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ABSTRACT 
As a great many of new devices with diverse capabilities are 
making a population boom on the Internet mobile clients, their 
limited display sizes become a serious obstacle to information 
accessing. In this paper, we introduce a Document REpresentation 
for Scalable Structure (DRESS) to help information providers to 
make composite documents, typically Web pages, scalable in both 
logic and layout structure to support effective information 
acquisition in heterogeneous environments. Through this novel 
document representation structure based on binary slicing trees, 
the document can dynamically adapt its presentation according to 
display sizes by maximizing the information throughput to users. 
We discuss the details of this structure with its key attributes. A 
branch-and-bound algorithm and a capacity ratio based slicing 
method are proposed to select proper content representation and 
aesthetic document layouts respectively. Experiments show 
satisfactory results with high efficiency. 

Keywords 
Web browsing, adaptive content delivery, slicing tree, layout 
optimization 

1. INTRODUCTION 
Recently, a great many of new devices with diverse capabilities, 
such as Tablet PCs, Pocket PCs, Smartphones and Handheld PCs, 
are making a population boom on the Internet mobile clients 
because of their portability and mobility. Since most of the 
information on Internet today is presented by Web documents, 
there has been an imperative need for efficient access to the bulk 
of Web resources on these diverse-form-factor devices. Although 
these devices are becoming more and more powerful in both 
numerical computing and data storage, nevertheless, low 
bandwidth connections and small displays, the two serious 
obstacles to information accessing, have prevented them 
becoming more helpful to people’s everyday life. With the 
successful development of scalable video coding, progressive 
image coding as well as 2.5G and 3G wireless networks, the 
bandwidth condition is expected to be greatly improved in the 
near future. At the same time, however, the limitation on display 
size is more likely to remain unchanged for a certain period of 

time due to the mobility requirement of these devices and the slow 
progress of foldable display technology.  

Aiming at solving this problem, we introduce a Document 
REpresentation for Scalable Structure (DRESS) based on the 
combination of techniques rooted in computer aided design and 
linguistic summarization. When the display area shrinks, some 
parts of the Web pages will be compressed in terms of linguistic 
summaries by computational information extraction or manual 
input from the page author, and then presented, together with 
other unsummarized parts, adaptively to end users with aesthetic 
layouts.  

The rest of this paper is organized as follows: In Section 2, we 
discuss the state of art. Section 3 presents the definition of 
DRESS representation and its main attributes. This is followed by 
Section 4 introducing the Web page rendering algorithm. Then, in 
Section 5, we describe in detail the implementation of a DRESS-
based Web browser and present experimental results as well. 
Finally, Section 6 gives our conclusions and future work. 

2. RELATED WORK 
Many efforts have already addressed the problem of Web 
browsing on small terminals and various solutions have been 
proposed including some commercial products. Current 
approaches can be divided into two directions: the first one is to 
transform existing Web pages such as [2][3][5][6][12][15][16][18] 
[20], while the other attempts to introduce new formats and 
mechanisms [1][4][13][14] which make Web pages themselves 
scalable to different display sizes.  

Among the first trend, there are also two different approaches for 
transforming Web pages. The first one, which originated from the 
user interface community, only changes the presentation of page 
contents without any structure modification. For example, the 
most straightforward approach is eliminating the annoying 
horizontal scrolling requirement, i.e. present all the contents into a 
single narrow column, such as [16]. Fast and simple though it is 
in implementation, this method greatly increases the page height 
and forces the user to scroll up and down excessively. Other UI-
based approaches try to use thumbnails or keywords as well as 
zooming techniques to aid browsing, such as [3][18]. However, 
this kind of aid tends to work only on the pages that user is very 
familiar with, because thumbnails are often scaled down too much 
to give much information besides a rough overview. The other 
way to do Web page transformation is to retrieve the semantic 
structure from original contents and rewrite the page according to 
user’s context. The basic idea is to partition the Web page into a 

* This work was performed when the first author was a visiting student 
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set of sub-pages and generate a Table-of-Content with/without 
hierarchy as the index page, such as [2][5]. Our previous work 
[6][12][20] belongs to this category. A promising direction is to 
combine these two techniques together to provide a better user 
experience, for example, [15] uses the whole page thumbnail as 
the Table-of-Content.  

