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Abstract 
 

Speech recognition has achieved great improvements recently. However, robustness is 
still one of the big problems, e.g. performance of recognition fluctuates sharply 
depending on the speaker, especially when the speaker has strong accent that is not 
covered in the training corpus. In this report, we first introduce our result on cross accent 
experiments and show a 30% error rate increase when accent independent models are 
used instead of accent dependent ones. Then we organize the report into three parts to 
cover the problem. In the first part, we do an investigation of speaker variability and 
manage to seek out the relationship between the well-known parameter representation 
and the physical characteristics of speaker, especially accent and confirm once more that 
accent is one of the main factors causing speaker variability. Then we provide our 
solutions for accent variability from two aspects. One is adaptation method, including 
pronunciation dictionary adaptation and acoustic model adaptation, which integrate the 
dominant changes among accent speaker groups and the detailed style for specific 
speaker in each group. The other is to build accent specific models as we do in cross 
accent experiments. The key point inside this method is to provide an automatic 
mechanism to choose the accent dependent model, which is explored in the fourth part of 
the report. We propose a fast and efficient GMM based accent identification method. The 
respective descriptions of three parts are outlined as follows. 
 
Analysis and modeling of speaker variability, such as gender, accent, age, speaking rate, 
and phone realizations, are important issues in speech recognition. It is known that 
existing feature representations describing speaker variations are high dimensional. In the 
third part of this report, we introduce two powerful multivariate statistical analysis 
methods, namely, principal component analysis (PCA) and independent component 
analysis (ICA), as tools to analyze such variability and extract low dimensional feature 
representation. Our findings are the following: (1) the first two principal components 
correspond to gender and accent, respectively. (2) It is shown that ICA based features 
yield better classification performance than PCA ones. Using 2-dimensional ICA 
representation, we achieve 6.1% and 13.3% error rate in gender and accent classification, 
respectively, for 980 speakers. 
 
In the fourth part, a method of accent modeling through Pronunciation Dictionary 
Adaptation (PDA) is presented.  We derive the pronunciation variation between canonical 
speaker groups and accent groups and add an encoding of the differences to a canonical 
dictionary to create a new, adapted dictionary that reflects the accent characteristics. The 
pronunciation variation information is then integrated with acoustic and language models 
into a one-pass search framework. It is assumed that acoustic deviation and pronunciation 
variation are independent but complementary phenomena that cause poor performance 
among accented speakers.  Therefore, MLLR, an efficient model adaptation technique, is 
also presented both alone and in combination with PDA.  It is shown that when PDA, 
MLLR and the combination of them are used, error rate reductions of 13.9%, 24.1% and 
28.4% respectively, are achieved. 
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It is well known that speaker variability caused by accent is an important factor in speech 
recognition. Some major accents in China are so different as to make this problem very 
severe. In part 5, we propose a Gaussian mixture model (GMM) based Mandarin accent 
identification method. In this method, a number of GMMs are trained to identify the most 
likely accent given test utterances. The identified accent type can be used to select an 
accent-dependent model for speech recognition. A multi-accent Mandarin corpus was 
developed for the task, including 4 typical accents in China with 1,440 speakers (1,200 
for training, 240 for testing). We explore experimentally the effect of the number of 
components in GMM on identification performance. We also investigate how many 
utterances per speaker are sufficient to reliably recognize his/her accent. Finally, we show 
the correlations among accents and provide some discussions. 
 
Keywords: Accent modeling, automatic accent identification, pronunciation 
dictionary adaptation (PDA), speaker variability, principal component analysis (PCA), 
independent component analysis (ICA). 
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1. Introduction 
 
It is well known that state-of-the-art speech recognition (SR) systems, even in the domain 
of large vocabulary continuous speech recognition, have achieved great improvements in 
last decades. There are several commercial systems on the shelves like ViaVoice of IBM, 
SAPI of Microsoft and FreeSpeech of Phillips. 
 
Speaker variability greatly impacts the performance of SR. Among the variability, gender 
and accent are two most important factors that cause the variance among speakers [12]. 
The former has been lift up by the gender dependent models. However, there is 
comparatively little research on the topic of accented speech recognition, especially when 
the speakers come from the same mother tongue, but with accents because of the 
different dialects.  
 
In this report, firstly, we will explore the impact of accented speech on recognition 
performance. According to our experiments, there is 30% relative error increase when 
speech is mixed with accent. We investigate the problem from two different views: 
accent adaptation through pronunciation dictionary adaptation (PDA) that built for 
specific accents and accent specific modeling training on the acoustic levels. We will 
briefly introduce the two strategies after some data-driven analysis of speaker variability. 
 
In the second part of the report, we make a detailed investigation about speaker 
variability, specifically on gender and accent. The motivation is to establish the 
relationship between the dominant feature representations of current speech recognition 
systems and the physical characteristics of speakers, such as accent and gender. It is 
shown that accent is the second greatest factor among speaker variability [12]. This 
motivates us to look for strategies to solve this problem. 
 
In the first strategy to deal with accent problem, PDA [18] tries to seek the pronunciation 
variations among speakers coming from different accents and model such difference on 
the dictionary level. In practice, we often adopt the well-known pronunciations as the 
baseline system, and then extract the pronunciation changes through speaker-independent 
system or phonology rules. Finally we encode such changes into reference dictionary and 
obtain an accent specific dictionary. The variations may be mapping pairs of phone, 
phoneme, or syllable including substitution, insertion and deletion. These mapping rules 
can be learned automatically through some enrollments of accented speech recognized by 
baseline recognition system or summarization of phonologies. In addition, it can be 
context dependent or independent. 
 
The second strategy is to build the accent-specific model, which is easy to be understood. 
Sufficient corpus is necessary for each accent set. Just like the gender-dependent model, 
accent dependent models can greatly reduce the variance of the each separated set and 
thus improve the performance, which will be confirmed in the following sections. 
Although it is probably not efficient to provide multiple model sets in the desktop-based 
application, it is practical when the application is built on the client-server structure. 
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However, the core problem of such strategy is to select the proper model for each target 
speaker. In other words, a method to identify the incoming speaker’s characteristics such 
as gender and accent automatically in order to choose the corresponding model is 
important and very meaningful. We proposed a Gaussian Mixture Model (GMM) based 
accent (including gender) identification method. In our work, M GMMs, M

kk 1}{ =Λ , are 
independently trained using the speech produced by the corresponding gender and accent 
group. That is, model kΛ  is trained to maximize the log-likelihood function 
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Where the speech feature is denoted by x(t). T is the number of speech frames in the 
utterance and M is twice (male and female) the total number of accent types. The GMM 
parameters are estimated by the expectation maximization (EM) algorithm [17]. During 
identification, an utterance is fed to all the GMMs. The most likely gender and accent 
type is identified according to 
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In this report, some main accents of Mandarin, including Beijing, Shanghai, Guangdong 
and Taiwan are considered. 

