
The second is a mathematical procedure which transforms the original problem involving both 3D
structure and pose parameters into a much smaller one, a minimization over just the camera’'s pose
parameters. This leads to an even higher computational gain. Because we make full use of local
image information, our technique is more accurate than previous incremental techniques, and is very
closeto, and considerably faster than, global bundle adjustment. Experiments with both synthetic and
real data have been conducted to compare the proposed technique with other techniques, and have
shown our technigue to be clearly superior.

Keywords: Motion analysis, incremental estimation, bundle adjustment, first order approximation, optimiza-
tion embedding.

1. Introduction

In this paper, we deal with the problem of motion and structure estimation from long i mage sequences,
assuming that feature correspondences (point matches in our case) across all images have been estab-
lished. Sequential matchers have proven to be the most successful (seee.g. [17, 3, 10, 23]), but thisis
not the topic of this paper. It issufficient to say here that we do not assume that a point feature appears
in all images. The length of a point track can be any value equal or larger than 2.

The optimal way to recover motion and structure from long sequences is to use bundl e adjustment
which involves minimization of reprojection errors [6, 12, 10]. The reader is referred to [20] for
an excellent survey of the theory of bundle adjustment as well as many implementation strategies.
However, bundle adjustment does not give adirect solution; it isarefining process and requires agood
starting point. The starting point can be obtained with some sub-optimal incremental approaches to
be mentioned below. Incremental approaches usually are also preferable for time-critical applications
because bundle adjustment is computationally more expensive.

If aparalel projection model is used (e.g., orthographic, weak perspective or affine cameras), a
direct and optimal solution can be obtained through the factorization method [19, 14]. However, al
features are assumed to be observed in every image throughout the sequence, although the missing
point problem is tackled in [9]. Note that factorization-like techniques have also been developed
for general perspective cameras [18, 8], but they only minimize an algebraic error and are thus not
optimal.

There are mainly two categories of incremental techniques. The first is based on Kalman filter-
ing [24, 2, 11, 21]. Because of the nonlinearity between motion-structure and image features, an
extended Kalman filter isused. The final result then depends on the order in which the image features



are supplied, and the error variance of the estimated motion and structure is usualy larger than the
bundle adjustment.

The work to be described in this paper falls into the second category which can be called subse-
guence concatenation, and our work is closely related to [1, 4]. Avidan and Shashua [1] proposed
a “threading” operation that connects two consecutive fundamental matrices using the trifocal ten-
sor [16]. The threading operation is applied to a sliding window of triplets of images, and the camera
matrix of the third view is computed from at least 6 point matches across the three views and the
fundamental matrix between the first two views. Because of use of algebraic distances, the estimated
motion is not statistically optimal. Fitzgibbon and Zisserman [4] also proposed to use sub-sequences
of triplets of images. The difference is that bundle adjustment is conducted for each triplet to estimate
the trifocal tensor and successive triplets are stitched together into a whole sequence. A fina bundle
adjustment can be conducted to improve the result if necessary. Two successive triplets can share zero,
one or two images, and the stitching quality depends on the number of common point matches across
six, five or four images, respectively. The number of common point matches over a sub-sequence de-
creases as the length of the sub-sequence increases; this means that the stitching quality islower when
the number of overlapping images is smaller. Furthermore, with two overlapping images, there will
be two inconsistent camera motion estimates between the two images, and they resort to an additional
nonlinear minimization to maximize camera consistency.

As mentioned above, the two pieces of work on subsequence concatenation rely on point matches
across three or more views. Point matches between two views, although they are more common,
are ignored. In this paper, we propose a new incremental structure-from-motion algorithm which
also works on a dliding window of triplets of images, but unlike [1], we also take into account those
points that only match across two views. Furthermore, the motion islocally estimated in astatistically
optimal way. We adapt three-view bundle adjustment to our incremental estimation problem, and call
the new formulation local bundle adjustment. Experimental results show that our new incremental
algorithm gives better results than previous incremental algorithms, and gives results very close to
those obtained with the global bundle adjustment but in a fraction of time (in an experiment with 61
images, again of almost 700 times was observed).

