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ABSTRACT

As a great many of new devices with diverse capabilities are
making a population boom on the Internet mobile clients, their
limited display sizes become a serious obstacle to information
accessing. In this paper, we introduce a Document REpresentation
for Scalable Structure (DRESS) to help information providers to
make composite documents, typically Web pages, scalable in both
logic and layout structure to support effective information
acquisition in heterogeneous environments. Through this novel
document representation structure based on binary slicing trees,
the document can dynamically adapt its presentation according to
display sizes by maximizing the information throughput to users.
We discuss the details of this structure with its key attributes. A
branch-and-bound algorithm and a capacity ratio based slicing
method are proposed to select proper content representation and
aesthetic document layouts respectively. Experiments show
satisfactory results with high efficiency.

Keywords
Web browsing, adaptive content delivery, slicing tree, layout
optimization

1. INTRODUCTION

Recently, a great many of new devices with diverse capabilities,
such as Tablet PCs, Pocket PCs, Smartphones and Handheld PCs,
are making a population boom on the Internet mobile clients
because of their portability and mobility. Since most of the
information on Internet today is presented by Web documents,
there has been an imperative need for efficient access to the bulk
of Web resources on these diverse-form-factor devices. Although
these devices are becoming more and more powerful in both
numerical computing and data storage, nevertheless, low
bandwidth connections and small displays, the two serious
obstacles to information accessing, have prevented them
becoming more helpful to people’s everyday life. With the
successful development of scalable video coding, progressive
image coding as well as 2.5G and 3G wireless networks, the
bandwidth condition is expected to be greatly improved in the
near future. At the same time, however, the limitation on display
size is more likely to remain unchanged for a certain period of
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time due to the mobility requirement of these devices and the slow
progress of foldable display technology.

Aiming at solving this problem, we introduce a Document
REpresentation for Scalable Structure (DRESS) based on the
combination of techniques rooted in computer aided design and
linguistic summarization. When the display area shrinks, some
parts of the Web pages will be compressed in terms of linguistic
summaries by computational information extraction or manual
input from the page author, and then presented, together with
other unsummarized parts, adaptively to end users with aesthetic
layouts.

The rest of this paper is organized as follows: In Section 2, we
discuss the state of art. Section 3 presents the definition of
DRESS representation and its main attributes. This is followed by
Section 4 introducing the Web page rendering algorithm. Then, in
Section 5, we describe in detail the implementation of a DRESS-
based Web browser and present experimental results as well.
Finally, Section 6 gives our conclusions and future work.

2. RELATED WORK

Many efforts have already addressed the problem of Web
browsing on small terminals and various solutions have been
proposed including some commercial products. Current
approaches can be divided into two directions: the first one is to
transform existing Web pages such as [2][3][5][6][12][15][16][18]
[20], while the other attempts to introduce new formats and
mechanisms [1][4][13][14] which make Web pages themselves
scalable to different display sizes.

Among the first trend, there are also two different approaches for
transforming Web pages. The first one, which originated from the
user interface community, only changes the presentation of page
contents without any structure modification. For example, the
most straightforward approach is eliminating the annoying
horizontal scrolling requirement, i.e. present all the contents into a
single narrow column, such as [16]. Fast and simple though it is
in implementation, this method greatly increases the page height
and forces the user to scroll up and down excessively. Other UI-
based approaches try to use thumbnails or keywords as well as
zooming techniques to aid browsing, such as [3][18]. However,
this kind of aid tends to work only on the pages that user is very
familiar with, because thumbnails are often scaled down too much
to give much information besides a rough overview. The other
way to do Web page transformation is to retrieve the semantic
structure from original contents and rewrite the page according to
user’s context. The basic idea is to partition the Web page into a



set of sub-pages and generate a Table-of-Content with/without
hierarchy as the index page, such as [2][5]. Our previous work
[61[12][20] belongs to this category. A promising direction is to
combine these two techniques together to provide a better user
experience, for example, [15] uses the whole page thumbnail as
the Table-of-Content.

Although many efforts have been put on automatic extraction of
document architectures, it is still hard for computers to fully
understand the semantic structure of Web pages. What’s more,
most of them did not address the layout problem which is very
essential because the representation of contents directly affects
user’s perception. Therefore, instead of transforming existing Web
pages, researchers began to consider leveraging extra hints from
author’s direct help in the designing phrase or some external
annotations from third parties. A straightforward approach comes
along with the XML and XSLT, which allows the semantic
structure to be separated with presentations, such as [13].