2. Cross Accent Experiments 
 
In order to investigate the impact of accent on the state of the art speech recognition 
system, we have carried lots of experiments based on Microsoft Chinese speech engine, 
which has been successfully delivered into Office XP and SAPI. In addition to many 
kinds of mature technologies such as Cepstrum Mean Normalization, decision tree based 
state tying, context dependent modeling (triphone) and trigram language modeling, which 
are all been testified to be important and adopted in the system, tone related information, 
which are very helpful to be distinguished for Asian tonal language, have also been 
integrated into out baseline system through including pitch and delta pitch into feature 
streams and detailed tone modeling.  In one word, all improvements and results shown 
here are achieved based on a solid and powerful baseline system. 
 
The details about experiment and results are listed as follows: 
 
 
Experiments setup 
 

! Training corpus and model configurations 
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Table 2.1: Summary of training corpora for cross accent experiments, Here BJ, SH and 

GD means Beijing, Shanghai and Guangdong accent respectively. 
 

Model 
Tag 

Training corpus configurations Accent specific model 

EW 500BJ BJ 
BEF ~1500BJ BJ 
JS  ~1000SH SH 
GD ~500GD GD 
BES ~1000BJ+ ~500SH Mixed (BJ+SH)  
X5 ~1500BJ+ ~1000SH Mixed (BJ+SH)) 
X6 ~1500BJ+ ~1000SH+ ~500GD Mixed (BJ+SH+GD) 

 
•  Test corpus  

 

Table 2.2: Summary of test corpora for cross accent experiments, PPc show here is 
character perplexity of test corpora according to the LM of 54K.Dic and 

BG=TG=300,000. 
 
Test Sets Accent Speakers Utterances Characters PPc 

m-msr Beijing 25 500 9570 
f-msr Beijing 25 500 9423 

33.7 

m-863b Beijing 30 300 3797 
f-863b Beijing 30 300 3713 

41.0 

m-sh Shanghai 10 200 3243 
f-sh Shanghai 10 200 3287 

59.1 

m-gd Guangdong 10 200 3233 
f-gd Guangdong 10 200 3294 

55-60 
 

m_it Mixed (mainly Beijing) 50 1,000 13,804  
f-it Mixed (mainly Beijing) 50 1,000 13,791  

 
•  Experiments Result 

Table 2.3: Character error rate for cross accent experiments. 

Different accent test sets 
Model 

MSR 863 SH GD IT 
EW(500BJ) 9.49 11.89 22.67 33.77 19.96 

BEF(1500BJ) 8.81 10.80 21.85 31.92 19.58 
JS(1000SH) 10.61 13.89 15.64 28.44 22.76 
GD(500GD) 12.94 13.96 18.71 21.75 28.28 

BES(1000BJ+500SH) 8.56 10.85 18.14 30.19 19.42 
X5(1500BJ+1000SH) 8.87 10.95 16.80 29.24 19.78 

X6(1500BJ+1000SH+500GD) 9.02  17.59 27.95  
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It is easily concluded from Table 2.3 that accent is a big problem that impacts the state of 
the art speech recognition systems. Compared with accent specific model, cross accent 
model may increase error rate by 40-50%. 
 

3. Investigation of Speaker Variability 

3.1 Introduction 
Speaker variability, such as gender, accent, age, speaking rate, and phones realizations, is 
one of the main difficulties in speech signals. How they correlate each other and what the 
key factors are in speech realization are real concerns in speech research. As we know, 
performance of speaker-independent (SI) recognition systems is generally 2-3 times 
worse than that of speaker-dependent ones. As an alternative, different adaptation 
techniques, such as MAP and MLLR, have been used. The basic idea is to adjust the SI 
model and make it reflect intrinsic characteristics about specific speakers by re-training 
the system using appropriate corpora. Another method to deal with the speaker variability 
problem is to build multiple models of smaller variances, such as gender dependent 
model and accent dependent model, and then use a proper model selection scheme for the 
adaptation. SI system and speaker adaptation can be facilitated if the principal variances 
can be modeled and corresponding compensations can be made. 
 
Another difficulty in speech recognition is the complexity of speech models.  There can 
be a huge number of free parameters associated with a set of models. In other words, a 
representation of a speaker has to be high-dimensional when different phones are taken 
into account. How to analyze such data is a challenge. 
 
Fortunately, several powerful tools, such as principal component analysis (PCA) [2] and 
more recently independent component analysis (ICA) [1], are available for high 
dimension multivariate statistical analysis. They have been applied widely and 
successfully in many research fields such as pattern recognition, learning and image 
analysis. Recent years have seen some applications in speech analysis [4][5][6]. 
 
PCA decorrelates second order moments corresponding to low frequency property and 
extracts orthogonal principal components of variations. ICA is a linear, not necessarily 
orthogonal, transform which makes unknown linear mixtures of multi-dimensional 
random variables as statistically independent as possible. It not only decorrelates the 
second order statistics but also reduces higher-order statistical dependencies. It extracts 
independent components even if their magnitudes are small whereas PCA extracts 
components having largest magnitudes. ICA representation seems to capture the essential 
structure of the data in many applications including feature extraction and signal 
separation  
 
In this section, we present a subspace analysis method for the analysis of speaker 
variability and for the extraction of low-dimensional speech features. The transformation 
matrix obtained by using maximum likelihood linear regression (MLLR) is adopted as 
the original representation of the speaker characteristics. Generally each speaker is a 
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super-vector which includes different regression classes (65 classes at most), with each 
class being a vector. Important components in a low-dimensional space are extracted as 
the result of PCA or ICA. We find that the first two principal components clearly present 
the characteristics about the gender and accent, respectively. That the second component 
corresponds to accent has never been reported before, while it has been shown that the 
first component corresponds to gender [5][6].  Furthermore, using ICA features can 
improve classification performance than using PCA ones. Using the ICA representation 
and a simple threshold method, we achieve gender classification accuracy of 93.9% and 
accent accuracy of 86.7% for a data set of 980 speakers. 

3.2 Speaker Variance Investigations 

3.2.1 Related Work 
PCA and ICA have been widely used in image processing, especially in face recognition, 
identification and tracing. However, their application in speech field is comparatively 
rare. Like linear discriminant analysis (LDA), most speech researchers use PCA to 
extract or select the acoustic features. [4]. Kuhn et al. applied PCA at the level of speaker 
representation and proposed eigenvoices in analog to eigenfaces and further apply it in 
the rapid speaker adaptation [5]. Hu applied PCA to vowel classification [6]. 
 
All above work are based on representing speakers with concatenate the mean feature 
vector of vowels [6] or put one line of all the means from the Gaussian model that 
specifically trained for a certain speaker [5]. We have adopted the speaker adaptation 
model, specifically; we use the transformation matrix and offset that are adapted from the 
speaker independent model to represent the speaker. Here, maximum likelihood linear 
regression (MLLR) [11] was used in our experiments.   
 
In addition, all above work only use PCA to pursue the projection of speaker in low 
dimension space in order to classify the vowels or construct the speaker space efficiently. 
As we know, PCA uses only second-order statistics and emphasize the dimension 
reduction, while ICA depends on the high-order statistics other than second order. PCA is 
mainly aim to the Gaussian data and ICA aiming to the Non-Gaussian data. Therefore, 
based on PCA, we introduce ICA to analysis the variability of speaker further because we 
have no clear sense on the statistical characteristics of speaker variability initially.  