Although many efforts have been put on automatic extraction of 
document architectures, it is still hard for computers to fully 
understand the semantic structure of Web pages. What’ s more, 
most of them did not address the layout problem which is very 
essential because the representation of contents directly affects 
user’ s perception. Therefore, instead of transforming existing Web 
pages, researchers began to consider leveraging extra hints from 
author’ s direct help in the designing phrase or some external 
annotations from third parties. A straightforward approach comes 
along with the XML and XSLT, which allows the semantic 
structure to be separated with presentations, such as [13].  

However, writing a separate style sheet for each type of devices 
could be very labor intensive partly due to the great variability of 
some application parameters like window sizes. A more scalable 
approach for defining Web presentations should be studied. In 
[14], instead of using multiple presentations, content adaptation is 
performed based on annotations of adaptation hints, but the layout 
problem of adapted results has not been addressed either. [1][4] 
proposed a CSS compatible mechanism which allowed Web page 
designers or editors to designate layout constraints explicitly in 
mathematic equalities or inequalities, and then turned the display 
problem into constraint solving. Despite constraints for interactive 
graphical applications has been researched since the early eighties 
of last century, there are still a number of unsolved problems with 
constraint-based layout. For instance, it is difficult to specify 
proper mathematical formulas for different layouts. In addition, 
the constraint solving procedure is computationally expensive for 
client browsers. There are also some interesting solutions for 
specific problems such as [10][11] for Web newspaper layout and 
[9] for optimizing picture placement in a Web page.  

We focus on the problem of defining a scalable and efficient Web 
document representation structure that is adaptive to various 
display sizes. Here the display size does not need to be as same as 
the screen size. Actually, in practice each user can designate a 
preferred target display size different from the screen size. For 
instance, a Pocket PC user may specify the limitation of his 
display to a size of two screens with vertical scrolling only. 
He/she can even use a rotated display which may fit current Web 
pages better. 

As we notice, few of current approaches to Web layout adaptation 
considered the priorities of different content blocks in a page. 
What’ s more, none of them let the author control the final page 
layout conveniently. That is to say, the final presentation is 
usually unpredictable during the designing phase. In this paper, 
we propose to use binary slicing trees, a data structure widely 
used in computer aided design community [8], to represent a page 
template that can be controlled by the author. Based on this 
representation, we formulate the Web layout problem as a 
variance of 0-1 knapsack problem, which can be efficiently solved 
by a branch-and-bound algorithm. A capacity ratio based slicing 
method is then applied to select an aesthetic layout. 

3. DOCUMENT REPRESENTATION FOR 
SCALABLE STRUCTURE 
In this section, we first give a formal definition of DRESS, the 
basis of our Web layout adaptation algorithm, and then describe 
this structure in detail. 

Definition 1: The DRESS for a Web page is a binary slicing tree 
with N leaf nodes. Each inner node is labeled with either v or h 
denoting vertical or horizontal split, and each leaf node is an 
information block defined as follows: 

( )iiiiiii ALTADJMPWMPHMPSIMPB ,,, , ,=         (1) 

where , ..., ,2 ,1 Ni =  
 Bi,  the ith information block in the Web page 
 IMPi,  importance value of Bi 
 MPSi, minimal perceptible size of Bi 

 MPHi, minimal perceptible height of Bi 
 MPWi, minimal perceptible width of Bi 
 ADJi, whether the aspect ratio of Bi  is adjustable 
 ALTi, alternative of Bi  

3.1 Slicing Tree Structure 
As shown in Definition 1, DRESS is a slicing tree with each leaf 
node as an information block in the Web page. The label on each 
inner node determines how the display area is recursively 
subdivided into sub-rectangles by slicing vertically (v) or 
horizontally (h). An information block will be placed in the sub-
rectangle held by the leaf node. 