However, writing a separate style sheet for each type of devices
could be very labor intensive partly due to the great variability of
some application parameters like window sizes. A more scalable
approach for defining Web presentations should be studied. In
[14], instead of using multiple presentations, content adaptation is
performed based on annotations of adaptation hints, but the layout
problem of adapted results has not been addressed either. [1][4]
proposed a CSS compatible mechanism which allowed Web page
designers or editors to designate layout constraints explicitly in
mathematic equalities or inequalities, and then turned the display
problem into constraint solving. Despite constraints for interactive
graphical applications has been researched since the early eighties
of last century, there are still a number of unsolved problems with
constraint-based layout. For instance, it is difficult to specify
proper mathematical formulas for different layouts. In addition,
the constraint solving procedure is computationally expensive for
client browsers. There are also some interesting solutions for
specific problems such as [10][11] for Web newspaper layout and
[9] for optimizing picture placement in a Web page.

We focus on the problem of defining a scalable and efficient Web
document representation structure that is adaptive to various
display sizes. Here the display size does not need to be as same as
the screen size. Actually, in practice each user can designate a
preferred target display size different from the screen size. For
instance, a Pocket PC user may specify the limitation of his
display to a size of two screens with vertical scrolling only.
He/she can even use a rotated display which may fit current Web
pages better.

As we notice, few of current approaches to Web layout adaptation
considered the priorities of different content blocks in a page.
What’s more, none of them let the author control the final page
layout conveniently. That is to say, the final presentation is
usually unpredictable during the designing phase. In this paper,
we propose to use binary slicing trees, a data structure widely
used in computer aided design community [8], to represent a page
template that can be controlled by the author. Based on this
representation, we formulate the Web layout problem as a
variance of 0-1 knapsack problem, which can be efficiently solved
by a branch-and-bound algorithm. A capacity ratio based slicing
method is then applied to select an aesthetic layout.

3. DOCUMENT REPRESENTATION FOR
SCALABLE STRUCTURE

In this section, we first give a formal definition of DRESS, the
basis of our Web layout adaptation algorithm, and then describe
this structure in detail.

Definition 1: The DRESS for a Web page is a binary slicing tree
with N leaf nodes. Each inner node is labeled with either v or &
denoting vertical or horizontal split, and each leaf node is an
information block defined as follows:

B; = (IMP, MPS;, MPH;, MPW;, ADJ;, ALT;) 1)

where i=1,2,..., N,
B, the i information block in the Web page
IMP;, importance value of B;
MPS;,  minimal perceptible size of B;
MPH;, minimal perceptible height of B;
MPW,,  minimal perceptible width of B;
ADJ; whether the aspect ratio of B; is adjustable
ALT;, alternative of B;

3.1 Slicing Tree Structure

As shown in Definition 1, DRESS is a slicing tree with each leaf
node as an information block in the Web page. The label on each
inner node determines how the display area is recursively
subdivided into sub-rectangles by slicing vertically (v) or
horizontally (4). An information block will be placed in the sub-
rectangle held by the leaf node.

©)

Figure 1. (a) An example Web page. (b) The corresponding slicing
tree. (c) A Web layout that cannot be represented by the slicing tree
structure.

An example Web page and its corresponding slicing tree are
shown in Figure 1 (a) and (b) respectively. It comes from Google
news (http://news.google.com/) and will also be used in the
experiment section. Our definition of slicing tree template does



not cover where to split, i.e. the ratio of each split, which is often
referred to as the slicing number. In our approach, all the slicing
numbers will be adjusted adaptively to the display size. It should
also be noted that the slicing tree structure could not represent all
kinds of layout. A contrary example is shown in Figure 1(c),
however most Web pages in the real world can be represented by
slicing trees.

Different from traditional CAD approaches, we assume this
slicing tree structure remains constant during the whole adaptation
process. This is reasonable since Web authors usually do not want
their contents to be randomly shuffled after adaptation. Therefore,
only the slicing numbers need to be decided during page
adaptation. Based on this assumption, we design an efficient top-
down layout algorithm which will be discussed in Section 4.3.2.

