Diameters of Homogeneous Spaces

Michael H. Freedman 1 , Alexei Kitaev 2 and Jacob Lurie 3

11 - 04 - 2002

Technical Report MSR-TR-2002-119

Let G be a compact connected Lie group with trivial center. Using the action of G on its Lie algebra, we define an operator norm $|\ |_G$ which induces a bi-invariant metric $d_G(x,y)=|Ad(yx^{-1})|_G$ on G. We prove the existence of a constant $\beta\approx .12$ (independent of G) such that for any closed subgroup $H\subsetneq G$, the diameter of the quotient G/H (in the induced metric) is $\geq \beta$.

Microsoft Research Microsoft Corporation One Microsoft Way Redmond, WA 98052

http://www.research.microsoft.com

1 Introduction

Finding a lower bound to the (operator norm) diameter of homogeneous spaces G/H, G compact is a natural geometric problem. It can also be motivated by considering quantum computation. In standard models [NC] the state space of a (theoretical) quantum computer is a Hilbert space with a tensor decomposition, $(\mathbb{C}^2)^{\otimes n}$. A "gate" is a local unitary operation acting on a small number, perhaps two, tensor factors (and as the identity on the remaining factors). One often wonders if a certain set of local gates is "universal" meaning that the closed subgroup H they generate satisfies $U(1)H = U(2^n)$. We produce a constant $\beta \approx .12$ so that diam $U(2^n)/U(1)H < \beta$ implies universality, where diameter is to be computed in the operator norm. This norm is well-suited here because it is stable under \otimes_{id} .

Because the operator norm is bi-invariant it suffices to check that every element b in the ball of radius 2β about the identity of $SU(2^n)$ has $Ball_{\beta}(b) \cap H \neq \emptyset$. In principle this leads to an algorithm to test if a gate set is universal. Such an algorithm will be exponentially slow in n. But often it is assumed that identical gates can be applied on any pair of \mathbb{C}^2 factors; in this case universality for n=2 is sufficient to imply universality for all n.

Let G be a compact Lie group with trivial center. The semisimplicity of G implies that the (negative of the) Killing form is a natural positive-definite, bi-invariant inner product on the Lie algebra $\mathfrak g$ of G. We let $||x||_{\mathfrak g}$ denote the induced (Euclidean) norm on $\mathfrak g$. We use this to define the *operator norm* on G as follows:

$$|g|_G = \sup_{||y||_g = 1} |\angle(y, \operatorname{Ad}_g y)|$$

where $\angle(y, \operatorname{Ad}_g y)$ denotes the usual Euclidean angle between the vectors y and $\operatorname{Ad}_g y$, normalized so that it lies in the interval $[-\pi, \pi]$. Since angles between vectors in a Euclidean space obey a triangle inequality, we deduce the inequality $|gh|_G \le |g|_G + |h|_G$. It is also clear that $|g|_G = 0$ if and only if Ad_g is the identity, which implies that g is the identity since the adjoint action of G is faithful up to the center of G, and we have assumed that the center of G is trivial.

We define a distance on G by the formula $d_G(g, g') = |g^{-1}g'|_G$. It is easy to check that this defines a bi-invariant metric on G, where all

distances are bounded above by π . Note that d_G is continuous on G, hence there is a continuous bijection from G with its usual topology to G with the topology induced by d_G . Since the source is compact and the target Hausdorff (this fails if G has nontrivial center, since the operator norm of a central element is equal to zero), we deduce that the metric d_G determines the usual topology on G.

For any closed subgroup H of G, the homogeneous space G/H inherits a quotient metric given by the formula

$$d_{G/H}(p,q) = \inf d_G(\widetilde{p}, \widetilde{q}) = \inf_{gp=q} |g|_G$$

where the first infimum is taken over all pairs $\widetilde{p}, \widetilde{q} \in G$ lifting the pair $p, q \in G/H$. Note that if H is contained in H', then the diameter of G/H is at least as large as that of G/H'.