 
Figure 1. (a) An example Web page. (b) The corresponding slicing 
tree. (c) A Web layout that cannot be represented by the slicing tree 
structure. 

An example Web page and its corresponding slicing tree are 
shown in Figure 1 (a) and (b) respectively. It comes from Google 
news (http://news.google.com/) and will also be used in the 
experiment section. Our definition of slicing tree template does 
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not cover where to split, i.e. the ratio of each split, which is often 
referred to as the slicing number. In our approach, all the slicing 
numbers will be adjusted adaptively to the display size. It should 
also be noted that the slicing tree structure could not represent all 
kinds of layout. A contrary example is shown in Figure 1(c), 
however most Web pages in the real world can be represented by 
slicing trees.  

Different from traditional CAD approaches, we assume this 
slicing tree structure remains constant during the whole adaptation 
process. This is reasonable since Web authors usually do not want 
their contents to be randomly shuffled after adaptation. Therefore, 
only the slicing numbers need to be decided during page 
adaptation. Based on this assumption, we design an efficient top-
down layout algorithm which will be discussed in Section 4.3.2.  

Another benefit of using slicing trees is that it usually reflects 
both the intended logical structure and layout structure of the 
author. Considering the process of designing a Web page, 
especially a large one, the author usually follows a top-down flow. 
First, he/she divides the whole page into several large blocks 
logically independent, such as header, footer, main topics in body, 
and side bars. And then, the author fills each block with desired 
contents as well as some decorations or separators to further 
divide the block into sub-blocks. Therefore, each block becomes a 
basic unit to deliver information and attract user attention, as 
called information block (Bi) here. We assign six attributes to each 
information block: importance value (IMP), minimal perceptible 
size (MPS), minimal perceptible height (MPH), minimal 
perceptible width (MPW), adjustability (ADJ), and alternative 
(ALT). The following parts will introduce each of them in detail. 
Though here the slicing tree template is supposed to be written by 
the author in advance, it may be obtained automatically by certain 
layout detection approaches, such as the object projection 
algorithm proposed in [12]. 

3.2 Importance Value 
Since different blocks carry different amount of information and 
have different functions, they are of different importance. Thus, 
we introduce importance value (IMP), a quantified value of 
author’ s subjective evaluation on an information block, as an 
indicator of the weight of each block in contribution to the whole 
page information. This value is used when choosing the less 
important blocks for summarization under small displays. For 
simplicity, we normalize all the weights of information blocks in a 
single page.  

Although this value is primarily introduced for the page author to 
discriminate different contents, however, user preference may also 
make its contribution to the importance value when considering 
personalization [19]. For example, we may adjust the importance 
value to user’ s current focus like the mouse position. We can also 
employ some automatic approaches [6] to estimate the importance 
value from block function, position, and size. For instance, we can 
set the footer block to be less important in a news Web page. 

3.3 Minimal Perceptible Size/Height/Width 
These attributes are mainly used in the layout optimization. As to 
document rendering, we can apply many techniques to 
accommodate diverse target area sizes, such as zooming and 
scaling, wrapping, font size reduction, or margin cropping. 
Obviously, the information delivery of a block is significantly 
relying on its area of presentation. If an information block is 
scaled down too much, it may not be perceptible enough to let 
users catch the information that authors intend to deliver. 

Therefore, we introduce minimal perceptible size (MPS), minimal 
perceptible height (MPH), and minimal perceptible width (MPW), 
to denote the minimal allowable spatial area, height, and width of 
an information block, respectively. They are used as thresholds to 
determine whether an information block should be shrunken or 
summarized when rendering the adapted view. 

For instance, consider an information block of a short news story 
whose original region size is 30,000 pixels. The author or 
publisher may define its MPS to be an area of half scaled, i.e. 
7,500 pixels, which is assumed to be the smallest resolution to 
keep the text still readable. He/she can also set the MPH to the 
height of a 9-point character so that the text can be displayed 
correctly. 

