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Abstract

WaveBase is a system for detecting features in a face image. It has a database of faces,
each with atwo-level hierarchical wavelet network. When a new face image is presented
to the system for face detection, WaveBase searches its database for the “best face” —the
face whose first level wavelet network most closely matches the new face. It aso
determines an affine transformation to describe any difference in the orientation of the
faces. By applying the affine transformation to the position of the features in the best
face, approximate feature positions in the new face are found. Second level wavelet
networks for each feature are then placed at these approximate positions, and allowed to
move slightly to minimize their difference from the new face. This facilitates adjustments
in addition to the affine transformation to account for slight differences in the geometry
of the best head and the new head. The final position of the wavelet network is
WaveBase' s estimate of the feature positions. Experiments demonstrate the benefit of our
hierarchical approach. Results compare favorably with existing techniques for feature
localization.

L A reduced version of this paper was submitted to the 5th International Conference on Automatic Face and
Gesture Recognition.



1 Introduction

Automated initialization of feature location is a requirement of many tracking algorithms that take
advantage of temporal continuity of the target. In this paper, we describe an approach to automatic
initialization using hierarchical wavelet networks. Our application is facial feature localization for the
purpose of initializing facial feature tracking, but the approach is applicable to other target types.

Tracking algorithms that are based on tracking sets of compact visual features, such as edge corners or
small image patches, are especially difficult to initialize because each featureinitself israrely unique —
brute-force raster-scan searches of such small features will result in many possible candidates, of which
only asmall handful may be desirable matches (Figure 1). This suggests that features with larger support
should be used, but features with larger support are also likely to be less precise in their localization, as
image features far away from the feature in question bias localization. For exanple, many frontal face
detectors [15, 16, 17] could trivially be converted to frontal eye detectors, by assuming that eyes are located
at certain relative coordinates with respect to a detected face, and in fact, some face detectors overlay
markers on the eyes, as evidence of adetected face [15, 16]. At a given resolution, whole faces contain
more information than the eyes alone, and so the larger support of the face provides greater constraintsin
the search for eyes. On the other hand, the larger support also means that eye localization isimprecise
because the face-eye relationship varies from image to image. Variations in facial geometry alone make it
impossible to pinpoint pupils or eye corners using such atechnique.

Figure 1 Candidatesfor an eye corner from a face image

We present a system, WaveBase, which solves this problem viaahierarchical search using Gabor wavelet
networks (GWNSs, [9]). This approach allows effective object representation using a constellation of 2D
Gabor wavelets that are specifically chosen to reflect the object properties. For application to facial feature
detection, we construct atraining database of face images and their 2-level GWN representations. The first
level GWN, representing the entire face, is used to find aface in the database that is similarto the target,
and to determine an affine transformation to describe any difference in the orientation of the faces. The
second level GWNSs, representing each feature, are initialized in positions according to the affine
transformation fromthe first level GWN. They are then allowed to move slightly to minimize their
difference from the new face. Thisfacilitates adjustmentsto account for slight differences in the geometry
of the database face and the target. The final position of the child-wavel et networksis the estimate of the
feature positions.

WaveBase was developed as part of the GazeMaster project, which attempts to use a combination of vision
and graphics technology to attain eye contact in videoconferencing. GazeM aster uses a feature-tracker to
perform pose estimation. The feature-tracker follows the corners of the eyes, the nostrils, and the mouth
corners. However, initialization of the feature tracker is manual and awkward. It requires that the feature
positions be known in the first frame of the video, and then it can track the featuresin the subsequent
frames.

In order to achieve thisinitialization automatically, we imagined two steps: a per-user initialization that
may take up to afew minutes, and a per-session initialization that takes |ess than one second. For the per-



user initiali zation, a new user would press a key while looking into the camera. After confirming that they
have taken a good head-on image, WaveBase will attempt locate the features in the image. Once thisis
done, a GWN representation of the user’s head and each featureis created and saved. The per-session
initialization again requires the user to look into the cameraand press akey. Facial feature detection will
then be performed just asit isin the per-user step, but in this case the best head is aready known (it is the
saved representation of the user’s head) eliminating the time required to search the database of faces?