We are now in a position to state the main result:

Theorem 1. Let G be a compact connected Lie group with trivial center and $H \subsetneq G$ a proper compact subgroup of G. Then the diameter of G/H with respect to the metric $d_{G/H}$ is no smaller than β , where β is the smallest real solution to the transcendental equation $\cos^2(\alpha - \beta) + \sin^2(\alpha - \beta)\sin(\beta) = \cos(4\beta)$ and $\cos(\alpha) = \frac{7}{8}$.

One can estimate that the constant β is approximately .124332.

Example 2. Consider the case where $G = H \times H$ is a product, and H is embedded diagonally. Choose an element $h \in H$ with $|h|_H = \pi$ (such an element exists in any nontrivial one parameter subgroup). Then in $H \times H$, the distance $d_{H \times H}(h \times 0, h' \times h')$ is equal to the larger of $d_H(h, h')$ and $d_H(h', e)$. By the triangle inequality, this distance is at least $\frac{\pi}{2}$. It follows that the diameter of G/H is at least $\frac{\pi}{2}$.

Remarks:

(1) For any orthogonal representation $\tau: G \to O(V)$ of a group G, we can define an operator norm on G with respect to V:

$$|g|_{G,\tau} = \sup_{||v||=1} |\angle(v, gv)|$$

This construction has the following properties:

- If V is the complex plane \mathbb{C} , and $g \in G$ acts by multiplication by $e^{i\alpha}$ where $-\pi \leq \alpha \leq \pi$, then $|g|_{G,\tau} = |\alpha|$.
- Given any subgroup $H \subseteq G$, the restriction of $|\cdot|_{G,\tau}$ to H is equal to $|\cdot|_{H,\tau|H}$.
- The operator norm associated to a direct sum of representations τ_i of G is the supremum of the operator norms associated to the representations τ_i .
- In particular, the operator norm on G associated to a representation V is identical with the operator norm on G associated to the complexification $V \otimes_{\mathbb{R}} \mathbb{C}$ (with its induced Hermitian structure).
- To evaluate $|g|_{G,\tau}$, we can replace G by the subgroup generated by g and V by its complexification, which decomposes into one-dimensional complex eigenspaces under the action of g. We deduce that $|g|_{G,\tau}$ is the supremum of $|\log \lambda_j|$, where $\{\lambda_j\}$ is the set of eigenvalues for the action of g on V (and the logarithms are chosen to be of absolute value $\leq \pi$).
- (2) The reader may be curious about the diameter of G/H relative to the Riemannian quotient of the Killing metric d_K . If we let N denote the dimension of \mathfrak{g} , then we have

$$d \le d_K \le \frac{3N^{\frac{1}{2}}d}{2}$$

- (3) We ask if the quotient SO(3)/I is the homogenous space of smallest diameter, where $I \simeq A_5$ denotes the symmetry group of the icosahedron.
- (4) We wonder if there is a similar universal lower bound to the diameter of double coset spaces $K \setminus G/H$, G as above, $K, H \subset G$ closed subgroups. Our method does not apply directly.
- (5) Although suggested by a modern subject the theorem could easily have been proved a hundred years ago and in fact may have been (or may be) known.

2 Small Subgroups

Throughout this section, G shall denote a compact, connected Lie group with trivial center. We give a quantitative version of the principle that discrete subgroups of G generated by "sufficiently small" elements are automatically abelian. We will use this in the proof of Theorem 1 in the case where H is discrete.

We will need to understand the operator norm on G a bit better. To this end, we introduce the *operator norm*

$$|x|_{g} = \sup_{||y||_{q}=1} ||[x, y]||_{g}$$

on the Lie algebra \mathfrak{g} of G. This is a G-invariant function on \mathfrak{g} , so we can unambiguously define the operator norm of any tangent vector to the manifold G by transporting that tangent vector to the origin (via left or right translation) and then applying $x \mapsto |x|_{\mathfrak{g}}$.