Strictly speaking, MPS, MPH and MPW are dependent on the 
usage context, such as the user’ s eyesight and his distance from 
the screen. For example, if a Web page is shown on a TV set with 
set-top box installed, they should be tuned bigger, since users 
usually operate it via a remote control. MPS also brings us an 
implication on how much content it is in an information block. 
This is proved to be very useful in our layout algorithm. MPS, 
MPH and MPW can be automatically calculated according to the 
total number of characters, height of one character, and the 
longest word within a text paragraph, respectively. 

3.4 Adjustability 
Adjustability (ADJ) denotes whether the aspect ratio of an 
information block is adjustable. For example, if the content block 
is a pure text block or a mixture of images and texts, e.g. a news 
paragraph, it can be wrapped and adapted to fit into the aspect 
ratio of final display region. However, when the information 
block is a table like navigation bar, or a large image, the aspect 
ratio is usually fixed. In this case, the value of ADJ should be set 
to false and we fix its aspect ratio at MPW/MPH. This attribute is 
used in the content accommodation step described in Section 
4.3.3. If not specified, ADJ can be decided by analyzing HTML 
tags.  

3.5 Alternative 
As regards to those information blocks of less importance such as 
decorations or advertisements, it is desirable to summarize them 
in order to save display space for more important blocks. Also 
when dealing with a block of large MPS which cannot be 
displayed without excessive shrinking due to the limited display 
size, a summary with a link to the original contents is more 
preferable. Instead of deleting contents or showing imperceptible 
adapted version, alternative lets users see the whole in parts and 
give a much better solution to preserve contents, save display 
space, and aid user navigation as well.  

An alternative is usually a short text string that briefly describes 
the original content block. Its function is similar to the ALT 
attribute of IMG tag in HTML. It should not be too big in size due 
to its function requirements. The summary can be obtained by 
computational information extraction or manual input from the 
author. In current DRESS representation, only leaf node can have 
ALT attribute, since summarizing a sub-tree will change the 
template defined by the author and also increase the depth of page 
hierarchy. We plan to investigate the possibility of sub-tree 
summarization in future work. 



4. DRESS BASED DOCUMENT LAYOUT 
ADAPTATION 
Based on the previously described DRESS, the problem of Web 
document layout adaptation can be better handled to 
accommodate both author intention and user context. In the 
following, we will discuss the concept of information fidelity and 
an algorithm to find the optimal Web document layout under 
various constraints on display size. 

4.1 Information Fidelity 
Information fidelity introduced here is the perceptual ‘look and 
feel’  of a modified version of content object, a subjective 
comparison with the original version. The value of information 
fidelity is confined between 0 (lowest, all information lost) and 1 
(highest, all information kept just as original). Information fidelity 
gives a quantitative evaluation of content representation. Hence, 
the optimal solution is to maximize the information fidelity which 
is delivered to the end user via an adapted representation. The 
information fidelity of an individual adapted block is decided by 
various parameters such as spatial region of display, content 
reduction of text, color depth or compression ratio of image, etc.  

For a Web page P consisting of several blocks, the resulting 
information fidelity is defined as a weighted sum of the 
information fidelity of all blocks in P. Straightforwardly, we can 
employ the importance values from DRESS as the weights of 
contributions to the perceptual quality of the whole page. Thus, 
the information fidelity of an adapted result is described as  

( ) �
∈

⋅=
PB

Bi
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i
IFIMPPIF       (2) 

This is used as the object function of our adaptation algorithm. In 
this paper, we assume IF value only depends on the version of 
content block, i.e., whether it is summarized or not. If a content 
block is replaced by its alternative, the IF value of this block is 
defined to be 0, otherwise it is 1.  

4.2 Problem Definition 
We introduce P' as the set of unsummarized information blocks in 
a Web page P, { }NBBBPP ,...,' 21=⊂ . Thus, our misson is to find 
the block set P' that carries the largest information fidelity while 
meets the display constraints.  