An obvious alternative for incremental motion estimation is to apply two-view structure-from-
motion recursively to a long sequence. As we will demonstrate experimentally, use of triplets of
images rather than pairs of images gains considerable robustness. This is because a point match
across three views provides three constraints on camera motions if they are considered integrally, but
only two if they are considered as two consecutive pairs.

A good incremental motion estimation algorithm is very important for many applications:

e Anobvious application isto supply agood starting point for the global bundle adjustment which
isahighly nonlinear refining process.

e Inmany time-critical applications such asvisual navigation, we are not afford to aglobal bundle
adjustment.

e When an image sequence is dominated by short feature tracks (i.e., overlap between succes-
sive images is small), the globa optimization degenerates into several weakly correlated local
processes. The local bundle adjustment is close to be optimal.

¢ In some computer graphics applications, local consistency is more important than global con-
sistency [15]. For example, dueto errorsin calibration and feature detection, aglobal 3D model
may be not good enough to render photorealistic images. Approaches such as “view-dependent
geometry” which rely on local 3D model may be preferable. Our algorithm should be very
useful in this area.



The remaining paper is organized as follows. Section 2 states the problem we want to solve
and describes the local bundle adjustment. Section 3 describes two techniques to speed up the local
bundle adjustment by taking advantage of the sparse structure of the adjustment network [20]. The
first, called optimization embedding, isto embed the optimization of structure parameters in the opti-
mization of the camera's motion/pose parameters. The second isto eliminate all structure parameters
through linearization. Both techniques transform the original local bundle adjustment involving both
3D structure and pose parameters into a much smaller problem. We provide the experimental results
in Section 4.

2. Problem Statement and L ocal Bundle Adjustment

In this section, we first introduce the notation, provide an overview of our incremental motion estima-
tion algorithm, and finally focus our effort on local bundle adjustment for three views.

2.1. Notation

An image point is denoted by p = [u,v], and a point in space is denoted by P = [X,Y, Z]''. For
homogeneous coordinates, we usex = [x!, 1] for any vector x.

Image I; is taken by a camera with unknown pose parameters M which describes the orientation
(rotation matrix R;) and position (trandation vector t;) of the camera with respect to the world co-
ordinate system in which 3D points are described. The relationship between a 3D point P and its
projection p; inimage 4 is described by a3 x 4 projection matrix P;, and is given by

sp; = P;P, (1)

where s isanon-zero scale factor. In general, P; = A;[R; t;], wherethe 3 x 3 matrix A; contains the
camera'sinternal parameters. If the camerais calibrated (A; isknown), we can work with normalized
image coordinates and set A; to the identity matrix. In the following discussion, it is sometimes more
convenient to describe the nonlinear projection (1) by function ¢ such that

pi = ¢(M;,P) . (2

To be generdl, if some camera parameters such as focal length is unknown, then the pose parameter
vector M; should also include them, besides the 3 parameters for rotation and the 3 parameters for
trangdlation.

2.2. Overview of the Incremental Motion Estimation Algorithm

Given animage sequence {;|i = 0, ..., N —1}, points of interest are extracted from each image using
for example Harris' corner detector [5]. Point matches between successive images are established with
any technique mentioned for example at the beginning of the introduction. Our algorithm for motion
estimation works as the follows:

1. Choose the camera coordinate system associated with [ as the world coordinate system, i.e.,
Ry=1 and to = 0.

2. For I;, compute the motion M; using a two-view structure-from-motion technique based on
minimizing reprojection errors.



3. For I; ( > 2), determine the motion M; by applying the local bundle adjustment, to be described
below, to the triplet of (1;_», I;_1, I;). Point matches only shared by two views as well asthose
across three views are used.