The operator norm on $\mathfrak g$ is related to the operator norm on G by the following:

Lemma 3. The exponential map $x \mapsto \exp(x)$ induces a bijection between $\mathfrak{g}_0 = \{x \in \mathfrak{g} : |x|_{\mathfrak{g}} < \frac{2\pi}{3}\}$ and $G_0 = \{g \in G : |g|_G < \frac{2\pi}{3}\}$. This bijection preserves the operator norms.

Proof. First, we claim that the map $x \mapsto \exp(x)$ does not increase the operator norm. This follows from the fact that the eigenvalues of $\exp(x)$ have the form $\exp(\kappa)$, where κ is an eigenvalue of x. It follows that the exponential map sends \mathfrak{g}_0 into G_0 .

Choose $g \in G_0$, and fix a maximal torus T containing g. Let \mathfrak{t} be the Lie algebra of T. Decompose $\mathfrak{g} \otimes_{\mathbb{R}} \mathbb{C}$ into eigenspaces for the action of T: $\mathfrak{g} \otimes_{\mathbb{R}} \mathbb{C} = \mathfrak{t} \otimes_{\mathbb{R}} \mathbb{C} \oplus \bigoplus_{\alpha} \mathfrak{g}_{\alpha}$. The element g acts by an eigenvalue $\Lambda(\alpha)$ on each nonzero eigenspace \mathfrak{g}_{α} . Since g is an orthogonal transformation, we may write $\Lambda(\alpha) = e^{i\lambda(\alpha)}$. Since $g \in G_0$, it is possible to choose the function λ so that $-\frac{2\pi}{3} < \lambda(\alpha) < \frac{2\pi}{3}$ for each root α . This determines the function λ uniquely.

Choose a system Δ of simple roots, and let x be the unique element of \mathfrak{t} such that $\alpha(x) = \lambda(\alpha)$ for each $\alpha \in \Delta$. It follows immediately that $\exp(x) = g$ (since G has trivial center). To show that $x \in \mathfrak{g}_0$, we need to show that $|\alpha(x)| < \frac{2\pi}{3}$ for all roots α . For this, it will suffice to prove that $\alpha(x) = \lambda(\alpha)$ for all roots α .

The uniqueness of λ implies immediately that $\lambda(-\alpha) = -\lambda(\alpha)$. Thus, it will suffice to prove that the equation $\alpha(x) = \lambda(\alpha)$ holds when α is positive (with respect to the root basis Δ). Since the equation is known to hold whenever $\alpha \in \Delta$, it will suffice to prove that $\alpha(x) = \lambda(\alpha)$, $\beta(x) = \lambda(\beta)$ implies

$$(\alpha + \beta)(x) = \lambda(\alpha + \beta).$$

In other words, we need to show that the quantity

$$\epsilon = \lambda(\alpha + \beta) - \lambda(\alpha) - \lambda(\beta)$$

is equal to zero. By construction, $|\epsilon| < 2\pi$. On the other hand, since $\Lambda(\alpha)\Lambda(\beta) = \Lambda(\alpha + \beta)$, we deduce that $e^{i\epsilon} = 1$, so that ϵ is an integral multiple of 2π . It follows that $\epsilon = 0$, as desired.

It is clear from the construction that $|x|_g = |g|_G$. To complete the proof, we need to show that g has no other logarithms lying in \mathfrak{g}_0 . This follows from the fact that any unitary transformation (in particular, the adjoint action of g on \mathfrak{g}) which does not have -1 as an eigenvalue has a unique logarithm whose eigenvalues are of absolute value $< \pi$.

Lemma 4. Let $p:[0,1] \to G$ be a smooth function with p(0) equal to the identity of G. Then $|p(1)|_G \le \int_0^1 |p'(t)|_g dt$.