In order to ensure that all the content blocks are possible to be 
included in the final presentation, the following constraint should 
be satisfied. 
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where Area is the size of target area and size (x) is a function 
which returns the size of display area needed by ALTi. If the 
constraint (3) is transformed to 
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then the Web layout optimization problem becomes: 
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We can see that problem (5) is equivalent to a traditional NP-
complete problem, 0-1 knapsack. The constraint (4) also implies 
that the display size should not be too small, otherwise we will 
not be able to find a valid layout even when all the blocks have 
been summarized. In this rare case, sub-tree summarization will 
become necessary.  

Since constraint (3) does not ensure that the MPH or MPW will be 
satisfied, we solve the problem by a two-level approach. First we 
use a branch and bound algorithm to enumerate all possible block 
set P', then for each block set, we use a capacity ratio based 
slicing algorithm to test whether a valid layout can be found. By 
this process, we search among all possible block set P' to select 
the optimal one, i.e. the scheme that achieves the largest IF value 
while presents an aesthetic view.  

4.3 Page Rendering Algorithm 
Since problem (5) is NP-complete, it is very time-consuming to 
simply try possible solutions one by one. We design a branch-and-
bound algorithm to select the block sets efficiently.  

4.3.1 Block Set Selection 
As shown in Figure 2, we build a binary tree for block set 
selection in which the root node is a null set � implying all the 
blocks are summarized and  

l  Each node denotes a set of unsummarized blocks;  

l  Each level presents the inclusion of an information block;  

l  Each bifurcation means the choice of keeping original 
contents or making summary of the block in the next level.  

Thus, the height of this tree is N, the total number of blocks inside 
the Web page, and each leaf node in this tree corresponds a 
different possible block set P'.  

 

Figure 2. The binary tree used for selecting optimal block sets. 

For each node in the binary block tree, there is a boundary on the 
possible IF value it can achieve among all of its sub-trees. 
Obviously, the lower boundary is just the IF value currently 
achieved when none of the unchecked blocks can be added, that is, 
the sum of IF values of blocks included in the current 
configuration. And the upper boundary is the addition of all IF 
values of those unchecked blocks after the current level, in other 
words, the sum of IF values of all blocks in the Web page except 
those summarized before the current level. We perform a depth-
first traversal on this tree according to following constraints: 

l  Whenever the upper bound of a node is smaller than the best 
IF value currently achieved, the whole sub-tree of that node 
including itself will be truncated.  

l  At the same time, for each node we check area size 
constraint in Equation (3) to verify its validity. If the 
constraint is broken, the node and its whole sub-tree will be 



truncated, because including a new block will increase the 
sum of MPS values.  

l  If we arrive at a block set with an IF value larger than the 
current best IF value, we will check the feasibility of this 
solution by running the layout algorithm in Section 4.3.2. If 
this solution is feasible, we will replace the current best IF 
value by this one. 

By checking both the bound on possible IF value and the layout 
validity of each block set, the computation cost is greatly reduced. 
We also use some other techniques to reduce the time of traversal 
such as arrange all the blocks in a decreasing order of their 
importance values at the beginning of search, since in many cases 
only a few blocks contribute the majority of IF value.  

4.3.2 Capacity Ratio Based Slicing 
When checking the feasibility of a block set P', we try to find an 
aesthetic layout to put all content blocks and summarizations in 
the target area. The general problem of Web layout optimization is 
similar to the floor planning in VLSI design, which is known as a 
NP-hard problem. However, as mentioned before, because the 
slicing tree structure remains constant during our adaptation 
process, so only the slicing numbers need to be decided. We 
employ a capacity ratio based slicing method to deal with this 
problem in two steps as shown in Figure 3. First, we go through 
the slicing tree in a bottom-up way to calculate the capacity, 
height and width constraints for each node. Then, the slicing 
numbers are computed in a top-down way.  