Asisclear, this agorithm only determines the motion parameters of one image (the last one) at each
time instant through local bundle adjustment, thus guaranteeing that the estimated consecutive camera
motions are consistent with asingle 3D model defined in the first camera coordinate system.

Note that when the motion between I, and I; is small, the motion estimate M; from step 2 may
not be very accurate, and one can obtain better results by conducting a bundle adjustment on the first
three views I, I; and I.

2.3. Local Bundle Adjustment

Let us consider three views (I;_9, I; 1, 1;). To simplify notation, we only consider i = 2, and the
result extends naturally to s > 2.

We are given two sets of point matches': the first contains point matches across al three views,
and is denoted by © = {(po;,P1,j,P2,4)|j = 1,..., M}, the second contains point matches only
between [, and I, and isdenoted by © = {(qi x,q2%)|k = 1,...,N}. The cameramatrices P, and
P (or equivalently My and M) are already known, and we need to determine the camera matrices P,
(or equivalently My).

Our objective isto solve M, in an optimal way by minimizing some statistically and/or physically
meaningful cost function. A reasonable assumption is that the image points are corrupted by inde-
pendent and identically distributed Gaussian noise because points are extracted independently from
images by the same agorithm. In that case, the maximum likelihood estimation is obtained by mini-
mizing the sum of squared errors between the observed image points and the predicted feature points.
More formally, the problem becomes

M 2
min pij — ¢(M;,P 2
M2,{Pj},{Qk} Z;H 1,] 1 .7)”

=1z

N 2
+ZZquk M17Qk)||2> ) (3)

k=1 i=1

where P; isthe 3D point corresponding to triple point match (py ;, p1,;, P2,j), ad Qy, isthe 3D point
corresponding to double point match (qy x, q2.%)-

Thisisaminimization problem over alarge dimensiona space; the number of dimensionsis equal
to 6 + 3(M + N). Inthe next section, we will describe two techniques to speed up the minimization.

3. Reducing the Local Bundle Adjustment

Examining problem (3) carefully, we can find an important property: the unknown 3D point structures
are independent from each other. This reflects in the sparse structure of the Jacobian and Hessian of
the objective function (3), and one can realize very great time savings by explicitly taking advantage

LStrictly speaking, there are two more sets of point matches for three views. One is those only between I, and I, but
they do not contribute to the estimation of motion M2. Another is those only between I, and I.. However, as we only
consider sequential matching, this set of matches is not available. In caseit is available, we can treat it exactly in the same
way as for the set of matches between I; and I».



of the sparseness during minimization [20, 7]. However, the sparse minimization algorithm is quite
complex, and we have not yet implemented it. In this section, we describe two aternative techniques.

3.1. Optimization Embedding

Because of independence between the 3D point structures, problem (3) is equivalent to
M 2
. . 2
min 21 ng;nzg Ipi,j — ¢(M;,P)]
]: 1=

N 2
+ mind llaix — G, qk)||2) : @)
k=1 i=1

The outer minimization is for estimating the camera pose parameters while the inner minimizations
arefor reconstructing 3D structures. That is, we can separate the structure parameters from the motion
parameters such that the optimization of the structure parameters is conducted, independently for each
point, in each optimization iteration for the motion parameters. Therefore, a problem of minimization
over 6 + 3(M + N) dimensional space becomes a problem of minimization over 6D space, in the
latter each iteration contains (M + N) independent optimizations of 3 structure parameters. Recall
that the computational complexity of minimization is usually 72 in the number of parameters .. The
computation isthus considerably reduced by optimization embedding. Notethat problem (4) isexactly
the same as problem (3); there is no approximation. This is different from the approximate bundle
algorithms which aternate steps of resection (finding the camera poses from known 3D points) and
intersection (finding the 3D points from known camera poses).