Proof. For N sufficiently large, we can write $p(\frac{i+1}{N}) = p(\frac{i}{N}) \exp(\frac{x_i}{N})$, where x_i is approximately equal to the derivative of p at $\frac{i}{N}$. Thus, as N goes to ∞ , the average $\frac{|x_0|_{\mathsf{g}}+\ldots+|x_{N-1}|_{\mathsf{g}}}{N}$ converges to the integral on the right hand side of the desired inequality. By the triangle inequality, it will suffice to prove that $|p(\frac{i}{N})^{-1}p(\frac{i+1}{N})|_G \leq |\frac{|x_i|_{\mathsf{g}}}{N}|_{\mathsf{g}}$. If N is sufficiently large, then this follows immediately from Lemma 3.

Remark 5. The metric d_G on G is not necessarily a path metric: given $g, h \in G$, there does not necessarily exist a path in G having length equal to $d_G(g,h)$. However, it follows from Lemma 3 that d_G is a path metric locally on G. The length of a (smooth) path can be obtained by integrating the operator norm of the derivative of a path. Replacing d_G by the associated path metric only increases distances, so that Theorem 1 remains valid for the path metric associated to d_G . This modified version of Theorem 1 makes sense (and remains true) for compact Lie groups G with finite center.

We can now proceed to the main result of this section. Let α denote the smallest positive real number satisfying $\cos(\alpha) = \frac{7}{8}$.

Theorem 6. Let $H \subset G$ be a discrete subgroup. Let $h, k \in H$ and suppose $|h|_G < \frac{\pi}{2}$, $|k|_G < \alpha$. Then [h, k] = 1.

Proof. We define a sequence of elements of G by recursion as follows: $h_0 = h$, $h_{n+1} = [h_n, k]$. Let C satisfy the equation $\frac{C^2}{4} = 2 - 2\cos|k|_G$. Then the assumption on k ensures that C < 1. Our first goal is to prove that the operator norm of the sequence $\{h_n\}$ obeys the estimate $|h_n|_G < C^n \frac{\pi}{2}$. For n = 0, this is part of our hypothesis. Assuming that the estimate $|h_n|_G < C^n \frac{\pi}{2}$ is valid, we can use Lemma 3 to write $h_n = \exp(x)$, $|x|_g < C^n \frac{\pi}{2}$. Now define $p(t) = [\exp(tx), k]$, so that p(0) = 1 and $p(t) = h_{n+1}$.

Using Lemma 4, we deduce that $|h_{n+1}|_G \leq \int_0^1 |p'(t)|_g \leq \sup_t |p'(t)|_g$. On the other hand, the vector p'(t) can be written as a difference

$$R_{p(t)}x - L_{\exp(tx)k\exp(-tx)}R_{k-1}x$$

where R_q and L_q denote left and right translation by g. We obtain

$$\begin{split} |p'(t)|_{\mathbf{g}} &= |x - \operatorname{Ad}_{\exp(tx)k \exp(-tx)} x|_{\mathbf{g}} \\ &= |\operatorname{Ad}_{\exp(-tx)} x - \operatorname{Ad}_{k \exp(-tx)} x|_{\mathbf{g}} \\ &= |x - \operatorname{Ad}_{k} x|_{\mathbf{g}} \\ &= \sup_{||y||_{\mathbf{g}}=1} ||[x - \operatorname{Ad}_{k} x, y]||_{\mathbf{g}} \\ &\leq \sup_{||y||_{\mathbf{g}}=1} (||[x, y] - Ad_{k}[x, y]||_{\mathbf{g}} + ||Ad_{k}[x, y] - [Ad_{k}x, y]||_{\mathbf{g}}) \\ &\leq \sup_{||y||_{\mathbf{g}}=1} ||[x, y] - Ad_{k}[x, y]||_{\mathbf{g}} + \sup_{||y||_{\mathbf{g}}=1} ||[x, y - Ad_{k}^{-1}y]||_{\mathbf{g}} \\ &\leq \sqrt{2 - 2\cos|k|_{G}} \sup_{||y||_{\mathbf{g}}=1} ||[x, y]||_{\mathbf{g}} + |x|_{\mathbf{g}} \sup_{||y||_{\mathbf{g}}=1} ||y - Ad_{k}^{-1}y]||_{\mathbf{g}} \\ &\leq 2\sqrt{2 - \cos|k|_{G}} |x|_{\mathbf{g}} \\ &\leq C|x|_{\mathbf{g}} \\ &< C^{n+1} \frac{\pi}{2}, \end{split}$$

as desired.