Slicing () 
{ 

// calculate capacity, height and width constraints 
Aggregate (root); 
 
// calculate slicing numbers 
root->area = TARGET_AREA;  // target display size 
root->height = TARGET_HEIGHT; // target display height 
root->width = TARGET_WIDTH;  // target display width 
if (Allocate (root) == true) return true; 
else return false; 

} 

Figure 3. Capacity ratio based slicing algorithm. 

The detailed flow of first step is shown in Figure 4, where the 
capacity, minimal height and minimal width of each node stands 
for its display constraints. For a summarized block, they 
correspond to the values of its alternative which can be calculated 
automatically from the summary text. 

The second step compares the capacities of two sub-trees of each 
inner node and let the slicing number of that node be proportional 
to them. This leads to the name of our algorithm, capacity ratio 
based slicing. We also perform some adjustments on the slicing 
numbers to meet the display constraints. Figure 5 presents the 
algorithm details. 

The complexity of this layout algorithm is O(N), since both steps 
can be performed in O(N) time. Therefore, our capacity ratio 
based slicing algorithm is fast enough to check the layout 
feasibility of each possible block selection. An example is shown 
in Figure 6. The MPS of the four content blocks in the page are 
1000, 1000, 2500 and 2500, respectively. Suppose all of them are 
not summarized in the adaptation, the slicing number of the root 
will be: 1000/(1000+1000+2500+2500) =0.14. That is to say, if 
the screen is 600 in height, we should split the region horizontally 

at the height of 600*0.14=84. This procedure is executed 
recursively until all the slicing numbers are decided. However, if 
block 1 has set its MPH to 100, then we will split the display at 
the height of 100 instead in order to meet this requirement. 

Aggregate  (p )  
{ 

if p is a leaf node 
if p is a summarized block 

p–>capacity = size (p->alternative); 
p–>minheight = height (p->alternative); 
p–>minwidth = width (p->alternative); 

else  // p is unsummarized 
p–>capacity = p->MPS; 
p–>minheight = p->MPH; 
p–>minwidth = p->MPW; 

else // p is an inner node 
Aggregate  (p->lchild ); 
Aggregate ( p->rchild ); 
p–>capacity = p->lchild–>capacity + p->rchild–>capacity;  
if p->label == vertical 

p–> minheight = max(p->lchild–>minheiht, p->rchild–>minheight ); 
p–> minwidth = p->lchild–>minwidth + p->rchild–>minwidth; 

else // p’s label is horizontal 
p–> minheight = p->lchild–>minheight + p->rchild–>minheight; 
p–> minwidth = max (p->lchild–>minwidth, p->rchild–>minwidth); 

} 

Figure 4. The algorithm for calculating the capacity, height and 
width constraints of each node. 

 

Allocate (p) 
{ 

if p–>area < p–>capacity or p–>height < p–>minheight  
or p->width < p->minwidth 

      return false; 
 

if p is an inner node 
p->slicingnumber = p->lchild–>capacity / p–>capacity;  
if p->label == vertical 

p->lchild–>height = p->height 
p->rchild–>height = p–>height; 
p->lchild–>width = p–>slicingnumber * p–>width; 
p->rchild–>width = p–>width – p->lchild–>width; 
if p->lchild–>width < p->lchild–>minwidth 

p->lchild–>width = p->lchild–>minwidth; 
p->rchild–>width = p->width – p->lchild–>minwidth; 

else if p->rchild–>width < p->rchild->minwidth 
p->rchild–>width = p->rchild–>minwidth; 
p->lchild–>width = p–>width – p->rchild–>minwidth; 

else // p’s label is horizontal 
p->lchild–>width = p->width 
p->rchild–>width = p–>width; 
p->lchild–>height = p–>slicingnumber * p–>height; 
p->rchild–>height = p–>height– p->lchild–>height; 
if p->lchild–>height < p->lchild–>minheight 

p->lchild–>height = p->lchild–>minheight; 
p->rchild–>height = p->width – p->lchild–>minheight; 

else if p->rchild–>height < p->rchild->minheight 
p->rchild–>height = p->rchild–>minheight; 
p->lchild–>height = p–>height– p->rchild–>minheight; 

 
if (Allocate (p->lchild ) == false) return false; 
else if (Allocate (p->rchild ) == false) return false; 
else return true; 

  else return true // do nothing when p is a leaf node 
} 

Figure 5. The algorithm for assigning the final display rectangle to 
each node. 