The remainder of the paper will use examplesin which the features consist of eye corners, nostrils and
mouth corners, due to WaveBase' s relationship to GazeM aster. However, WaveBase does not know that it
isfinding these particular features, or that is working with faces, so the technique is applicable to feature
detectionin general.

The remainder of the paper is organized as follows. In Section 2, we explain Gabor wavel et networks,
which form the basis for our approach, and introduce hierarchies of GWNs, as well. Section 3 discusses the
algorithmic details of our feature-localization system and shows results on a hand-annotated database of
faces and facial features. Finally, Section 4 reviews related work.

2 Wavelet Networks

A wavelet network consists of a set of wavelets and associated weights, where its geometrical configuration
is defined with respect to a single coordinate system. It can be further transformed by a parameterized
family of continuous geometric transformations. Wavelet Networks[20] have recently been adapted for
image representation [9] and successfully applied to face tracking, recognition, and pose estimation[1, 9].
Here, we apply them to the problem of feature localization.

2.1 Basics
The constituents of awavelet network are single wavelets and their associated coefficients. We will
consider the odd-Gabor function as mother wavelet. It iswell known that Gabor filters are recognized as
good feature detectors and provide the best trade-off between spatial and frequency resolution [11].
Considering the 2D image case, each single odd Gabor wavelet can be expressed as follows:
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parameters are defined with respect to a coordinate system that is held fixed for al wavelets that a single
wavel et representation comprises.

A Gabor wavelet network for a given image consists in a set of n such wavelets {y .} and a set of
associated weights{w;}, specifically chosen so that the GWN representation:
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best approximates the target image.

2 gignificant changes in the user’ s appearance, e.g. due to growing or cutting a beard, or achangein
environment that leads to very different lighting conditions may require the per-user initialization to be
repeated.



2.2 Compression as Learning
Assuming we have a single training image, I', that is truncated to the region that the target object occupies,
we learn GWN representation parameters as follows:

1. Randomly drop n wavelets of assorted position, scale, and orientation, within the bounds of the
target object.

2. Perform gradient descent (e.g., via Levenberg-Marquardt optimization [13]) over the set of
parameters {W,,N,}, to minimize the difference between the GWN representation and the
training image:
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3. Savethe geometric parameters, n;, and the weights, w;, for al n wavelets. Letv=[w; W, ... wn]T
denote the concatenated vector of weights.

Step 2 minimizes the difference between the GWN representation of the training image and the training
image itself. A reasonable choice of n results in a representation that is an effective encoding of the
training image. One advantage of the GWN approach is that one can tradeoff computational effort with
representational accuracy, by increasing or decreasingn (see Figure 2).

We note here that if the parameters for a wavelet, y i(x), are fixed, then its coefficient, w;, on an image, |,
can be computed directly from the image by taking the inner product of the wavelet’s dual, y~ni (X), with 1,

where <y o (X)’Y~nj (x)> =d, ;. fori, j with respect to the GWN representation, Y (see [1, 9] for more
details).

Figure 2 Facial reconstruction with 52, 116 and 216 wavelets compared with the original image.

2.3 Localization

GWNs may be further transformed by a bijective geometric transformation, T,, parametrized by a, such
that the GWN representationY (X) is mapped toY (Ta™(x)). Localization of an object represented by Y can
then be seen as finding the optimal parameters, a, of T that allow Y (T, (X)) to best reconstruct a portion of
the image. Given a hypothesized set of parameters, a, one way to determine whether it performs a good
reconstruction is to compute Y (Ta%(X)) and then compute the L,-norm between it and the image (within
Y 's support region).

If the transformation T is linear, the transformation can be “pushed back” to the individual wavelets, y i(X)
that make up the GWN representation. In this case, we do not have to laboriously reconstruct images to
compute the L,-norm. Instead, given a hypothesized set of parameters, a, we can now transform the
constituent wavelets accordingly, compute w, their weights on the image, 1, and directly compute L,-norm
asfollows:



-2 o =lv- il =8 - o, - Wl ) @

wherev; = <I(x), Y ni (Ta ™ (x)>.