It follows that the operator norms of the sequence $\{h_n\}$ converge to zero. Therefore the sequence $\{h_n\}$ converges to the identity of G. Since H is a discrete subgroup, it follows that h_n is equal to the identity if n is sufficiently large. We will next show that $h_n = 1$ for all n > 0, using an argument of Frobenius which proceeds by a descending induction on n. Once we know that $h_1 = 1$, the proof will be complete.

Assume that $h_{n+1} = 1$. Then k commutes with h_n , and therefore also with $h_n k = h_{n-1} k h_{n-1}^{-1}$. It follows that $\mathfrak{g} \otimes_{\mathbb{R}} \mathbb{C}$ admits a basis whose elements are eigenvectors for both k and $h_{n-1} k h_{n-1}^{-1}$. If the eigenvalues are the same in both cases, then we deduce that $k = h_{n-1} k h_{n-1}^{-1}$, so that h_n is the identity and we are done. Otherwise, there exists $v \in \mathfrak{g} \otimes_{\mathbb{R}} \mathbb{C}$ which is an eigenvector for both k and $h_{n-1} k h_{n-1}^{-1}$, with different eigenvalues. Equivalently, both v and $h_{n-1}v$ are eigenvectors for k, with different eigenvalues. Thus v and $h_{n-1}v$ are orthogonal, which implies $|h_{n-1}|_G \geq \frac{\pi}{2}$, a contradiction.

3 The Proof when H is Discrete

In this section, we will give the proof of Theorem 1 in the case where H is a discrete subgroup. The idea is to show that if G/H is too small, then H contains noncommuting elements which are close to the identity, contradicting Theorem 6.

In the statements that follow, we let α denote the smallest positive real solution to $\cos(\alpha) = \frac{7}{8}$ and β the smallest positive real solution to the transcendental equation $\cos^2(\alpha - \beta) + \sin^2(\alpha - \beta)\cos(\frac{\pi}{2} - \beta) = \cos(4\beta)$.

Lemma 7. Let G be a compact, connected Lie group with trivial center. Then there exist elements $h, k \in G$ having the property that for any $h', k' \in G$ with $d_G(h, h'), d_G(k, k') < \beta$, we have $|h'|_G < \frac{\pi}{2}$, $|k'|_G < \alpha$, and $[h', k'] \neq 1$.

Proof. Choose a (local) embedding $p: SU(2) \to G$ corresponding to a root of some simple component of G. We will assume that if the relevant component has roots of two different lengths, then the embedding p corresponds to a long root. This ensures that the weights of SU(2) acting on $\mathfrak g$ are no larger than the weights of the adjoint representation.

In the Lie algebra $\mathfrak{so}(3)$ of SU(2), we let x and y denote infinitesimal rotations of angles $\frac{\pi}{2} - \beta$ and $\alpha - \beta$ about orthogonal axes. Then, by the above condition on weights, we deduce that $h = p(\exp(x))$ and $k = p(\exp(y))$ satisfy the conditions $|h|_G = \frac{\pi}{2} - \beta$, $|k|_G = \alpha - \beta$.