 
(a)                                   (b)     

Figure 6. (a) An example Web layout with MPS labeled. (b) The 
corresponding slicing tree with slicing number labeled.  

4.3.3 Content Accommodation 
After layout optimization, each block, whether summarized or not, 
has been assigned a rectangle region for display. According to the 
slicing algorithm, the area size of the assigned region for each 
node will be larger than its MPS value. The height and width of 
the display region will also meet the requirements of each block. 
We use the ADJ attribute of each information block to aid the 
content accommodation process. If a block is indicated to be 
adjustable, we will fit it into the target rectangle by zooming and 
wrapping. Otherwise, we will only zoom the block while 
maintaining its aspect ratio. Other content adaptation techniques 
like attention model based image adaptation [7] can also be 
integrated into this step. Sometimes, the size of summarized 
alternatives may be much smaller than their allocated region. 
Therefore, we extract some keywords from original contents and 
append them in the unoccupied space to throw more light. 

When a user follows the link of an alternative, a technique similar 
to the fisheye view [17] is adopted to highlight the corresponding 
block. We redo the adaptation process with a new constraint that 
this block should not be summarized. However, if no such 
solution is found, the user will be navigated to a new page of the 
original contents which is displayed using the whole target area. 
Note if the block is oversize, scrolling is inevitable. Therefore, we 
suggest huge blocks be avoided in the Web design.  

5. DRESS-BASED WEB BROWSING ON 
SMALL TERMINALS 
We have implemented a prototype of DRESS-based Web browser 
to validate the performance of our proposed scheme. With 
DRESS and the page rendering algorithms, the browser can 
dynamically select and summarize proper parts of Web pages, 
then optimize the layout for target area, and finally adapt block 
contents to fit into the corresponding regions allocated. 
Experimental results are very encouraging.  

5.1 Implementation of DRESS Browser 
In our prototype, the DRESS structure is stored as comments 
within the HTML files or style sheets. For example, the slicing 
tree structure of the Web page in Figure 1 is saved as a Polish 
expression “( ( A – ( B | ( C | ( D – E ) ) ) ) – F )” where “–” and 
“|” denote horizontal and vertical slicing, respectively. Other 
attributes of DRESS are described in the same way as shown in 
Figure 7. On second thoughts, by adopting similar annotation 
mechanism described in [14], we can also store the DRESS 
information into an external XML document which uses XPath 
and XPointer to indicate the information blocks in the original 
HTML file.  

We allow user to designate the desired target area in the prototype 
which was developed based on Microsoft Internet Explorer. When 
browsing a Web page, our prototype first parses the DRESS 
information inside, and then generates a main result HTML file 
that exactly fits the target display. At the same time, those 
summarized block contents are saved in temporary HTML files 
which are accessible by following the links of alternatives. These 
intermediary data can be saved in memory instead of files if the 
adaptation is performed at client side.  

<!-- DRESS SlicingTree = ( ( A – ( B | ( C | ( D – E ) ) ) ) – F ) --> 
<!--Block ID=“A” IMP=“0.15” MPS=“35000” MPH=“80” MPW=“400”  
 ADJ=“No” ALT= “Google News Search” --> 
 contents of block A … 
 … 
<!--Block ID=“B” IMP=“0.1” MPS=“14000” MPH=“140” MPW=“100”  
 ADJ=“No” ALT= “Left Sidebar” --> 
 contents of block B … 
 … 
<!--Block ID=“C” IMP=“0.4” MPS=“80000” MPH=“150” MPW=“200”  
 ADJ=”Yes” ALT= “Top Stories” --> 
 contents of block C … 
 … 
<!--Block ID=“D” IMP=“0.2” MPS=“30000” MPH=“100” MPW=“150”  
 ADJ=”Yes” ALT= “Hot News List” --> 
 contents of block D … 
 … 
<!--Block ID=“E” IMP=“0.1” MPS=“20000” MPH=“100” MPW=“200”  
 ADJ=”No” ALT= “In the news” --> 
 contents of block E … 
 … 
<!--Block ID=“F” IMP=“0.05” MPS=“9000” MPH=“40” MPW=“150”  
 ADJ=”Yes” ALT= “Google Footer” --> 
 contents of block F … 
 … 
<!-- DRESS End --> 