3.2. Linearizing Local Bundle Adjustment

Further computational gain can be achieved if we can eliminate the inner (M + N) independent
minimizations in (4). There is, however, no closed-form solution to 3D reconstruction based on this
geometric errors. Fortunately, asto be shown in Appendix A, by linearization we can eliminate all the
unknown structure parameters P; and Q;, to obtain very close approximations to the geometric errors
in(4),i.e,

2
Ji({pij,Mili = 0,1,2}) = Hrl,i_nz Ipij — ¢(Mi, Pj) ||
7 =0

2
L ({aip, Mili = 1,2}) = H&inz ik — &M, Qr)[|?
i—1

where jj’ and £ are given by (30) and (35). They do not contain any structure parameters. Problem
(4) now becomes the following minimization problem:

M N
mMin 2; j; + kz c. | - ®)
J= =1

Notice that, using afirst order approximation, we have transformed the original large problem into a
minimization over just the six-dimensional camera pose space.



3.3. Initialization

We have implemented the above techniques using the Levenberg-Marquardt algorithm from Min-
pack [13]. Theinitial guessisobtained as follows. We only use point matches across three views. We
first reconstruct themin 3D space using points between the first and second view because their camera
poses are known. We then compute the camera pose for the third view using 3D-2D correspondences.
In both stages, we start with alinear solution, followed by a refining based on the distances between
the observed image points and the predicted feature points.

4. Experimental Results

In this section, we provide experimental results with both synthetic (Sect. 4.1) and real data (Sect. 4.2
to Sect. 4.4).
We consider a number of algorithms:

Method L: Animplementation of the exact local bundle adjustment, i.e., the optimization embedding
(4), inwhich the independency of point structures (or equivalently the sparseness in the Jacobian
and Hessian matrices) has been taken into account.

Method O: Our reduced local bundle adjustment (5), where structure parameters have been elimi-
nated.

Method I: The algorithm used to initialize our local bundle adjustment, as described in Sect. 3.2.
Only matches shared by three views are used. Thisis equivalent to the approach reported in[1],
except that we use the reprojection errors, instead of algebraic errors.

Method I1: A two-view incremental algorithm. Motion is estimated only from point matches be-
tween the last two images, and the undetermined scale is computed using the common matches
shared with those between the previous image pair.

Method B: The globa bundle adjustment which gives the statistically optimal solution. The inde-
pendency of point structures has been taken into account by optimization embedding. Theresult
obtained with Method O is used to initialize this method.

The above algorithms have been implemented with VC++, and all experiments reported in this section
were conducted on a Pentium |11 850 machine.

The synthetic data was used to compare Method O and method L. It was generated from areal data
of a 3-image subsequence (first 3 images) of the STN31 sequence (see below) in the following way.
First, we reconstructed the 3D point for each track with the real feature points and camera motions.
Second, original feature pointsin atrack were replaced by the projected 2D points of the reconstructed
3D poaints. After this replacement, the camera motions and the 3D points in the real data became our
ground truth.

Four real sequences named STN31, STN61, DYN40, and FRG21 were used in the real experi-
ments. STN61 is a 61-image sequence of a stone scul pture on aturntable, of which the rotation angle
can be accurately controlled. STN31 is a 31-image sequence subsampled from the original STN61 se-
quence. Both STN31 and STN61 are closed-loop sequences, meaning that the first image and the last
images coincide (i.e., their motion is zero). DY N40 is a 40-image sequence taken with amulti-camera
rig (provided by kind permission of Dayton Taylor). FRG21 is a 21-frame sequence taken by a hand
held camera targeting a toy frog. The camera intrinsic parameters for STN31, STN61, and FRG21
were calibrated in advance, and those for DY N40 were self-calibrated and thus less accurate. While
the algorithms tested in this section do not require any special motion sequences, we intentionally
chose orbital or near orbital onesin order to make the experiment results easily interpretable.