3.2.2 Speaker Representation 

MLLR Matrices vs. Gaussian Models  
As mentioned in Section 3.2.1, we have used the MLLR transformation matrix (including 
offset) to represent all the characteristics of a speaker, instead of using the means of the 
Gaussian models. The main advantage is such a representation provides a flexible means 
to control the model parameters according to the available adaptation corpora. The 
baseline system and setups can be found in [3]. To reflect the speaker in detail, we have 
tried to use multiple regression classes, at most 65 according to the phonetic structures of 
Mandarin. 
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Supporting Regression Classes Selection 
We have used two different strategies to remove undesirable effects brought about by 
different phones. The first is to use the matrices of all regression classes.  However, this 
increases the number of parameters that have to be estimated and hence increases the 
burden on the requirements on the adaptation corpora. In the second strategy, we choose 
empirically several supporting regression classes among all. This leads to significant 
decrease in the number of parameters to be estimated; and when the regression classes are 
chosen properly, there is little sacrifice in accuracy; as will be shown in Tables 3.4 and 
3.5 in Section 3.3.  The benefit is mainly due to that a proper set of support regression 
classes are good representatives of speakers in the sense that they provide good 
discriminative feature for the classification between speakers. Furthermore, fewer classes 
mean lower degree of freedom and increase in the reliability of parameters. 

Diagonal Matrix vs. Offsets 
Both diagonal matrix and offset are considered when making the MLLR adaptation. We 
have experimented with three combinations to represent speakers in this level: only 
diagonal matrix (with tag d), only offset (with tag b) and both of them (with tag bd). The 
only offset item of MLLR transformation matrix achieved much better result in gender 
classification, as will be shown in Table 3.3. 

Acoustic Feature Pruning 
The state of art speech recognition systems often apply multiple order dynamic features, 
such as first-order difference and second-order one, in addition to the cepstrum and 
energy. However, the main purpose of doing so is to build the speaker independent 
system. Usually, the less speaker-dependent information is involved in the training 
process, the better the final result will be. In contrast to such a feature selection strategy, 
we choose to extract the speaker-dependent features and use them to effectively 
represent speaker variability.  We have applied several pruning strategies in the acoustic 
features level. We have also integrated pitch related features into our feature streams.  
Therefore, there are the six feature pruning methods as summarized in Table 3.1. 

Table 3.1: Different feature pruning methods (number in each cell mean the finally 
kept dimensions used to represent the speaker). 

Dynamic 
features 

0-order 
(static) 

1 order 2 order 

w/o pitch 13 26 33 
w/ pitch 14 28 36 

 

3.3 Experiments 

3.3.1 Data Corpora and SI Model 
The whole corpora contain 980 speakers, 200 utterances per speaker. They are from two 
accent areas in China, Beijing (EW) and Shanghai (SH). The gender and accent 
distributions are summarized in Table 3.2. 
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Table 3.2: Distribution of speakers in corpora. 

 Beijing Shanghai 
Female 250 (EW-f) 190 (SH-f) 
Male 250 (EW-m) 290 (SH-m) 

 
The speaker-independent model we used to extract the MLLR matrix is trained according 
to all corpora from EW. It is also gender–independent, unlike the baseline system.   

3.3.2 Efficient Speaker Representation 
Figure 3.1 show the component contribution and cumulative contribution of top N 
principal components on variances, where N=1, 2…156. The PCA algorithm used in 
these and the following experiments is based on the covariance matrix. The dynamic 
range for each dimension has been normalized for each sample. This way, covariance 
matrix becomes the same as the correlation matrix.  
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Figure 3.1: Single and cumulative variance contribution of top N components in 
PCA (horizontal axis means the eigenvalues order, left vertical axis mean 
cumulative contribution and right vertical axis mean single contribution for each 
eigenvalue). 

 
To find the efficient and typical representation about speaker characteristics, we have 
applied strategies at several levels from supporting regression classes to acoustic features. 
Table 3.3 shows the gender classification results based on EW and SH corpora for 
various methods. Tags of -b,-d and –bd in the first column are according to the definition 
in section 2.2.3. Here the number of supporting regression classes is 6. From Table 3.3, 
we can conclude that the offset item in the MLLR matrix gives the best result. 
 
Furthermore, among all the acoustic feature combinations, the combination of the static 
features, first order of cepstrum and energy gives the best result for both EW and SH sets. 
It can be explained that these dimensions carry the most of the speaker specific 
information. However, it is very interesting to note that the addition of the pitch related 
dimensions leads to a slight decrease in the accuracy. It contradicts to the common 
conclusion that the pitch itself is the most significant feature of gender. This may be due 
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to the following two reasons: First, pitch used here is in the model transformation level 
instead of the feature level. Secondly, multiple–order cepstrum feature dimensions have 
already included speaker gender information. 
 

Table 3.3: Gender classifications errors based on different speaker representation 
methods (The result is according to the projection of PCA, the total number for EW 

and SH are 500 and 480 respectively). 

Dims 13 26 33 14 28 36 
SH-b 22 14 24 22 20 30 
SH-d 58 78 80 62 82 86 
SH-bd 34 42 46 38 40 46 
EW-b 52 38 66 52 56 78 
EW-d 76 124 100 108 140 118 
EW-bd 48 92 128 88 82 122 

 
To evaluate the proposed strategy for the selection of supporting regression classes, we 
made the following experiments. There are a total of 65 classes. Here only the offset of 
MLLR transformation matrix and the 26 dimensions in feature stream are used according 
to the results demonstrated in Table 3.3. The selections of different regression classes are 
defined in Table 3.4, and the corresponding gender classification results are shown in 
Table 3.5. 
 
Obviously, the combination of the 6 regression classes is a proper choice to balance the 
classification accuracy and the number of model parameters. Therefore, in the following 
experiments where the physical meaning of the top projections is investigated, we 
optimize the input speaker representation with the following setups: 

•  Supporting regression classes: 6 single vowels (/a/, /i/, /o/, /e/, /u/, /v/) 
•  Offset item in MLLR transformation matrix; 
•  26 dimensions in acoustic feature level 

As a result, a speaker is typically represented with a supervector of 6*1*26=156 
dimension. 

Table 3.4: Different supporting regression classes selection. 

#  of  regression 
classes 

Descriptions 

65 All classes 
38 All classes of finals 
27 All classes of initials 
6 /a/, /i/, /o/, /e/, /u/, /v/ 
3 /a/, /i/, /u/ 
2 /a/, /i/ 
1 /a/ 
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Table 3.5: Gender classifications errors of EW based on different supporting 
regression classes (The relative size of feature vector length is indicated as 

Parameters). 