Another benefit of using slicing trees is that it usually reflects
both the intended logical structure and layout structure of the
author. Considering the process of designing a Web page,
especially a large one, the author usually follows a top-down flow.
First, he/she divides the whole page into several large blocks
logically independent, such as header, footer, main topics in body,
and side bars. And then, the author fills each block with desired
contents as well as some decorations or separators to further
divide the block into sub-blocks. Therefore, each block becomes a
basic unit to deliver information and attract user attention, as
called information block (B;) here. We assign six attributes to each
information block: importance value (IMP), minimal perceptible
size (MPS), minimal perceptible height (MPH), minimal
perceptible width (MPW), adjustability (ADJ), and alternative
(ALT). The following parts will introduce each of them in detail.
Though here the slicing tree template is supposed to be written by
the author in advance, it may be obtained automatically by certain
layout detection approaches, such as the object projection
algorithm proposed in [12].

3.2 Importance Value

Since different blocks carry different amount of information and
have different functions, they are of different importance. Thus,
we introduce importance value (IMP), a quantified value of
author’s subjective evaluation on an information block, as an
indicator of the weight of each block in contribution to the whole
page information. This value is used when choosing the less
important blocks for summarization under small displays. For
simplicity, we normalize all the weights of information blocks in a
single page.

Although this value is primarily introduced for the page author to
discriminate different contents, however, user preference may also
make its contribution to the importance value when considering
personalization [19]. For example, we may adjust the importance
value to user’s current focus like the mouse position. We can also
employ some automatic approaches [6] to estimate the importance
value from block function, position, and size. For instance, we can
set the footer block to be less important in a news Web page.

3.3 Minimal Perceptible Size/Height/Width

These attributes are mainly used in the layout optimization. As to
document rendering, we can apply many techniques to
accommodate diverse target area sizes, such as zooming and
scaling, wrapping, font size reduction, or margin cropping.
Obviously, the information delivery of a block is significantly
relying on its area of presentation. If an information block is
scaled down too much, it may not be perceptible enough to let
users catch the information that authors intend to deliver.

Therefore, we introduce minimal perceptible size (MPS), minimal
perceptible height (MPH), and minimal perceptible width (MPW),
to denote the minimal allowable spatial area, height, and width of
an information block, respectively. They are used as thresholds to
determine whether an information block should be shrunken or
summarized when rendering the adapted view.

For instance, consider an information block of a short news story
whose original region size is 30,000 pixels. The author or
publisher may define its MPS to be an area of half scaled, i.e.
7,500 pixels, which is assumed to be the smallest resolution to
keep the text still readable. He/she can also set the MPH to the
height of a 9-point character so that the text can be displayed
correctly.

Strictly speaking, MPS, MPH and MPW are dependent on the
usage context, such as the user’s eyesight and his distance from
the screen. For example, if a Web page is shown on a TV set with
set-top box installed, they should be tuned bigger, since users
usually operate it via a remote control. MPS also brings us an
implication on how much content it is in an information block.
This is proved to be very useful in our layout algorithm. MPS,
MPH and MPW can be automatically calculated according to the
total number of characters, height of one character, and the
longest word within a text paragraph, respectively.

3.4 Adjustability

Adjustability (ADJ) denotes whether the aspect ratio of an
information block is adjustable. For example, if the content block
is a pure text block or a mixture of images and texts, e.g. a news
paragraph, it can be wrapped and adapted to fit into the aspect
ratio of final display region. However, when the information
block is a table like navigation bar, or a large image, the aspect
ratio is usually fixed. In this case, the value of ADJ should be set
to false and we fix its aspect ratio at MPW/MPH. This attribute is
used in the content accommodation step described in Section
4.3.3. If not specified, ADJ can be decided by analyzing HTML
tags.

3.5 Alternative

As regards to those information blocks of less importance such as
decorations or advertisements, it is desirable to summarize them
in order to save display space for more important blocks. Also
when dealing with a block of large MPS which cannot be
displayed without excessive shrinking due to the limited display
size, a summary with a link to the original contents is more
preferable. Instead of deleting contents or showing imperceptible
adapted version, alternative lets users see the whole in parts and
give a much better solution to preserve contents, save display
space, and aid user navigation as well.