7
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Figure 1. Rotation and trandlation errors. Left: Errors of the translation magnitude vs. image noise level.
Right: Errors of the rotation angle vs. image noise level

[ o | T | t |

ot |
O | 12510 | 0.384 | -0.008, 0.999, 0.052 | 1.030, 0.002, 0.099 | 1.63e-3, 1.18e-2, 2.82e-2
B | 12.253 | 0.228 | 0.001, 0.999, 0.054 | 1.021, -0.005, 0.093 | 4.06e-3, 1.17e-2, 1.59e-2
| | 12.072 | 0.886 | -0.017, 0.998, 0.065 | 1.012, 0.008, 0.095 | 8.29e-3, 1.97e-2, 7.46e-2
1| 12.621 | 0.981 | -0.004, 0.999, 0.048 | 1.002, 0.000, 0.097 | 8.31e-3, 1.43e-2, 9.24e-2

Table 1: Ground truth comparisons

With real data, wewill compare methods O, I, |1, and B. Section 4.2 gives detailed quantitative and
visual comparisons of the four methods with help of some STN31's properties. Section 4.3 shows the
visual comparisons of Method O and Method B with the other three sequences. Section 4.4 presents
the quantitative comparisons of the four methods in terms of the projection errors and running time.

4.1. Synthetic Data

We compare Method L and Method O with the synthetic data. There are about 200 points and the
interframe rotation angle is about 12 degrees. The two methods are used to compute the third camera
motion under different image noise levels. We used the relative rotation angle and the trandlation
magnitude with respect to the ground truth as the error metrics of the estimated motion. At each
image noise level, we run both methods 30 times, and the mean differences between the computed
motion and the ground truth motion were recorded. Average running time was recorded in a similar
way. Figure 1 shows the rotation errors and the translation magnitude errors for both methods. We
can see from the figure that the errors with Method O are only dightly higher than Method L. It is
less than 0.2% larger even when noise with 1 pixel standard deviation was added. On the other hand,
this accuracy has been achieved with 30 times less computational time as can be seen from Fig. 2.
This shows that the mathematical procedure described in Sect. 3 to eliminate all structure parameters
isindeed of benefit.

4.2. Ground Truths Comparisons

The STN31 sequence is used. There are several things we know for sure, within the control accuracy
offered for our turntable, about the STN31 sequence. First, the camerais moving on acircle and the
camera motion of the first image is overlapped with the last one. Second, the relative rotation angle
and trangdlation vector between two consecutive images are the same throughout the sequence. We

8
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Figure 2: Running time

also roughly know that relative rotation angle is around 12.414, and the rotation axis isthe closed to
[0,1,0]. Theresults are listed in the Table 1, where @ is the mean rotation angle between successive
two frames (in degrees), o, isthe sample deviation of «, T isthe mean rotation axis (in the order of X,
y, and z), t is the mean trandation vector, and o; are the square roots of the diagonal elements of the
covariance matrix of the translation. It can be seen from the table that the proposed method is superior
to both Method | and Method Il in terms of the accuracy of both rotation angle and translation vector,
eg., it has smaller o, and o¢. On the other hand, the results of our method are in general very close
to those given by the global bundle adjustment method.

Figure 3 shows the visual comparison of the estimated camera motions for the STN31 sequence.
Each plane in the figure represents afocal plane, of which the center isthe optical center of the camera
and the normal isthe direction of the optical axis. The absolute size of the plane is not meaningful and
has been properly adjusted for display purpose. According to the first ground truth mentioned earlier,
the focal plane arrays should form a closed circle if the camera motions are computed correctly. This
conforms quite good with the results of both our method and the bundle adjustment, with the exception
that the overlapping between the first focal plane and the last oneis alittle bit overhead (see the small
black images in Fig. 3 for details). This reveals that accumulation error is inevitable in both cases.
(Note that we did not use the knowledge that the last image is the same as the first image.) Obviously,
the results with the other two methods are much less accurate.

4.3. Visual Comparisonswith Bundle Adjustment

This subsection concentrates on the visual comparison of our method against the bundle adjustment
with the remaining three real image sequences. In brief, Fig. 4, Fig. 5, and Fig. 6 show the results
of STN61, DY N40, and FRG21, respectively. Together with Fig. 3, these figures will be used as the
complementary results for the quantitative comparisons in the next subsection.