Figure 7. An example DRESS representation. 

It is worth noticing that DRESS does not require additional 
modification on client devices. The transformation from a DRESS 
document to normal HTML document can be done at either the 
content server or intermediary proxies. The process will be just 
like the deployment strategy of XML plus XSLT currently. Thus, 
it can be deployed incrementally on the Internet.  

5.2 Experimental Results 
We carried out an experiment to compare our DRESS-based 
approach with the widely used thumbnail method. To illustrate 
our scheme, we use the same example page in Figure 1 whose 
DRESS is defined in Figure 7.  

Figure 8 shows the comparison results on three typical screen 
sizes without scrolling. As shown in Figure 8(a, c, e), when using 
Web thumbnails on Handheld PC (640x240), Smartphone 
(128x160), and Pocket PC (240x320), almost all the contents are 
hardly recognizable because of excessive down-sampling. In 
contrast, our solutions in Figure 8(b, d, f) provide a much better 
experience in both content reading and link navigation. For 
instance, in Figure 8(b) and Figure 8(f), parts of the unimportant 
or oversize page contents are summarized while the rest parts are 
still kept readable in original version to deliver the maximal 
information fidelity. If a user clicks the link of left sidebar in 
Figure 8(f), a new layout is generated with the sidebar expanded 
as shown in Figure 8(g). In Figure 8(d), the target area is too 
small to accommodate any unsummarized information block, thus 
all blocks are presented in summaries as a table-of-content. Note 
in Figure 8(h) the rotation factor, which is common among mobile 
devices, is taken into consideration and a better result is presented 
accordingly with the left navigation sidebar added.  
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Figure8. The results of DRESS-based layout adaptation compared with thumbnail views. 
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Another experiment was also conducted to test the efficiency of 
our algorithm by logging the computational time costs while 
making 10 times layout adaptation for each Web page. We 
included the time cost for the procedures of both block selection 
and layout determination. Our test bed is a Dell Optiplex GX 240 
using a 1.8GHz Pentium 4 processor, 512 MB of RAM, and 
Windows XP Professional system. Our test data of 16 Web pages 
were collected from the most popular Websites such as MSN, 
Yahoo!, Google. We manually added the DRESS structure into 
these pages, among which the information block numbers vary 
from 5 to 20. In the test we got an average time cost at 18 
microseconds, i.e. about 55,000 pages per second, with variation 
from 2 to 56 microseconds. The result shows that without code 
optimization our algorithm is already fast enough to be employed 
in real-time Web browsing systems on either Website servers or 
proxy servers, or even on client devices.  

6. CONCLUSIONS AND FUTURE WORK 
In this paper, we proposed a Document REpresentation for 
Scalable Structure (DRESS) to help information providers to 
make composite documents, typically Web pages, scalable to 
display size in both logic and layout structure. By integrating both 
techniques from computer aided design and information 
extraction, DRESS allows easy negotiation between author and 
viewer, hides layout manipulation from author but still keeps the 
result structure predicable, and represents contents in dynamic 
layouts to fit various user preferred display sizes.  

Currently, we are developing a Web authoring tool to create and 
insert DRESS structure with ease of use. Though we focus on a 
new document representation, automatic transformation from 
existing Web contents is also crucial to its incremental 
deployment. We are looking forward to automatic DRESS 
generation by leveraging our previous experience on Web page 
analysis. DRESS-based Web personalization is also one of our 
future directions.  
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