The terms<Y n;, Y n> areindependent of a up to ascalar factor, thus further facilitating on-line
computations.

2.4 Hierarchical Wavelet Networks

Hierarchical wavelet networks are best envisioned as atree of wavel et networks. Each node of the tree
represents a single wavelet network together with its coordinate system. Each child node is associated with
afixed local coordinate system that is positioned, scaled, and oriented with respect to its parent. Child
nodes represent wavel et networks in themselves. Relationships between the wavel et parameters in a parent
node and a child node are not fixed apriori. That is, this hierarchical structure only imposes direct
constraints on the relative positioning of coordinate systems between nodes, not on the wavelets
themselves.

Structured in this way, wavel et networks occurring higher (toward the root) in the tree constrain their child-
node wavelet networks in such away asto avoid significant geometric deviations while offering enough
flexibility that local distortions can still be modeled.

3 Implementation

WaveBase was developed to provide initialization for GazeMaster’s 3D facia pose tracker. The tracking
system (described in [2, 3]) uses nine tracked features on a subject’ s face — inner and outer corners of both
eyes, three points on the nose, and two mouth corners. Each feature is tracked by a combination of low-
resol ution, sum-of-absol ute-differences template matching and iterative sub-pixel tracking of small image
patches [7, 10]. Both feature-tracking algorithms require accurate initial localization of the nine features,
per subject, in order to track. Previously, these points wereinitialized manually for each subject; by
implementing the algorithms described above, we were able to automate this process for a range of
subjects. In the remaining sequences, facial features will refer to eight of these features (not including the
nose tip — thisis estimated as the midpoint between nostrils, because local image information is insufficient
for accurate localization).

3.1 Training Database
Our training database includes the following for each face:

the original image,

a bounding box for each facial feature,

a bounding box for the whole face,

a GWN representation of the region inside the face bounding box, and

a GWN representation of the region inside each facial feature bounding box.

Faces are well -represented with a GWN of 52 wavelets, as shown in Figure 2 (Cf. the Gabor jet approach,
which would regquire many more wavelets). Each facial feature is represented by a GWN comprising nine
wavelets. Figure 3 shows aface image from the database, with the level-one GWN representation of the
face, and the level-two GWN representation of the features.
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Figure 3 Training database: (a) faceimage (b) GWN representation of face (c) GWN of features

3.2 Level One: Face Matching

Thefirst step in feature localization we call face matching. Thetask isto find the “ best match” face from
our database of faces. In order to rate one face as best, we need an algorithm that gives afacein the
database a score as a match for the new face. Aswe shall see, this score doesn’t necessaily indicate how
similar the faces appear, but should be a good predictor of whether it isagood face for approximating
feature locations in the new face.

Assume we are given a faceimage together with the approximate location of the face. The approximate
face location would typically come from face detection [15, 16, 17]). For our experiments, we knew the
face location and simply used this.

We usethefirst level of the GWN hierarchy and a nearest-neighbor algorithm for face matching. For each
candidate face, we begin by determining an affine transformation of the level-one GWN that registers the
candidate with the target image, as explained in Section 2.3. Including an affine transformation allows
similar faces that have some difference in head pose (rotation) to be discovered. L evenberg-Marquardt
optimization is used to find the best affine parameters.

Once we have found this transformation, we can score the difference between the transformed wavel et
representation and the new face. A good score should indicate that the transformed feature locations from
the database face are close to the feature locations in the new face. We have found that pixel-wise
differenceis not the best score for predicting feature locations. It seems that even when features are near
each other, the pixel-wise difference may be large. For example, suppose the eye corners are very close, but
are slightly out of alignment. The eyebrows may then not align, and where there is eyebrow in one face
there will be skin in the other, and vice versa, which will yield alarge pixel-wise difference. To score the
database face, we allow the scale values of each wavel et in the transformed wavel et representation to be
adjusted until the pixelwise difference is minimized. We then set the score to the sum of the differences of
the optimized scales from the original scales. Thisresidual scoreisgiven in equation (4). Our experiments
have shown that good residual scores do imply the transformed database face feature locations being near
the new face feature locations.