An alternative is usually a short text string that briefly describes
the original content block. Its function is similar to the ALT
attribute of /MG tag in HTML. It should not be too big in size due
to its function requirements. The summary can be obtained by
computational information extraction or manual input from the
author. In current DRESS representation, only leaf node can have
ALT attribute, since summarizing a sub-tree will change the
template defined by the author and also increase the depth of page
hierarchy. We plan to investigate the possibility of sub-tree
summarization in future work.



4. DRESS BASED DOCUMENT LAYOUT

ADAPTATION

Based on the previously described DRESS, the problem of Web
document layout adaptation can be better handled to
accommodate both author intention and user context. In the
following, we will discuss the concept of information fidelity and
an algorithm to find the optimal Web document layout under
various constraints on display size.

4.1 Information Fidelity

Information fidelity introduced here is the perceptual ‘look and
feel’ of a modified version of content object, a subjective
comparison with the original version. The value of information
fidelity is confined between O (lowest, all information lost) and 1
(highest, all information kept just as original). Information fidelity
gives a quantitative evaluation of content representation. Hence,
the optimal solution is to maximize the information fidelity which
is delivered to the end user via an adapted representation. The
information fidelity of an individual adapted block is decided by
various parameters such as spatial region of display, content
reduction of text, color depth or compression ratio of image, etc.

For a Web page P consisting of several blocks, the resulting
information fidelity is defined as a weighted sum of the
information fidelity of all blocks in P. Straightforwardly, we can
employ the importance values from DRESS as the weights of
contributions to the perceptual quality of the whole page. Thus,
the information fidelity of an adapted result is described as

IF(P)= > IMP,-IFg )
BeP '
This is used as the object function of our adaptation algorithm. In
this paper, we assume /F value only depends on the version of
content block, i.e., whether it is summarized or not. If a content
block is replaced by its alternative, the /F value of this block is
defined to be 0, otherwise it is 1.

4.2 Problem Definition

We introduce P’ as the set of unsummarized information blocks in
a Web page P, P'c P ={Bl,Bz,...BN}. Thus, our misson is to find
the block set P’ that carries the largest information fidelity while
meets the display constraints.

In order to ensure that all the content blocks are possible to be
included in the final presentation, the following constraint should
be satisfied.

> size (ALT;)+ Y. MPS; < Area 3)
B¢ P' B;eP'
where Area is the size of target area and size (x) is a function
which returns the size of display area needed by ALT;. If the
constraint (3) is transformed to

> (MPS; - size(ALT; )< Area — " size(ALT;) @)
B;eP' B,eP

then the Web layout optimization problem becomes:

max Z IMPF, - IFp |=max Z IMP, | subject to
B,eP P B;eP' (@)
Z (MPSi - size(ALTi )) < Area — z size(ALTi)

B;eP' B;epP

We can see that problem (5) is equivalent to a traditional NP-
complete problem, 0-1 knapsack. The constraint (4) also implies
that the display size should not be too small, otherwise we will
not be able to find a valid layout even when all the blocks have
been summarized. In this rare case, sub-tree summarization will
become necessary.

Since constraint (3) does not ensure that the MPH or MPW will be
satisfied, we solve the problem by a two-level approach. First we
use a branch and bound algorithm to enumerate all possible block
set P, then for each block set, we use a capacity ratio based
slicing algorithm to test whether a valid layout can be found. By
this process, we search among all possible block set P’ to select
the optimal one, i.e. the scheme that achieves the largest IF value
while presents an aesthetic view.

4.3 Page Rendering Algorithm

Since problem (5) is NP-complete, it is very time-consuming to
simply try possible solutions one by one. We design a branch-and-
bound algorithm to select the block sets efficiently.

4.3.1 Block Set Selection

As shown in Figure 2, we build a binary tree for block set
selection in which the root node is a null set @ implying all the
blocks are summarized and

1 Each node denotes a set of unsummarized blocks;
1 Each level presents the inclusion of an information block;

1 Each bifurcation means the choice of keeping original
contents or making summary of the block in the next level.

Thus, the height of this tree is NV, the total number of blocks inside
the Web page, and each leaf node in this tree corresponds a
different possible block set P'.

Level C

Level

Level 2

Figure 2. The binary tree used for selecting optimal block sets.