Number of  
Regression 

Classes 
65 38 27 6 3 2 1 

Errors 32 36 56 38 98 150 140 
Parameter -- 0.58 0.42 0.09 0.046 0.03 0.015 

3.3.3 Speaker Space and Physical Interpretations   
The experiments here are performed with the mixed corpora sets of EW and SH. In this 
case, the PCA is performed with 980 samples of 156 dimensions each. Then, all speakers 
are projected into the top 6 components. A matrix of 980* 6 is obtained and is used as the 
input to ICA (The ICA is implemented according to the algorithm of FastICA proposed 
by Hyvarinen [1]). Figure 3.2 and Figure 3.3 show the projections of all the data onto the 
first two independent components. In the horizontal direction is the speaker index for the 
two sets. The alignment is:  EW-f (1-250), SH-f (251-440), EW-m   (441-690) and SH-m 
(691-980).  
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Figure 3.2: Projection of all speakers on the first independent component (The first 
block corresponds to the speaker sets of EW-f and SH-f, and the second block 
corresponds to the EW-m and SH-m). 

 
From Figure 3.2, we can make a clear conclusion that the independent component 
corresponds to the gender characteristics of speaker. Projections on this component 
almost separate all speakers into two categories: male and female.  
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Figure 3.3: Projections of all speakers on the second independent component. (The 
four blocks correspond to the speaker sets of EW-f, SH-f, EW-m, SH-m from left 
to right). 

 
According to Figure 3.3, four subsets occupy four blocks. The first and the third one 
together correspond the accent set EW (with Beijing accent) while the second and the 
fourth one together correspond to another accent set SH. They are separated in the 
vertical direction. It is obvious that this component has strong correlation with accents. 
 
To illustrate the projection of the four different subsets onto the top two components, we 
draw each speaker with a point in Figure 3.4. The distribution spans a 2-d speaker space. 
It can be concluded that the gender and accent are the two main components that 
constitute the speaker space. 
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Figure 3.4: Projection of all speakers on the first and second independent 
components, horizontal direction is the projection on first independent component; 
vertical direction is projection on second independent component.   
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To illustrate accurately the performance of ICA, we compute the classification errors on 
the gender and accent classification through proper choice of projection threshold on each 
dimension shown in Figure 3.4. There are 60 and 130 errors for gender and accent, 
respectively. The corresponding error rates are 6.1% and 13.3%. 

3.3.4 ICA vs. PCA 
When applying PCA and ICA to gender classification on EW corpus, we received the 
error rate of 13.6% and 8.4% respectively. The results are achieved with the following 
setups to represent each speaker: 

•  6 supporting regression classes; 
•  Diagonal matrix (~d) 
•  Static cepstrum and energy (13) 

The similar results are achieved with other settings. It is shown that ICA based features 
yield better classification performance than PCA ones. 
 
Unlike PCA where the components can be ranked according to the eigenvalues, ranking 
of the positions of the ICA components representing variations in gender and accent can 
not be done. However, we can always identify them in some way (e.g. from plots). Once 
they are determined, the projection matrix is fixed. 

3.4 Conclusion 
In this section, we investigated the variability between speakers through two powerful 
multivariate statistical analysis methods, PCA and ICA. It is found that strong 
correlations between gender and accent exist in two ICA components.  While strong 
correlation between gender and the first PCA component is well known, we give the first 
physical interpretation for the second component: it is strongly related with accent. 
 
We propose to do a proper selection of supporting regression classes, to obtain an 
efficient speaker representation. This is beneficial for speaker adaptation with limited 
corpus available. 
Through gender classification experiments combined with MLLR and PCA, we 
concluded that the static and first–order cepstrum and energy carry most information 
about speakers. 
 
The features extracted by using PCA and ICA analysis can be directly applied to speaker 
clustering. Further work of its application in speech recognition is undergoing.  

 

4. Accent Modeling through PDA 
 

4.1 Introduction 
 



MSR-TR-2001-69  12 

 

There are multiple accents in Mandarin.  A speech recognizer built for a certain accent 
often obtains 1.5 ~ 2 times higher error rate when applied to another accent.  The errors 
can be divided into two categories.  One type of errors is due to misrecognition of 
confusable sounds by the recognizer.  The other type of errors is those due to the 
speaker’s own pronunciation errors.  For example, some speakers are not able to clearly 
enunciate the difference between /zh/ and /z/.  Error analysis shows that the second type 
of errors constitutes a large proportion of the total errors when a speech recognizer 
trained on Beijing speakers is applied to speech from Shanghai speakers.  A key 
observation is that speakers belonging to the same accent region have similar tendencies 
in mispronunciations. 
 
Based on the above fact, an accent modeling technology called pronunciation dictionary 
adaptation (PDA) is proposed.  The basic idea is to catch the typical pronunciation 
variations for a certain accent through a small amount of utterances and encode these 
differences into the dictionary, called an accent-specific dictionary.  The goal is to 
estimate the pronunciation differences, mainly consisting of confusion pairs, reliably and 
correctly. Depending on the amount of the adaptation data, a dynamic dictionary 
construction process is presented in multiple levels such as phoneme, base syllable and 
tonal syllable.  Both context-dependent and context-independent pronunciation models 
are also considered.  To ensure that the confusion matrices reflect the accent 
characteristics, both the occurrences of reference observations and the probability of 
pronunciation variation are taken into account when deciding which transformation pairs 
should be encoded into the dictionary. 
 
In addition, to verify that pronunciation variation and acoustic deviation are two 
important but complementary factors affecting the performance of recognizer, maximum 
likelihood linear regression (MLLR) [11], a well-proven adaptation method in the field of 
acoustic model was adopted in two modes: separately and combined with PDA.  
 
Compared with [7], which synthesizes the dictionary completely from the adaptation 
corpus; we augment the process by incorporating obvious pronunciation variations into 
the accent-specific dictionary with varying weights.  As a result, the adaptation corpus 
that was used to catch the accent characteristics could be comparatively small. Essentially, 
the entries in the adapted dictionary consist of multiple pronunciations with prior 
probability that reflect accent variation.  In [8], syllable-based context was considered. 
We extend such context from the syllable to the phone level, even the phone class level. 
There are several advantages.  It can extract the essential variation in continuous speech 
from a limited corpus.  At the same time, it can maintain a detailed description of the 
impact of articulation of pronunciation variation. Furthermore, tonal changes, as a part of 
pronunciation variation have also been modeled.  In addition, the result we reported has 
incorporated a language model. In other words, these results could accurately reflect 
contribution of PDA, MLLR and the combination of two in the dictation application.  As 
we know, a language model could help to recover from some errors due to speakers’ 
pronunciation variation. 
 
Furthermore, most prior work [7][8][10] uses pronunciation variation information to re-
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score the N-best hypothesis or lattices resulting from the baseline.  However, we 
developed a one-pass search strategy that unifies all kinds of information, including 
acoustic model, language model and accent model about pronunciation variation, 
according to the existing baseline system. 
 