We claim that the pair $h, k \in G$ satisfies the conclusion of the lemma. To see this, choose any pair $h', k' \in G$ with $d(h, h'), d(k, k') < \beta$. Then we deduce $|h'|_G < \frac{\pi}{2}, |k'|_G < \alpha$ from the triangle inequality. To

complete the proof, we must show that h' and k' do not commute. To see this, we let v denote the image in \mathfrak{g} of a vector in $\mathfrak{so}(3)$ about which x is an infinitesimal rotation. Then hv = v, while $\angle(v, kv) = \alpha - \beta$. Elementary trigonometry now yields

$$\angle(hkv, khv) = \angle(hkv, kv)$$

$$= \cos^{-1}(\cos^{2}(\alpha - \beta) + \sin^{2}(\alpha - \beta)\cos(\frac{\pi}{2} - \beta))$$

$$= \cos^{-1}(\cos(4\beta)) = 4\beta.$$

By the triangle inequality, we get

$$4\beta = \angle(hkv, khv)$$

$$\leq \angle(hkv, h'kv) + \angle(h'kv, h'k'v) + \angle(h'k'v, k'h'v)$$

$$+ \angle(k'h'v, k'hv) + \angle(k'hv, khv)$$

$$< 4\beta + \angle(h'k'v, k'h'v),$$

which implies $\angle(h'k'v, k'h'v) > 0$ so that $[h', k'] \neq 1$.

We can now complete the proof of Theorem 1 in the case where H is discrete:

Proof. Choose $h, k \in G$ satisfying the conclusion of Lemma 7. Since G/H has diameter less than β , the cosets hH and kH are within β of the identity coset in G/H, which implies that there exist $h', k' \in H$ with $d(h, h'), d(k, k') < \beta$. Lemma 7 ensures that h' and k' do not commute, which contradicts Theorem 6.

4 The Proof when G is Simple

In this section, we give the proof of the main theorem in the case where H is nondiscrete and G is simple. The idea in this case is to show that because the Lie algebra $\mathfrak h$ of H cannot be a G-invariant subspace of $\mathfrak g$, the action of G automatically moves it quite a bit: this is made precise by Theorem 10. Since $\mathfrak h$ is invariant under the action of H, this will force G/H to have large diameter in the operator norm.

We begin with some general remarks about angles between subspaces of a Hilbert space. Let V be a real Hilbert space, and let $U,W\subseteq V$ be linear subspaces. The angle $\angle(U,W)$ between U and W is defined to be

$$\max(\sup_{u \in U - \{0\}} \inf_{w \in W - \{0\}} |\angle(u, w)|, \sup_{w \in W - \{0\}} \inf_{u \in U - \{0\}} |\angle(u, w))|).$$

Note that for a fixed unit vector $u \in U$, the cosine of the minimal angle $\angle(u, w)$ with $w \in W$ is equal to the length of the orthogonal projection of u onto W^{\perp} . Thus, the sine of the minimal (positive) angle is equal to the length of the orthogonal projection of u onto W^{\perp} . Consequently we have

$$\sin(\sup_{u \in U - \{0\}} \inf_{w \in W - \{0\}} |\angle(u, w)|) = \sup_{||u|| = 1, ||w^{\perp}|| = 1} \langle u, w^{\perp} \rangle$$

which is symmetric in U and W^{\perp} . From this symmetry we can deduce:

Lemma 8. For any pair of subspaces $U, W \subseteq V$, the angle $\angle(U, W)$ is equal to the angle $\angle(U^{\perp}, W^{\perp})$.

We will also need the following elementary fact:

Lemma 9. Let V be a finite-dimensional Hilbert space, and let A be an endomorphism of V having rank k. Then $|\operatorname{Tr}(A)| \leq k|A|$.

Proof. Choose an orthonormal basis $\{v_i\}_{1\leq i\leq n}$ for V having the property that $Av_i=0$ for i>k. Then

$$|\operatorname{Tr}(A)| = |\sum_{i} \langle v_i, Av_i \rangle| \le \sum_{1 \le i \le k} |\langle v_i, Av_i \rangle| \le \sum_{1 \le i \le k} |A| = k|A|$$

We now proceed to the main point.

Theorem 10. Let G be a compact Lie group acting irreducibly on a (necessarily finite dimensional) complex Hilbert space V. Let $W \neq 0, V$ be a nontrivial subspace. Then there exists $g \in G$ such that $\angle(W, gW) \geq \frac{\pi}{4}$.