Note that after level one, we can generate reasonabl e hypotheses for feature positions already, simply by
applying the affine transformation to the relative positions of the features with respect to the whole face, as
marked in our database. The success rate of these first-level hypothesesis givenin Table 1. In the next
subsection, we show how these estimates are further refined by level-two analysis.

3.3 Level Two: Feature Localization

Level Onegivesusaninitia starting point for finer search. The refinement processisidentical in the
abstract to how we computed the affine transformation in Level One. The details are slightly different:

We do not allow arbitrary affine transformations for facial features, because local features tend to have far
fewer image constraints. A problem akin to the “ aperture effect” comesinto play, and thisis aggravated by
searching over too many degrees of freedom. We already have the affine transformation of the face, which
will include an overall rotation value. We assume that any additional difference between the facesis
composed of position changes only. While this may not be strictly true, it prevents the optimization from
finding fal se positive matches in other similar features at different orientations or scales. For each feature,



we search within alimited window for a position that minimizes the difference in wavelet subspace
between a candidate level-two feature GWN, and the target image. The location with the minimum value is
deemed to be the location of the feature. Note that the location for each feature as output by WaveBaseisa
bounding box (i.e. the bounding box of the feature wavel et network that we have positioned).

When fine-tuning the feature locations, it is not clear that the features of the best-match face are in fact the
best features to consider. It may be that some other face, which is overall more dissimilar, has features that
are more similar. Or, it may be that some processed (e.g. edge enhanced) or hand-drawn features may work
better in practice (Figure 4 shows and edge-enhanced face that we included in our database). Therefore,
WaveBase allows candidate feature GWNs may be drawn from any of the facesin our database? not just
the GWNs that are associated with the best-match face from Level One. We select the most similar feature,
as measured by aresidual score exactly asin level one. This gives even arelatively small database the
power to match a considerable segment of the population, by mixing and matching features from different
faces.

Clearly, the success of WaveBase depends on it containing at least one face in its database that is
sufficiently similar to the new faceto allow discovery of an affine transformation for the face, and hence an
approxi mation of feature positions. We do not know how many faces would be required to ensure that any
other face (or some high percentage of other faces) in existence can be sufficiently matched. Perhapsitis
the case that only some small number of representative faces are required. At this early stage of our
research, we are not concerned with minimizing the size of the database. Our focus at present is achieving
accuracy and showing a proof of concept. Space optimizations are | eft for future studies.

Figure4 — Edge-enhanced face, and the GWN representation of itsfeatures.

3.4 Results

Experimental validation of our approach was obtained by constructing a database of 100 faces, drawn from
the Yale and FERET Face Databases [4, 12]. To test, we performed a series of leave-one-out experiments
on each of the 100 faces. In each experiment we consider one face and apply feature localization using the
remaining database of 99 faces. For each set of automated feature localizations, we compare with the hand-
marked locations of each feature.

3 Including any processed or hand-drawn heads that have been added to the database.



160

140

120

100

Total Feature Distance
*

80 —
60 +

*
40 ¥ w: 3

o0 ] nt fg }Q‘tﬁ
+ $ e

41| an 100
Face Match Score

Figure5 — First-level matching: Sum of feature position differences ver sus face match score for one
face.

Figure 5 plots the sum of feature position differences versus face score for a single face, with all other faces
in the database scored against it. This figure demonstrates that a good score always correspondsto asmall
position difference. To show that there is considerable advantage to additional layersin the hierarchy, we
compare feature localization results using only one level to using both levels.

Feature

L eft eye outside corner
Left eyeinside corner
Right eye inside corner
Right eye outside corner
Left nostril

Right nostril

Left lip corner

Right lip corner

1-level 2-level
detect rate detect rate
0.81 0.95

0.90 0.94

0.93 0.94

0.78 0.96

0.86 0.95

0.88 0.94

0.65 0.87

0.65 0.88

Table 1. Featurelocalization accuracyfor 1- and 2-level hierarchies. A feature was counted as
accur ately detected if it was localized to within 3 pixels of the point marked by hand.

a0

45
40 -
35 - 1
30 4 ;
25
204 !
15 {4
10 4

Total Feature Distance

— 2-LlevelMatching

------- 1-Level Matching

49

B1 73 85 o7
Face Index

Figure 6 — Sum of feature position differencesfor each face, plotted for 1-level and 2-level matching.