For each node in the binary block tree, there is a boundary on the
possible [F value it can achieve among all of its sub-trees.
Obviously, the lower boundary is just the /F value currently
achieved when none of the unchecked blocks can be added, that is,
the sum of [F values of blocks included in the current
configuration. And the upper boundary is the addition of all IF
values of those unchecked blocks after the current level, in other
words, the sum of /F values of all blocks in the Web page except
those summarized before the current level. We perform a depth-
first traversal on this tree according to following constraints:

1 Whenever the upper bound of a node is smaller than the best
IF value currently achieved, the whole sub-tree of that node
including itself will be truncated.

1 At the same time, for each node we check area size
constraint in Equation (3) to verify its validity. If the
constraint is broken, the node and its whole sub-tree will be



truncated, because including a new block will increase the
sum of MPS values.

1 If we arrive at a block set with an /F value larger than the
current best /F value, we will check the feasibility of this
solution by running the layout algorithm in Section 4.3.2. If
this solution is feasible, we will replace the current best /F
value by this one.

By checking both the bound on possible /F value and the layout
validity of each block set, the computation cost is greatly reduced.
We also use some other techniques to reduce the time of traversal
such as arrange all the blocks in a decreasing order of their
importance values at the beginning of search, since in many cases
only a few blocks contribute the majority of /F value.

4.3.2 Capacity Ratio Based Slicing

When checking the feasibility of a block set P’, we try to find an
aesthetic layout to put all content blocks and summarizations in
the target area. The general problem of Web layout optimization is
similar to the floor planning in VLSI design, which is known as a
NP-hard problem. However, as mentioned before, because the
slicing tree structure remains constant during our adaptation
process, so only the slicing numbers need to be decided. We
employ a capacity ratio based slicing method to deal with this
problem in two steps as shown in Figure 3. First, we go through
the slicing tree in a bottom-up way to calculate the capacity,
height and width constraints for each node. Then, the slicing
numbers are computed in a top-down way.

at the height of 600%0.14=84. This procedure is executed
recursively until all the slicing numbers are decided. However, if
block 7 has set its MPH to 100, then we will split the display at
the height of 100 instead in order to meet this requirement.

Aggregate (p)
{

if p is a leaf node
if p is a summarized block
p—>capacity = size (p->alternative);
p->minheight = height (p->alternative);
p—->minwidth = width (p->alternative);
else // p is unsummarized
p—>capacity = p->MPS;
p—->minheight = p->MPH;
p—->minwidth = p->MPW;
else // p is an inner node
Aggregate (p->Ichild );
Aggregate ( p->rchild );
p—>capacity = p->Ichild—>capacity + p->rchild—>capacity;
if p->label == vertical
p—> minheight = max(p->Ichild—>minheiht, p->rchild—>minheight );
p—> minwidth = p->Ichild—>minwidth + p->rchild—>minwidth;
else // p’s label is horizontal
p—> minheight = p->Ichild—>minheight + p->rchild—>minheight;
p—> minwidth = max (p->Ichild—>minwidth, p->rchild—>minwidth);

/

Figure 4. The algorithm for calculating the capacity, height and
width constraints of each node.

Slicing ()

// calculate capacity, height and width constraints
Aggregate (root);

// calculate slicing numbers

root->area = TARGET_AREA; // target display size
root->height = TARGET_HEIGHT; // target display height
root->width = TARGET_WIDTH; // target display width
if (Allocate (root) == true) return true;

else return false;

Figure 3. Capacity ratio based slicing algorithm.

The detailed flow of first step is shown in Figure 4, where the
capacity, minimal height and minimal width of each node stands
for its display constraints. For a summarized block, they
correspond to the values of its alternative which can be calculated
automatically from the summary text.

The second step compares the capacities of two sub-trees of each
inner node and let the slicing number of that node be proportional
to them. This leads to the name of our algorithm, capacity ratio
based slicing. We also perform some adjustments on the slicing
numbers to meet the display constraints. Figure 5 presents the
algorithm details.