Proof. Suppose, to the contrary, that $\angle(W, gW) < \frac{\pi}{4}$ for all $g \in G$. Let V have dimension n. Replacing W by W^{\perp} if necessary, we may assume that the dimension k of W satisfies $k \leq \frac{n}{2}$. For any subspace $U \subseteq V$, we let Π_U denote the orthogonal projection onto U.

For each $g \in G$, projection from gW onto W^{\perp} or from W^{\perp} to gW shrinks lengths by a factor of $\sin \angle (W, gW) \le \sin \frac{\pi}{4}$ at least. It follows that

$$|\Pi_{W^{\perp}}\Pi_{gW}\Pi_{W^{\perp}}| \leq |\Pi_{W^{\perp}}\Pi_{gW}| \; |\Pi_{gW}\Pi_{W^{\perp}}| < \frac{1}{2}.$$

Using the identity Tr(AB) = Tr(BA), we deduce

$$\begin{array}{lcl} \operatorname{Tr}(\Pi_{gW}\Pi_{W^{\perp}}) & = & \operatorname{Tr}(\Pi_{gW}\Pi_{W^{\perp}}\Pi_{W^{\perp}}) \\ & = & \operatorname{Tr}(\Pi_{W^{\perp}}\Pi_{gW}\Pi_{W^{\perp}}) \leq k|\Pi_{W^{\perp}}\Pi_{gW}\Pi_{W^{\perp}}| \\ & < & \frac{k}{2}. \end{array}$$

Integrating this result over G (with respect to a Haar measure which is normalized so that $\int_G 1 = 1$), we deduce

$$\operatorname{Tr}((\int_G \Pi_{gW})\Pi_{W^\perp}) = \int_G \operatorname{Tr}(\Pi_{gW}\Pi_{W^\perp}) < \frac{n}{2}.$$

On the other hand, $\int_G \Pi_{gW}$ is a G-invariant element of $\operatorname{End}(V)$. Since V is irreducible, Schur's lemma implies that $\int_G \Pi_{gW} = \lambda 1_V$ for some scalar $\lambda \in \mathbb{C}$. We can compute λ by taking traces:

$$\begin{array}{rcl} n\lambda & = & \operatorname{Tr}(\lambda 1_V) \\ & = & \operatorname{Tr}(\int_G \Pi_{gW}) \\ & = & \int_G \operatorname{Tr}(\Pi_{gW}) = k, \end{array}$$

so that $\lambda = \frac{k}{n}$. Thus $\frac{k(n-k)}{n} = \text{Tr}(\frac{k}{n}\Pi_W^{\perp}) < \frac{k}{2}$, so that 2(n-k) < n, a contradiction.

From Theorem 10, one can easily deduce the analogous result in the case when V is a real Hilbert space, provided that $V \otimes_{\mathbb{R}} \mathbb{C}$ remains an irreducible representation of G. Using this, we can easily complete the proof of Theorem 1 in the case where G is simple and H is nondiscrete (with an even better constant).

Proof. Let \mathfrak{h} denote the Lie algebra of H. Since $H \neq G$ and G is connected, $\mathfrak{h} \subsetneq \mathfrak{g}$. Since H is nondiscrete, $\mathfrak{h} \neq 0$. Since $\mathfrak{g} \otimes_{\mathbb{R}} \mathbb{C}$ is an irreducible representation of G, we deduce that there exists $g \in G$ such that $\angle(g\mathfrak{h},\mathfrak{h}) \geq \frac{\pi}{4}$. Now one deduces that for any $h \in H$, $gh' \in gH$, the distance

$$d(gh',h) = |gh'h^{-1}|_G \ge \angle(gh'h^{-1}\mathfrak{h},\mathfrak{h}) = \angle(g\mathfrak{h},\mathfrak{h}) \ge \frac{\pi}{4}.$$

It follows that the distance between the cosets gH and H in G/H is at least $\frac{\pi}{4}$.