4.2 Accent Modeling With PDA 
 

Many adaptation technologies based on acoustic model parameter re-estimation make 
assumption that speakers, even in different regions, pronounce words according to a 
predefined and unified manner.  Error analyses across different accent regions tell us that 
this is a poor assumption.  For example, a speaker from Shanghai probably utters /shi/ as 
/si/ in the canonical dictionary (such as the official published one based on pronunciation 
of Beijing inhabitants). Therefore, a recognizer trained according to the pronunciation 
criterion of Beijing cannot recognize accurately a Shanghai speaker given such a 
pronunciation discrepancy.  The aim of PDA is to build a pronunciation dictionary suited 
to the accent-specific group in terms of a “native” recognizer. Luckily, pronunciation 
variation between accent groups presents certain clear and fixed tendencies.  There exist 
some distinct transformation pairs at the level of phones or syllables. This provides the 
premise to carry out accent modeling through PDA.   The PDA algorithm can be divided 
into the following stages: 
 
The first stage is to obtain an accurate syllable level transcription of the accent corpus in 
terms of the phone set of the standard recognizer.  To reflect factual pronunciation 
deviation, no language model was used here. The transcribed result was aligned with the 
reference transcription through dynamic programming.  After the alignments, error pairs 
can be identified. Here, we just consider the error pairs due to substitution error since 
insertion and deletion errors are infrequent in Mandarin because of the strict syllable 
structure.  To ensure that the mapping pairs were estimated reliably and representatively, 
pairs with few observations were cut off.  In addition, pairs with low transformation 
probability were also eliminated to avoid excessive variations for a certain lexicon items. 
According to the amount of accent corpus, context dependent or context independent 
mapping pairs with different transfer probability could be selectively extracted at the 
level of sub-syllable, base-syllable or tone-syllable.  
 
The next step is to construct a new dictionary that reflects the accent characteristics based 
on the transformation pairs.  We encode these pronunciation transfer pairs into the 
original canonical lexicon, and finally a new dictionary adapted to a certain accent is 
constructed. In fact, pronunciation variation is realized through multiple pronunciations 
with corresponding weights.  Each dictionary entry can be a word with multiple syllables 
or just a single syllable. Of course, all the pronunciation variations’ weights 
corresponding to the same word should be normalized. 
 
The final step is to integrate the adapted dictionary into the recognition or search 
framework.  Much work makes use of PDA through multiple-pass search strategy [8][10]. 
In other words, prior knowledge about pronunciation transformation was used to re-score 
the multiple hypotheses or lattice obtained in the original search procedure. In this paper, 
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we adopt a one-pass search mechanism as in Microsoft Whisper System [9].  
Equivalently, the PDA information was utilized at the same time as other information, 
such as language model and acoustic evaluation. This is illustrated with the following 
example. 
 
For example: speakers with a Shanghai accent probably uttered “du2-bu4-yi1-shi2” from 
the canonical dictionary as “du2-bu4-yi1-si2”. The adapted dictionary could be as follows: 
 
 
 
 
 
 
Therefore, scores of the three partial paths yi1"shi2, yi1"shi2 (2) and yi1"si2 could be 
computed respectively with formulae (1) (2) (3). 
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Where AMLM PP , and PDAP stand for the logarithmic score of Language Model (LM), 
Acoustic Model (AM) and Pronunciation variation respectively. AMLM ww ,  and PDAw are the 
corresponding weight coefficients and adjusted according to experience. 
 
Obviously, the partial path yi1"shi2 (4) has adopted the factual pronunciation (as / 2si /) 
while keeping the ought-to-be LM, e.g. bigram of ( 1|2 yishi ), at the same time, prior 
information about pronunciation transformation was incorporated.  Theoretically, it 
should outscore the other two paths.  As a result, the recognizer successfully recovers 
from user’s pronunciation error using PDA. 
 

4.3 Experiments and Result 

4.3.1 System and Corpus 
 

Our baseline system is an extension of the Microsoft Whisper speech recognition system 
[9] that focuses on Mandarin characteristics, e.g. pitch and tone have been successfully 
incorporated [3].  The acoustic model was trained on a database of 100,000 sentences 
collected from 500 speakers (train_set, male and female half each, here we only use 250 
male speakers) coming from Beijing area.  The baseline dictionary is based on an official 
published dictionary that is consistent with the base recognizer.  The language model is 

… 
shi2    shi2 0.83 
shi2(2)    si2     0.17 
…. 
si2    si2 1.00  
…. 
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tonal syllable trigram with perplexity of 98 on the test corpus.  Other data sets are as 
follows: 

•  Dictionary Adaptation Set (pda_set): 24 male speakers from Shanghai area, at 
most 250 sentences or phrases from each speaker; 

•  Test Set (Test_set) 10 male speakers, 20 utterances from each speaker; 
•  MLLR adaptation sets (mllr_set):  Same speaker set as test sets, at most another 

180 sentences from each speaker; 
•  Accent specific SH model (SH_set): 480 speakers from Shanghai area, at most 

250 sentences or phrase from each speaker. (Only 290 male speakers used) 

4.3.2 Analysis 
 
2000 sentences from pda_set were transcribed with the benchmark recognizer in term of 
standard sets and syllable loop grammar.  Dynamic programming was applied to these 
results and many interesting linguistic phenomena were observed. 
 

Front nasal and back nasal  
 

Final ING and IN are often exchangeable, while ENG are often uttered into EN and not 
vice versa. This is shown in Table 4.1. 
 

Table 4.1: Front nasal and back nasal mapping pairs of accent speaker in term of 
standard phone set. 

Canonical 
Pron. 

Observed 
Pron. 

Prob. (%) 
Canonical 

Pron. 
Observed 

Pron. 
Prob. 
(%) 

QIN� QING� 47.37� QING� QIN� 19.80�
LIN� LING� 41.67� LING� LIN� 18.40�
MIN� MING� 36.00� MING� MIN� 42.22�
YIN� YING� 35.23� YING� YIN� 39.77�
XIN� XING� 33.73� XING� XIN� 33.54�
JIN� JING� 32.86� JING� JIN� 39.39�
PIN� PING� 32.20� PING� PIN� 33.33�
(IN) (ING) 37.0 (ING) (IN) 32.4 

RENG� REN� 55.56� SHENG� SHEN� 40.49�
GENG� GEN� 51.72� CHENG� CHEN� 25.49�

ZHENG� ZHEN� 46.27� NENG� NEN� 24.56�
MENG� MEN� 40.74� (ENG) (EN) 40.7 

 
 

 
ZH (SH, CH) VS. Z (S, C)  
 
Because of phonemic diversity, it is hard for Shanghai speakers to utter initial phoneme 
like /zh/, /ch/ and /sh/.  As a result, syllables that include such phones are uttered into 
syllables initialized with /z/, /s/ and /c/, as shown in Table 2.  It reveals a strong 
correlation with phonological observations. 
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Table 4.2: Syllable mapping pairs of accented speakers in term of standard phone 
set:  

Canonica
l Pron. 

Observed 
Pron. 

Prob. (%) 
Canonica

l Pron. 
Observed 

Pron. 
Prob. 
(%) 

ZHI� ZI� 17.26� CHAO� CAO� 37.50�
SHI� SI� 16.72� ZHAO� ZAO� 29.79�
CHI� CI� 15.38� ZHONG� ZONG� 24.71�
ZHU� ZU� 29.27� SHAN� SAN� 19.23�
SHU� SU� 16.04� CHAN� CAN� 17.95�
CHU� CU� 20.28� ZHANG� ZANG� 17.82�

 

4.3.3 Result 
 

In this subsection, we report our result with PDA only, MLLR only and the combination 
of PDA and MLLR sequentially.  To measure the impact of different baseline system on 
the PDA and MLLR, the performance of accent-dependent SI model and mixed accent 
groups SI model are also present in both syllable accuracy and character accuracy for 
LVCSR. 