The complexity of this layout algorithm is O(N), since both steps
can be performed in O(N) time. Therefore, our capacity ratio
based slicing algorithm is fast enough to check the layout
feasibility of each possible block selection. An example is shown
in Figure 6. The MPS of the four content blocks in the page are
1000, 1000, 2500 and 2500, respectively. Suppose all of them are
not summarized in the adaptation, the slicing number of the root
will be: 1000/(1000+1000+2500+2500) =0.14. That is to say, if
the screen is 600 in height, we should split the region horizontally

Allocate (p)

if p—>area < p—>capacity or p—>height < p—>minheight
or p->width < p->minwidth
return false;

if p is an inner node
p->slicingnumber = p->Ichild—>capacity / p—>capacity;
if p->label == vertical
p->Ichild—>height = p->height
p->rchild—>height = p—>height;
p->lchild—>width = p—>slicingnumber * p—>width;
p->rchild—>width = p—>width — p->Ichild—>width;
if p->Ichild—>width < p->Ichild—>minwidth
p->lchild—>width = p->Ichild—>minwidth;
p->rchild—>width = p->width — p->Ichild—>minwidth;
else if p->rchild—>width < p->rchild->minwidth
p->rchild—>width = p->rchild—>minwidth;
p->lchild—>width = p—>width — p->rchild—>minwidth;
else // p’s label is horizontal
p->Ichild->width = p->width
p->rchild->width = p—>width;
p->Ichild—>height = p—>slicingnumber * p—>height;
p->rchild—>height = p—>height— p->Ichild—>height;
if p->Ichild—>height < p->Ichild—>minheight
p->Ichild—>height = p->Ichild—>minheight;
p->rchild—>height = p->width — p->Ichild—>minheight;
else if p->rchild—>height < p->rchild->minheight
p->rchild—>height = p->rchild—>minheight;
p->Ichild—>height = p—>height— p->rchild—>minheight;

if (Allocate (p->Ichild ) == false) return false;
else if (Allocate (p->rchild ) == false) return false;
else return true;

else return true // do nothing when p is a leaf node

I

Figure 5. The algorithm for assigning the final display rectangle to
each node.
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Figure 6. (a) An example Web layout with MPS labeled. (b) The
corresponding slicing tree with slicing number labeled.

4.3.3 Content Accommodation

After layout optimization, each block, whether summarized or not,
has been assigned a rectangle region for display. According to the
slicing algorithm, the area size of the assigned region for each
node will be larger than its MPS value. The height and width of
the display region will also meet the requirements of each block.
We use the ADJ attribute of each information block to aid the
content accommodation process. If a block is indicated to be
adjustable, we will fit it into the target rectangle by zooming and
wrapping. Otherwise, we will only zoom the block while
maintaining its aspect ratio. Other content adaptation techniques
like attention model based image adaptation [7] can also be
integrated into this step. Sometimes, the size of summarized
alternatives may be much smaller than their allocated region.
Therefore, we extract some keywords from original contents and
append them in the unoccupied space to throw more light.

When a user follows the link of an alternative, a technique similar
to the fisheye view [17] is adopted to highlight the corresponding
block. We redo the adaptation process with a new constraint that
this block should not be summarized. However, if no such
solution is found, the user will be navigated to a new page of the
original contents which is displayed using the whole target area.
Note if the block is oversize, scrolling is inevitable. Therefore, we
suggest huge blocks be avoided in the Web design.

S. DRESS-BASED WEB BROWSING ON

SMALL TERMINALS

We have implemented a prototype of DRESS-based Web browser
to validate the performance of our proposed scheme. With
DRESS and the page rendering algorithms, the browser can
dynamically select and summarize proper parts of Web pages,
then optimize the layout for target area, and finally adapt block
contents to fit into the corresponding regions allocated.
Experimental results are very encouraging.

5.1 Implementation of DRESS Browser

In our prototype, the DRESS structure is stored as comments
within the HTML files or style sheets. For example, the slicing
tree structure of the Web page in Figure 1 is saved as a Polish
expression “((A—-(BI(CI(D-E))))-F)” where “~” and
“I” denote horizontal and vertical slicing, respectively. Other
attributes of DRESS are described in the same way as shown in
Figure 7. On second thoughts, by adopting similar annotation
mechanism described in [14], we can also store the DRESS
information into an external XML document which uses XPath
and XPointer to indicate the information blocks in the original
HTML file.

We allow user to designate the desired target area in the prototype
which was developed based on Microsoft Internet Explorer. When
browsing a Web page, our prototype first parses the DRESS
information inside, and then generates a main result HTML file
that exactly fits the target display. At the same time, those
summarized block contents are saved in temporary HTML files
which are accessible by following the links of alternatives. These
intermediary data can be saved in memory instead of files if the
adaptation is performed at client side.