4.4. Comparisonson Projection Errorsand Running Time

We now compare the different methods in terms of the projection errors and running time. The projec-
tion errors were computed from a tracked feature table and the camera motions. The tracked feature



Figure 3: Camera motions for the STN31 sequence. Top left: Method B; Top right: Method O. Bottom Ieft:
Method I. Bottom right: Method I1. The small images with black backgrounds show, from the frontal direction,
the portion where the starting and the ending of the sequence meet.

table contains alist of feature tracks. Each track isalist of 2D point features that shared by different
views. The camera motions were computed with the four different methods listed in the top row of
Table 2. The camera motions were used to reconstruct optimal 3D points from the tracked feature
table. These 3D points were then projected to the images to compute the projection errors for the
whole sequence. Since the tracked feature table is the same for all methods, the method that produces
good motions will have asmall projection error. The number of 2D points in the tracked feature tables
are 7990, 26890, 11307, and 6049 for the STN31, STN61, DYN40, and FRG21, respectively. The
projection errors are displayed in the top of each cell of thetable. The error used here isthe root mean
square error in pixels. The running time (in seconds) of each algorithm is displayed under each corre-
sponding projection error. The numbers below the sequence names are the estimated average rotation
angle between two successive frames. For example, the rotation angle between two successive frames
in DY N40 is only about 2.89 degrees.

Several observations can be made from the Table 2. As compared with other two local processes,
the proposed method is in general more accurate. It is slower than the Method | but is much faster
than the Method 11. For the DY N40 sequence, the relative rotation angle is small and cameraintrinsic
parameters are less accurate than in other sequences. Method | failed in the middle of the sequence
because errors accumulated from the previous frames became too large to obtain usable 3D recon-
struction for pose determination. Our method, however, can significantly improve each local initia

10
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Figure 4: Camera motions for the STN61 sequence. Left: side and top views of bundle adjustment results.
Right: side and top views of our results

guess (from three views) from the Method | and give areasonable result for the whole sequence. This
demonstrated the robustness of our method. When compared with the classical bundle adjustment
algorithm, our method can give very similar results. This is true especially when the rotation angle
isrelatively large. Similar observations can also be made by inspecting the visual comparison results
from Fig. 3, Fig. 4, Fig. 6, and Fig. 5. More importantly, our method has almost linear computational
complexity w.r.t. the number of images inside the sequence. This can be seen from the STN31 and
STN61 experiments, where the running time was doubled (5.250/2.578 = 2.04) when the number of
framesincreased from 31 to 61. On the contrary, the classical bundle adjustment algorithm was almost
8 times slower when dealing with a sequence only twice longer.

Figure 5: Camera motions for the DYN40 sequence. Top: sample images from the sequence. Middle: top and
front views of the bundle adjustment results. Bottom: top and front views of our results

11



Figure 6: Camera motions for the FRG21 sequence. From left to right: our results, an sample image from the
sequence, bundle adjustment results

I [t [ o] B |
STN31 | 0412 | 2.715 | 0323 | 0.306
1241 | 1.219 | 3064 | 2578 | 476.038
STN6L | 0389 | 2877 | 0354 | 0321
621 | 3797 | 67.076 | 5250 | 3739.193
DYN40 | - -~ (1149 | 0673
289 | - - | 207 | 1250.163
FRGZ1 | 0372 | 31003 | 0362 | 0.345
11.94 | 0.907 | 25922 | 256 | 240.414

Table 2: Projection errors and the running time

5. Conclusion and Extension

We have proposed a new incremental motion estimation algorithm through a series of local bundle
adjustments. Unlike previous approaches, we use not only point matches across three views, but also
those points shared only by two views. This is important because matches between two views are
more common than those across more views. The estimated camera motions in the whole sequence is
guaranteed to be consistent with each other. Two implementations have been described: optimization
embedding and structure elimination through linearization. Both techniques transform the original
local bundle adjustment involving both 3D structure and pose parametersinto amuch smaller problem.
The linearization achieves an even higher computational gain with only alittle sacrifice in accuracy.
Experiments with both synthetic and real data showed that our method is more accurate than other
local processes, and is much faster (100 to 700 times) than the global bundle adjustment. Furthermore,
the results produced by our method are very close to those by the global bundle adjustment, especially
when motions between consecutive views are large.