PDA Only 
 

Starting with many kinds of mapping pairs, we first remove pairs with fewer observation 
and poor variation probability, and encode the remaining pairs into dictionary.  Table 4.3 
shows the result when we use 37 transformation pairs, mainly consisting of pairs shown 
in Table 4.1 and Table 4.2.  
 

Table 4.3: Performance of PDA (37 transformation pairs used in PDA). 

 

Dictionary Syllable Error Rate (%) 

Baseline 23.18 
+ PDA (w/o Prob.) 20.48 (+11.6%) 
+PDA (with Prob.) 19.96 (+13.9%) 

 

MLLR 
 

To evaluate the acoustic model adaptation performance, we carry out the MLLR 
experiments.  All phones (totally 187) were classified into 65 regression classes.  Both 
diagonal matrix and bias offset were used in the MLLR transformation matrix. 
Adaptation set size ranging from 10 to 180 utterances for each speaker was tried.  Results 
are shown in the Table 4.4.  It is shown that when the number of adaptation utterances 
reaches 20, relative error reduction is more than 22%.  
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 Table 4.4: Performance of MLLR with different adaptation sentences. 

 

# Adaptation 
Sentences 

0 10 20 30 45 90 180 

MLLR 23.18 21.48 17.93 17.59 16.38 15.89 15.50 
Error reduction 
(Based on SI) 

-- 7.33 22.65 24.12 29.34 31.45 33.13 

 

Combined PDA and MLLR 
 
Based on the assumption that PDA and MLLR can be complementary adaptation 
technologies from the pronunciation variation and acoustic characteristics respectively, 
experiment combining MLLR and PDA were carried out.  Compared with performance 
without adaptation at all, 28.4% was achieved (only 30 utterances used for each person).  
Compared with MLLR alone, a further 5.7% was improved. 
 

Table 4.5: Performance Combined MLLR with PDA. 

# Adaptation 
Sentences 

0 10 20 30 45 90 180 

+ MLLR 
+ PDA 

19.96 21.12 17.5 16.59 15.77 15.22 14.83 

Error reduction 
(Based on SI) 

13.9 8.9 24.5 28.4 32.0 34.3 36.0 

Error reduction 
(Based on MLLR) 

- 1.7 2.4 5.7 3.7 4.2 4.3 

Comparison of Different Models  
 
The following table shows the results of different baseline models or different adaptation 
techniques on recognition tasks across accent regions. It shows that accent-specific model 
still outperforms any other combination. 
 

Table 4.6: Syllable error rate with different baseline model or different adaptation 
technologies (BES means a larger training set including 1500 speakers from both 

Beijing and Shanghai). 

Different Baseline 
(Syllable Error Rate (%)) 

Different 
Setup 

 Train_set BES SH_set 
Baseline 23.18 16.59 13.98 
+ PDA 19.96 15.56 13.76 

+ MLLR (30 Utts.) 17.59 14.40 13.49 
+ MLLR + PDA 16.59 14.31 13.52 
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PDA and MLLR in LVCSR  
 
To investigate the impact of the above strategies on large vocabulary speech recognition, 
we designed a new series of experiments to be compared with results shown in Table 4.6.  
A canonical dictionary consisting of up to 50K items and language model of about 120M 
were used.  The result is shown in Table 4.7.  Character accuracy is not as significant as 
syllable accuracy shown in Table 6.  It is mainly due to the following two simplifications: 
Firstly, because of the size limitation of dictionary, only twenty confusion pairs were 
encoded into pronunciation dictionary.  Secondly, no probability is assigned to each 
pronunciation entry at present. However, we still can infer that PDA is a powerful accent 
modeling method and is complementary to MLLR.  
 

Table 4.7: Character error rate with different baseline model or different adaptation 
technologies (BES means a larger training set including 1500 speakers from both 

Beijing and Shanghai). 

Different Baseline 
(Character Error Rate (%)) 

Different 
Setup 

 Train_set BES SH_set 
Baseline 26.01 21.30 18.26 
+ PDA 23.64 20.02 18.41 

+ MLLR (30 Utts.) 21.42 18.99 18.51 
+ MLLR + PDA 20.69 18.87 18.35 

+ MLLR (180 Utts.) 19.02 18.60 17.11 
 

5. Automatic Accent Identification 
 

5.1 Introduction 
 

Speaker variability, such as gender, accent, age, speaking rate, and phones realizations, is 
one of the main difficulties in speech recognition task. It is shown in [12] that gender and 
accent are the two most important factors in speaker variability. Usually, gender-
dependent model is used to deal with the gender variability problem. 
 
In China, almost every province has its own dialect. When speaking Mandarin, the 
speaker’s dialect greatly affects his/her accent. Some typical accents, such as Beijing, 
Shanghai, Guangdong and Taiwan, are quite different from each other in acoustic 
characteristics. Similar to gender variability, a simple method to deal with accent problem 
is to build multiple models of smaller accent variances, and then use a model selector for 
the adaptation. Cross-accents experiments in Section 2 show that performance of accent-
independent system is generally 30% worse than that of accent-dependent one. Thus it is 
meaningful to develop an accent identification method with acceptable error rate. 
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Current accent identification research focuses on foreign accent problem. That is, 
identifying non-native accents. Teixeira et al. [13] proposed a Hidden Markov Model 
(HMM) based system to identify English with 6 foreign accents: Danish, German, British, 
Spanish, Italian and Portuguese. A context independent HMM was used since the corpus 
consisted of isolated words only, which is not always the case in applications. Hansen 
and Arslan [14] also built HMM to classify foreign accent of American English. They 
analyzed some prosodic features’ impact on classification performance and concluded 
that carefully selected prosodic features would improve the classification accuracy. 
Instead of phoneme-based HMM, Fung and Liu [15] used phoneme-class HMMs to 
differentiate Cantonese English from native English. Berkling et al. [16] added English 
syllable structure knowledge to help recognize 3 accented speaker groups of Australian 
English. 
 
Although foreign accent identification is extensively explored, little has been done to 
domestic one, to the best of our knowledge. Actually, domestic accent identification is 
more challenging: 1) Some linguistic knowledge, such as syllable structure used in [16], 
is of little use since people seldom make such mistakes in their mother language; 2) 
Difference among domestic speakers is relatively smaller than that among foreign 
speakers. In our work, we want to identify different accent types spoken by people with 
the same mother language. 
 
Most of current accent identification systems, as mentioned above, are built based on the 
HMM framework, while some investigated accent specific features to improve the 
performance. Although HMM is effective in classifying accents, its training procedure is 
time-consuming. Also, using HMM to model every phoneme or phoneme-class is not 
economic. We just want to know which accent type the given utterances belong to. 
Furthermore, HMM training is a supervised one: it needs phone transcriptions. The 
transcriptions are either manually labeled, or obtained from a speaker independent model, 
in which the word error rate will certainly degrade the identification performance. 
  