5 The General Case

We now know that Theorem 1 is valid under the additional assumption that the group G is simple. We will complete the proof by showing how to reduce to this case. The main tool is the following observation:

Proposition 11. Let $\pi: G \to G'$ be a surjection of compact connected Lie groups with trivial center, let H be a closed subgroup of G and $H' = \pi(H)$ its image in G'. Then $\operatorname{diam}(G'/H') \le \operatorname{diam}(G/H)$.

Proof. For any points $x', y' \in G'/H'$, we can lift them to a pair of points $x, y \in G/H$. It will suffice to show $d_{G/H}(x, y) \geq d_{G'/H'}(x', y')$. The left hand side is equal to

$$\inf_{gx=y} |g|_G$$

and the right hand side to

$$\inf_{g'x'=y'}|g'|_{G'}.$$

To complete the proof, it suffices to show that $|g|_G \geq |\pi(g)|_{G'}$. This follows immediately since we may identify the Lie algebra \mathfrak{g}' of G' with a direct summand of \mathfrak{g} .

Now assume that G is a compact, connected Lie group with trivial center. Then it is a product of simple factors $\{G_{\alpha}\}_{\alpha\in\Lambda}$. Let $\pi_{\alpha}:G\to G_{\alpha}$ denote the projection. Let $H\subsetneq G$ be a closed subgroup. If $\pi_{\alpha}H\neq G_{\alpha}$ for some $\alpha\in\Lambda$, then $\mathrm{diam}(G/H)\geq \mathrm{diam}(G_{\alpha}/\pi_{\alpha}H)\geq\beta$ and we are done. Otherwise, π_{α} induces a surjection of Lie algebras $\mathfrak{h}\to\mathfrak{g}_{\alpha}$ for each α . By the structure theory of reductive Lie algebras, we deduce that $\mathfrak{h}=\mathfrak{h}_{\alpha}\oplus\mathfrak{k}_{\alpha}$, where π_{α} is zero on \mathfrak{k}_{α} and induces an isomorphism $\mathfrak{h}_{\alpha}\simeq\mathfrak{g}_{\alpha}$. Since \mathfrak{h}_{α} is therefore simple, \mathfrak{k}_{α} may be characterized as the centralizer of \mathfrak{h}_{α} in \mathfrak{h} .

Since $H \neq G$ and G is connected, H must have smaller dimension than G. It follows that the subalgebras $\mathfrak{h}_{\alpha} \subseteq \mathfrak{h}$ cannot all be distinct. Choose $\alpha, \alpha' \in \Lambda$ with $\mathfrak{h}_{\alpha} = \mathfrak{h}_{\alpha'}$. The the map $H \to G_{\alpha} \times G_{\alpha'}$ is not surjective on Lie algebras. Without loss of generality, we may replace G by $G_{\alpha} \times G_{\alpha'}$ and H by its image in $G_{\alpha} \times G_{\alpha'}$.

Since the Lie algebra of H now maps isomorphically onto the Lie algebras of the factors G_{α} and $G_{\alpha'}$, it follows that the connected component H_0 of the identity in H is isomorphic to G_{α} , which is included diagonally in $G_{\alpha} \times G_{\alpha'}$. Then $H = H_0(H \cap (G_{\alpha} \times 1))$. The intersection $K = H \cap (G_{\alpha} \times 1)$ is normalized by $H_0 = \{(g,g) : g \in G_{\alpha}\}$, hence it is normalized by $G_{\alpha} \times \{e\}$. Since $G_{\alpha'}$ is simple, we deduce that $K = \{e\}$. Thus $H = H_0$ is embedded diagonally in $G_{\alpha} \times G_{\alpha'}$. We have already considered this case in Example 2, where we saw that the diameter of G'/H' is at least $\frac{\pi}{2}$.

Remark 12. If we restrict our attention to the case where H is a connected subgroup of G, then our proof gives a better lower bound of $\frac{\pi}{4}$.

References

[NC] Nielsen, M.A., Chuang, I.L., Quantum computation and quantum information. Cambridge University Press, Cambridge, 2000. xxvi+676 pp.