<!-- DRESS SlicingTree =((A—(BI(CI(D-E))))-F)-->

<!--Block ID=“A" IMP="0.15" MPS="35000" MPH="“80” MPW="400"
ADJ="“No” ALT= “Google News Search” -->

contents of block A ...

<!--Block ID=“B” IMP="0.1" MPS=“14000" MPH=“140" MPW=“100"
ADJ=“No” ALT= “Left Sidebar” -->
contents of block B ...

<!--Block ID="C” IMP="0.4" MPS="“80000” MPH="“150" MPW="200"
ADJ="Yes” ALT= “Top Stories” -->
contents of block C ...

<!--Block ID="D” IMP="0.2" MPS="30000" MPH="100" MPW=*150"
ADJ="Yes” ALT= “Hot News List” -->
contents of block D ...

<!--Block ID=“E” IMP="“0.1" MPS=“20000" MPH=“100" MPW=“200"
ADJ="No” ALT= “In the news” -->
contents of block E ...

<!--Block ID="F" IMP="0.05" MPS="9000" MPH="40" MPW="150"
ADJ="Yes” ALT= “Google Footer” -->
contents of block F ...

<!-- DRESS End -->

Figure 7. An example DRESS representation.

It is worth noticing that DRESS does not require additional
modification on client devices. The transformation from a DRESS
document to normal HTML document can be done at either the
content server or intermediary proxies. The process will be just
like the deployment strategy of XML plus XSLT currently. Thus,
it can be deployed incrementally on the Internet.

5.2 Experimental Results

We carried out an experiment to compare our DRESS-based
approach with the widely used thumbnail method. To illustrate
our scheme, we use the same example page in Figure 1 whose
DRESS is defined in Figure 7.

Figure 8 shows the comparison results on three typical screen
sizes without scrolling. As shown in Figure 8(a, c, ), when using
Web thumbnails on Handheld PC (640x240), Smartphone
(128x160), and Pocket PC (240x320), almost all the contents are
hardly recognizable because of excessive down-sampling. In
contrast, our solutions in Figure 8(b, d, f) provide a much better
experience in both content reading and link navigation. For
instance, in Figure 8(b) and Figure 8(f), parts of the unimportant
or oversize page contents are summarized while the rest parts are
still kept readable in original version to deliver the maximal
information fidelity. If a user clicks the link of left sidebar in
Figure 8(f), a new layout is generated with the sidebar expanded
as shown in Figure 8(g). In Figure 8(d), the target area is too
small to accommodate any unsummarized information block, thus
all blocks are presented in summaries as a table-of-content. Note
in Figure 8(h) the rotation factor, which is common among mobile
devices, is taken into consideration and a better result is presented
accordingly with the left navigation sidebar added.
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Figure8. The results of DRESS-based layout adaptation compared with thumbnail views.



Another experiment was also conducted to test the efficiency of
our algorithm by logging the computational time costs while
making 10 times layout adaptation for each Web page. We
included the time cost for the procedures of both block selection
and layout determination. Our test bed is a Dell Optiplex GX 240
using a 1.8GHz Pentium 4 processor, 512 MB of RAM, and
Windows XP Professional system. Our test data of 16 Web pages
were collected from the most popular Websites such as MSN,
Yahoo!, Google. We manually added the DRESS structure into
these pages, among which the information block numbers vary
from 5 to 20. In the test we got an average time cost at 18
microseconds, i.e. about 55,000 pages per second, with variation
from 2 to 56 microseconds. The result shows that without code
optimization our algorithm is already fast enough to be employed
in real-time Web browsing systems on either Website servers or
proxy servers, or even on client devices.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a Document REpresentation for
Scalable Structure (DRESS) to help information providers to
make composite documents, typically Web pages, scalable to
display size in both logic and layout structure. By integrating both
techniques from computer aided design and information
extraction, DRESS allows easy negotiation between author and
viewer, hides layout manipulation from author but still keeps the
result structure predicable, and represents contents in dynamic
layouts to fit various user preferred display sizes.

Currently, we are developing a Web authoring tool to create and
insert DRESS structure with ease of use. Though we focus on a
new document representation, automatic transformation from
existing Web contents is also crucial to its incremental
deployment. We are looking forward to automatic DRESS
generation by leveraging our previous experience on Web page
analysis. DRESS-based Web personalization is also one of our
future directions.
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