In this section, we propose a GMM based method for the identification of domestic 
speaker accent. Four typical Mandarin accent types are explored: Beijing, Shanghai, 
Guangdong and Taiwan. Since phoneme or phoneme class information are out of our 
concern, we just model accent characteristics of speech signals. GMM training is an 
unsupervised one: no transcriptions are needed. We train two GMMs for each accent: one 
for male, the other for female, since gender is the greatest speaker variability. Given test 
utterances, the speaker’s gender and accent can be identified at the same time, compared 
with the two-stage method in [13]. The commonly used feature in speech recognition 
systems, MFCC, is adopted to train the GMMs. The relationship between GMM 
parameter and recognition accuracy is examined. We also investigate how many 
utterances per speaker are sufficient to reliably recognize his/her accent. We randomly 
select N utterances from each test speaker and averaged their log-likelihood in each 
GMM. It is hoped that the more the averaged utterances, the more robust the 
identification results. Experiments show that with 4 test utterances per speaker, about 
11.7% and 15.5% error rate in accent classification is achieved for female and male, 
respectively. Finally, we show the correlations among accents, and give some 
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explanations. 
 

5.2 Multi-Accent Mandarin Corpus 
The multi-accent Mandarin corpus, consisting of 1,440 speakers, is part of 7 corpora for 
speech recognition research collected by Microsoft Research China. There are 4 accents: 
Beijing (BJ, including 3 channels: BJ, EW, FL), Shanghai (SH, including 2 channels: SH, 
JD), Guangdong (GD) and Taiwan (TW). All waveforms were recorded at a sampling 
rate of 16 kHz, except that the TW ones were 22 kHz. Most of the data were from 
students and staff at universities in Beijing, Shanghai, Guangdong and Taiwan, with ages 
varying from 18 to 40. In training corpus, there are 150 female and 150 male speakers of 
each accent, with 2 utterances per speaker. In test corpus, there are 30 female and 30 
male speakers of each accent, with 50 utterances per speaker. Most of the utterances last 
about 3-5 seconds each, forming about 16 hours’ speech data of the whole corpus. There 
is no overlap between training and test corpus. That is, all the 1,440 speakers are different. 
The speaker distribution of the multi-accent Mandarin corpus is listed in Table 5.1. 
 

Table 5.1: Speaker Distribution of Corpus. 

Accent Channel Gender 
Training 
Corpus 

Test 
Corpus 

F 50 10 
BJ 

M 50 10 
F 50 10 

EW 
M 50 10 
F 50 10 

BJ 

FL 
M 50 

300 

10 

60 

F 75 15 
SH 

M 75 15 
F 75 15 

SH 
JD 

M 75 

300 

15 

60 

F 150 30 
GD GD 

M 150 
300 

30 
60 

F 150 30 
TW TW 

M 150 
300 

30 
60 

ALL 1,200 240 

5.3 Accent Identification System 
Since gender and accent are important factors of speaker variability, the probability 
density functions of distorted features caused by different gender and accent are different. 
As a result, we can use a set of GMMs to estimate the probability that the observed 
utterance is come from a particular gender and accent. 
In our work, M GMMs, M

kk 1}{ =Λ , are independently trained using the speech produced by 

the corresponding gender and accent. That is, model kΛ  is trained to maximize the log-
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likelihood function 
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where the speech feature is denoted by x(t). T is the number of speech frames in the 
utterance and M is twice (two genders) the total number of accent types. The GMM 
parameters are estimated by the expectation maximization (EM) algorithm [17]. During 
identification, an utterance is fed to all the GMMs. The most likely gender and accent 
type is identified according to 
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5.4 Experiments 

5.4.1 Experiments Setup 
As described in Section 5.2, there are 8 subsets (accent plus gender) in the training 
corpora. In each subset, 2 utterances per speaker, altogether 300 utterances per subset, are 
used to train the GMMs. Since the 300 utterances in a subset are from 150 speakers with 
different ages, speaking rates and even recording channels, speaker variability caused by 
these factors is averaged. Thus we hope to represent effectively the specific gender and 
accent by this means. The speech data is pre-emphasized with H(z)=1-0.97z-1, windowed 
to 25-ms frames with 10-ms frame shift, and parameterized into 39 order MFCCs, 
consisting of 12 cepstral coefficients, energy, and their first and second order differences. 
Cepstral mean subtraction is performed within each utterance to remove the effect of 
channels. When training GMMs, their parameters are initialized and reestimated once. 
Data preparation and training procedures are performed using the HTK 3.0 toolkit [19]. 
In the first experiment, we investigate the relation between the number of components in 
GMM and the identification accuracy.  
 
50 utterances of each speaker are used for test. In the second experiment, we study how 
the number of utterances affects the performance of our method. For each test speaker, 
we randomly select N (N<=50) utterances and average their log-likelihood in each subset. 
The test speaker is classified into the subset with the largest averaged log-likelihood. The 
random selection is repeated for 10 times. Thus 2400 tests are performed in each 
experiment. This will guarantee to achieve reliable results. 

5.4.2 Number of Components in GMM 
In this experiment, we examine the relationship between the number of components in 
GMMs and the identification accuracy. 
 
Since our problem is to classify the unknown utterances to a specific subset, and the 
eight subsets are labeled with gender and accent, our method can identify the speaker’s 
gender and accent at the same time. When calculating the error rate of gender, we just 
concern with speakers whose identified gender is different with the labeled one. 
Similarly, when calculating the error rate of accent, we just concern with speakers whose 
identified accent is error. 
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Table 5.2 and Figure 5.1 show the gender and accent identification error rate respectively, 
varying the number of components in GMMs. Here also listed the relative error 
reduction as increasing the number of components. 
 

Table 5.2: Gender Identification Error Rate(Relative error reduction is calculated 
when regarding GMM with 8 components as the baseline). 

# of Components 8 16 32 64 

Error Rate (%) 8.5 4.5 3.4 3.0 

Rel. Error 
Reduction (%) 

- 47.1 60.0 64.7 

 
Table 5.2 shows that the gender identification error rate decreases significantly when 
components increase from 8 to 32. However, only small improvement is gained by using 
64 components compared with 32 ones. It can be concluded that GMM with 32 
components is capable of effectively modeling gender variability of speech signals. 
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Figure 5.1: Accent identification error rate with different number of components. 
X axis is the number of components in GMMs. The left Y axis is the identification 
error rate; the right Y axis is the relative error reduction to 8 components, when 
regarding GMM with 8 components as the baseline. “All” means error rate 
averaged between female and male. 

 
Figure 5.1 shows the similar trend with Table 5.2. It is clear that the number of 
components in GMMs greatly affects the accent identification performance. Different to 
the gender experiment, in accent, GMMs with 64 components still gain some 
improvement over 32 ones (Error rate decreases from 19.1% to 16.8%). Since the accent 
variability in speech signals is more complicated and not as significant as gender, 64 
components are better while describing the detail variances among accent types. 
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However, it is well known that to train a GMM with more components is much more 
time-consuming and requires more training data to obtain reliable estimation of the 
parameters. Concerning the trade-off between accuracy and costs, using GMMs with 32 
components is a good choice. 