Table 1 compares feature localization rates for both 1 and 2-level systems. An “accurate” localization is
characterized as one in which the feature was localized to within 3 pixels (L 2-distance) of the hand-marked
position. Note that features are localized consistently more accurately for all features with two levels rather
than one. Figure 6 shows this same trend broken down differently. The solid line indicates the total SAD in
feature position between 2-level localization and hand-annotation; the dashed lineis for 1-level
localization. Except in two or three rare instances, the 2-level localization is far superior.

Finally, we offer some examples out of the 100 experiments for visual examination. Figure 7 shows a clear
improvement in feature localization with two levels. Note that just about every feature is accurately
localized by two-level matching. Figure 8 and Figure 9 illustrate further cases of accurate and inaccurate
detection cases using the two-level hierarchy. Figure 9 shows examples of some rare failure cases. Among
failures, these examples are typical — eyebrows or shadows under the eyes are sometimes mistaken for the
eyes themselves, and specular reflection from glasses can obfuscate eye corners. See the appendix for the
full results.

1-Level Matching

Figure 7 — Featur e detection results show improved accuracy from using hierarchical localization.

Figure 8 — Feature detection results showing accur ate detection.



Figure9 — Feature detection results showing inaccur ate detection.

4 Related Work

Other facial feature detection approaches exist. One approach detects feature points using hand-crafted
geometric models of features[19]. The goal of thiswork, however, is in detection of faces by looking for
groups of facial features, so feature localization accuracy islow. Other work trains separate face and facial
feature detectors, where featuresare trained for maximum discriminability from among atraining set [5].
Thiswork is presented without quantitative measures of feature localization. Steerable filters and
geometrical models have also been used to find facial features with high accuracy[8]. A coarse-to-fine
image pyramid is enployed to localize the features, but the technique requires high-resolution imagery in
which sub-features such as the whites of the eye are clearly visible as such. Color segmentation can also be
used to estimate appro ximate feature locations [6]. These estimates, reported to have aprecision of upto _2
pixels, can be further refined via grayscal e templates to sub-pixel accuracy. For each individual and each
face feature nine 20 _ 20 pixel templates are given, but no generalization to unknown faces is discussed.
Finally, neural networks have been used to detect eyes and eye corners [14]. Results approach 96%
correctly detected eye corners while allowing a variance of two pixels, but these results are for eyesonly,
which are less deformable than mouths.

Lastly, GWNs invite the closest comparison with the well-known Gabor jet representations of facial
features [18]. The advantage of GWNSsisthat they offer a sparser representation of image data: Where jets
can require up to 40 complex Gabor filters to approximate the local image structure around a single feature
point, GWNs can make do with nine, asin our implementation. Thisis adirect consequence of allowing
waveletsin a GWN to roam continuously in their parameter space during training. Edge features, which are
building blocks of more complex features, are thus efficiently captured at various scales by GWNs.

5 Conclusion

We have presented a hierarchical wavelet network approach to feature detection. Our method takes a
coarse-to-fine approach to localize small features, using cascading sets of GWN features.

Wetested our results on the task of facial feature localization, using one- and two-level hierarchies. For the
one-level implementation, GWNSs are trained for the whole face; for two levels, the second-level GWNs are
trained for each of eight facial features. Experiments show that the two-level system outperforms the one-
level system easily, verifying the usefulness of a hierarchy of GWNs for feature localization. Results
compare favorably with other algorithms on this task.

Some remaining issues include the following: How can we determine the minimum number of wavelets
required for each GWN? Can a subset of waveletsin a given network be sufficient for good matching at a
particular level? Finally, how can we minimize the number of GWNSs necessary at each level to capture the
broad range of the set of real targets? We hope to examine these questions as future work.
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APPENDIX: Results for all faces.*

4 Although we included an edge-enhanced face in the database (Figure 4) we did not perform feature
detection on it