Besides some obvious applications such as to supply a good starting point for the global bundle
adjustment, we are expecting to integrate this method into some image-based rendering techniques,
where local consistency and accuracy are preferred.

12



A. Approximating Geometric Errorsthrough Linearization

In this section, we will show how to use afirst order approximation to eliminate all the unknown
structure parameters {P; } and {Q; } in (4).

A.l. Two-view and Three-view Geometry

Before we go further, we need to introduce some notation regarding two-view and three-view geome-
try. The reader is referred to arecent book [7] for a complete exposition.

Epipolar constraint. In order for a pair of points (p;, pi+1) between I; and I;,, to be matched (or
in other words to correspond to a single point in space), they must satisfy the epipolar constraint:

f’iTHFi,iHﬁi =0, (6)
where the fundamental matrix F; ;, is given by: (see [22])
Fiit1= [Piﬂci]xPiHP;r . (7)

Here, ¢; isanull vector of P;, i.e., P;c; = 0. Therefore, ¢; indicates the position of the optical center
of image I;. P isthe pseudo-inverse of matrix P: P+ = PT(PPT) 1. [x], denotesthe 3 x 3 anti-
symmetric matrix defined by vector x such that x x y = [x]«y for any 3D vector y. When cameras
internal parameters are known and we work with normalized image coordinates, then the fundamen-
tal matrix becomes the essential matrix, and F; ;11 = [t; ;+1]xRii+1, where (R;;41,t;,41) isthe
relative motion between 7; and I, ;.
Image point transfer across three views. Given the camera projection matrices P; (i = 0, 1, 2) and
two points py and p; in the first two images respectively, their corresponding point in the third image,
P2, isthen determined. This can be seen as follows. Denote their corresponding point in space by P.
According to the camera projection model (1), we have py = PoP and s;p; = P,P. Eliminating
the scale factors yields

N [Po]xPoP=0 and [p,]xPP=0. R
We can easily solve P from these equations. Then, its projection in L is given by sops = PsoP.
Combining the above two operations gives us the image transfer function which we will denote by 1,
i.e.,

P2 = ¥(po,P1) - (8)
Additional notation. Besides the notation defined in Sect. 2.1, we need to introduce a few more
symbols. We define
T
. |p 100
o[t o 2|} 00 ©

Wethen havep = Zp, p = Z1p, ZZ"T = diag(1,1,0), and Z'Z = diag (1,1).

A.2. Simplifying the Three-View Cost Function

Consider )
win Y |1pij — ¢4, ;)| (10)

=0
in (4). To simplify the notation, we Wiﬁ drop the subscript j. Instead of estimating the 3D point,
we can estimate its projections in images. Problem (10) is equivalent to estimatep; (i = 0,1, 2) by
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minimizing the following objective function

J = [lpo = Poll* + lp1 — P1I* + lIp2 — P2I? (11)

. . =T =
subjectto (i) Py Fo,1Pg =0 (12)
and (i) P2 = ¥(Po,P1) , (13)

where the fundamental matrix Fy ; and the image transfer function ) are described in Sect. A.1. By
applying the technique of Lagrange multiplier, we can convert the above constrained minimization
problem into an unconstrained minimization problem with the new objective function given by
T =T +MF+ 2T (14)
where F = B, Fo, 1Dy and 7 = [[B2 — (Bo. B )
Define Ap; (’l =0,1, 2) asAp; = pi — ﬁi, then ﬁz = p; — Ap;, Or ﬁz = ﬁl — Ap;. Referto (9)
for p.
If we neglect the second order term, constraint (12) becomes F = 0, with
F =~ pi Fo1Po — AP Fo.1Po — 1 Fo1Apo
= p1 Fo1po — Api Z'Fo,1p0 — Pt Fo,1ZApy (15)
Here, we have used the equation p = Zp.
Constraint (13) becomes