5.4.3 Number of Utterances per Speaker 
Sometimes it is hard even for linguistic experts to tell a specific accent type given only 
one utterance. Thus making use of more than one utterance in accent identification is 
acceptable in most applications. We want to know the robustness of the method: how 
many utterances are sufficient to reliably classify accent types.  
 
In this experiment, we randomly select N (N<=50) utterances for each test speaker and 
average their log-likelihood in each GMM. The test speaker is classified into the subset 
with the largest averaged log-likelihood. The random selection is repeated for 10 times to 
guarantee achieving reliable results. According to Section 5.3.2, 32 components for each 
GMM are used. 
 
Table 5.3 and Figure 5.2 show the gender and accent identification error rate respectively, 
varying the number of utterances. When averaging the log-likelihood of all 50 utterances 
of a speaker, it is no need to perform random selection. 
 

Table 5.3: Gender Identification Error Rate (Relative error reduction is calculated 
when regarding 1 utterance as the baseline). 

# of Utterances 1 2 3 4 5 10 20 50 

Error Rate (%) 3.4 2.8 2.5 2.2 2.3 1.9 2.0 1.2 

Rel. Error 
Reduction (%) 

- 18 26 35 32 44 41 65 

 
Table 5.3 shows that it is more reliable to tell a speaker’s gender by using more 
utterances. When the number of utterances increases from 1 to 4, the gender 
identification accuracy improves greatly. Still considerable improvement is observed 
when using more than 10 utterances. However, in some applications, it is not applicable 
to collect so much data just to identify the speaker’s gender. Also, the results of 3~5 
utterances are good enough in most situations. 
 
It is clear from Figure 5.2 that increasing the number of utterances improves 
identification performance. This is consistent with our idea that more utterances of a 
speaker, thus more information, help recognize his/her accent better. Considering the 
trade-off between accuracy and costs, using 3~5 utterances is a good choice, with error 
rate 13.6%-13.2%. 
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Figure 5.2: Accent identification error rate with different number of utterances. X 
axis is the number of utterances for averaging. The left Y axis is the identification 
error rate; the right Y axis is the relative error reduction, when regarding 1 
utterance as the baseline. “All” means error rate averaged between female and 
male. 

5.4.4 Discussions on Inter-Gender and Inter-Accent Results 
It can be noticed from Figure 5.1 and Figure 5.2 that the accent identification results are 
different between male and female. In experiments we also discovered different pattern 
of identification accuracy among 4 accent types. In this subsection, we will try to give 
some explanations. 
 
We select one experiment in Section 5.4.3 as an example to illustrate the two problems. 
Here GMMs are built with 32 components. 4 utterances of each speaker are used to 
calculate the averaged log-likelihood to recognize his/her accent. The inter-gender result 
is listed in Table 5.4. Table 5.5 shows the recognition accuracy of the 4 accents. 
 

Table 5.4: Inter-Gender Accent Identification Result. 

Error Rate (%) BJ SH GD TW ALL Accents 

Female 17.3 11.4 15.2 2.7 11.7 

Male 27.7 26.3 7.6 0.3 15.5 

 
We can see from Table 5.4 that Beijing (BJ) and Shanghai (SH) female speakers are 
much better recognized than corresponding male speakers, which causes the overall 
better performance for female. This is consistent with speech recognition results. 
Experiments in Section 2 show better recognition accuracy for female than for male in 
Beijing and Shanghai, while reverse result for Guangdong and Taiwan. 
 
Table 5.5 shows clearly different performance among accents. We will give some 
discussions below. 
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Table 5.5: Accents identification confusion matrices (Including four accents like 
Beijing, Shanghai, Guangdong and Taiwan). 

Testing Utterances From 
Recognized As 

BJ SH GD TW 

BJ 0.775�
��

�

0.081� 0.037� 0.001�

SH 0.120� 0.812�
��

�

0.076� 0.014�

GD 0.105� 0.105� 0.886�
��

�

0.000�

TW 0.000� 0.002� 0.001� 0.985�
��

�

 
! Compared with Beijing and Taiwan, Shanghai and Guangdong are most likely to be 

recognized to each other, except to themselves. In fact, Shanghai and Guangdong both 
belong to southern language tree in phonology and share some common 
characteristics. For example, they do not differentiate front nasal and back nasal.  

 
! The excellent result of Taiwan speakers may lie in two reasons. Firstly, as Taiwan 

civilians communicate with the Mainland relatively infrequently and their language 
environment is unique, their speech style is quite different from that of the Mainland 
people. Secondly, limited by the recording condition, there is a certain portion of 
noise in the waveform of Taiwan corpus (both training and test), which makes them 
more special. 

 
! The reason of relatively low accuracy of Beijing possibly lies in its corpus’s channel 

variations. It is shown in Table 5.1 there are 3 channels in Beijing corpus. Greater 
variations lead to a more general model, which is not so specific for the accent and 
may degrade the performance. 

 
! Channel effect may be a considerable factor to the GMM based accent identification 

system. From Beijing, Shanghai and Guangdong, accuracy increases when the 
number of channels decreases. Further work is needed to solve this problem. 

6. Conclusion and Discussions 
 

Accent is one of the main factors that cause speaker variances and a very serious problem 
that affects speech recognition performance. We have explored such problem in two 
directions:  

•  Model adaptation. Pronunciation dictionary adaptation method is proposed to 
catch the pronunciation variation between speakers based on standard dictionary 
and the accented speakers.  In addition pronunciation level adjustments, we also 
tried model level adaptation such as MLLR and integration of these two methods. 
Pronunciation adaptation can cover most dominant variation among accents group 
in phonology level, while speaker adaptation can tract the detailed changes for 
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specific speaker such pronunciation style in acoustic level. Result shows that they 
are complimentary. 

•  Building accent specific model and automatic accent identification. In case we 
have enough corpus for each accent, we can build more specific model with little 
speaker variances. In the report, we propose a GMM based automatic accent 
detection method. Compared with HMM based identification methods. It has the 
following advantages. Firstly, it is not necessary to know the transcription in 
advance. In other word, it is text independent. Secondly, because the parameter 
need to be estimated is far less, it greatly reduced the enrollment burden of the 
users. Lastly, it is very efficient to identify the accent type of new comers. In 
addition, the method can be extended any more detailed speaker subset of certain 
characteristics, such as more detailed classification about speakers. 

 
There two methods can be adopted in different case according to the mount of available 
corpus. When large amount of corpora for different accents can be obtained, we get 
classify the speaker through GMM-based automatic accent identification strategies 
proposed in Section 5 into different speaker subsets and train accent specific model 
respectively. Otherwise, we can extract the main pronunciation variations between accent 
groups and standard speakers through PDA with a certain amount of accented utterances. 
 
Furthermore, we make a thorough investigation among speaker variability, especially 
focusing on gender and accent. In the process, we proposed MLLR transformations-based 
speaker representation and introduced supporting regression class concept. Finally, we 
have given the physical interpretation of accent and gender. That is: The two factors have 
strong correlation with the first two independent components, which bridge the gap 
between low-level speech events, such as features, and the high-end speaker 
characteristics: accent and gender. 
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