T = lp2 — Ap2 — ¥(po — Apo, p1 — Apy)|? (16)
By applying Taylor expansion to v and keeping the first order terms, we have:
Y (Po—Apo, P1—AP1) = ¥ (po, P1)—¥oApo—¥1Ap; (17)

where ¥; = 0¢(po, p1)/0p;. Equation (16) then becomes 7 = 0, with
T = |lp2 — Ap2 — ¥(po, P1) + ¥oApy + ¥1Ap, |?
~ala+2al' ®yApy + 2a’ ¥, Ap, — 2a’ Ap, (18)
where a = py — ¥ (po, p1), and the second approximation in (18) is achieved by only keeping first
order items.
Tominimize 7' (14), we let its first-order derivatives with respect to Ap; be zero, which yields

0J' Tl ~ T
=2Apy — MZ F 2000
9Aps Po — A1 0,1P1 + ¥ a
0T _ onp) — MZ'F Po +2XP¥la
9Ap, b1 1 0,1P0 2%
oJ'
= 2Apy; —2)sa.
9Ap, P2 2a
This gives
1 ~
Apy = 5/\1ZTF0T,1P1 —X¥ja (19)
1 ~
Ap; = §>\1ZTF0,1P0 —XPla (20)
Aps = Xoa . (21)
Substituting them into the linearized constraints (15) and (18) gives
g1 — M1G2/2+ Xags =0 (22)
g1+ A193/2 — Xags =0, (23)
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where

91 =P1 Fo,1Po (24)
g2 =Py F1ZZ" Fo1Do + p1 Fo 1 ZZ F{ D1 (25)
g5 = al @ Z F 1po + pi Fo1ZT} a (26)
1
gs = §aTa (27)
gs =al (I+ ®y¥) + &, ¥7)a. (28)
Thus, the solution for A\; and )\, is
AL _ 99394 + 9135 A\, — 9294 + 9133 _ (29)
9295 — g3 9295 —

Substituting the obtained )y, >\2, Apg, Apy and Apo back into (14) f| nally gives
+g293+2
J' = —/\192 A Aogz+A305 = 919 992994_ 9919394 : (30)
This is our new cost functlonal for a point match across three views It is a function of the motion
parameters, but does not contain 3D structure parameters anymore.

A.3. Simplifying the Two-View Cost Function

Consider now

mlnz i e — (M, Qe) || (31)

in (4). To simplify the notation, we will drop the subscript k. Following the same idea as in the last
subsection, problem (31) is equivalent to estimateq; and q» by minimizing the following objective
function
L=la —ai|* + laz — @=||? (32
subjectto Gy F1.»q, = 0 (33)
where the fundamental matrix F » is defined asin section A.1.

Define Aq; = q1 — q1 and Aqy = g2 — Q. Linearize constraint (33) as in (15). Using the
Lagrange multiplier, we can transform the above constrained minimization problem into an uncon-
strained one:

L' =Aq] Aq; + Agj Aga+ (34)
@3 Fi1201 — Aqy Z'F 1541 — a3 F12ZAqy) -
Letting the first-order derivatives be zero gives

A A -
Aqp = §Z FT 22 Aqp = §ZTF1,2Q1

a; F1oq1
A=2=5 i - .
ai F1,ZZ1F 1 a1 + qF F12ZZ7F{ ,qo
Substituting them back into (34), after some ample algebra, gives
F
= —— - (q2~ 1,29%) e (35)
q; F172ZZ F1,2QI + qs F1,2ZZ F172CI2
This is our new cost functional for a point match only between two views. It is a function of the
motion parameters, but does not contain anymore 3D structure parameters.
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