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Abstract 

We introduce the concept of a security language, used 

to express security statements in a distributed system. 

Most existing security languages encode security state-

ments as schematized data structures, such as ACLs and 

X.509 certificates. In contrast, Binder is an open logic-

based security language that encodes security statements 
as components of communicating distributed logic pro-

grams. Binder programs can be more expressive than 

statements in standard security languages, and the mean-

ings of standard security constructs and operations such 

as certificates and delegation are simplified and clarified 

by their formulation in Binder. Translation into Binder 

has been used to explore the design of other new and ex-

isting security languages. 

1. Security languages
1
 

Access control decisions in a loosely-coupled distrib-
uted environment are driven by distributed security state-

ments. As shown in the example in Figure 1, these state-
ments can be stored in a variety of places: in signed cer-

tificates that can flow among the parties; in policies local 
to the services; in access control lists (ACLs) associated 
with the individual resources; and perhaps elsewhere. 
When a client requests an operation on a resource, the 
service controlling that resource—here, service S controls 
resource R—uses the security statements available to it to 
determine whether to grant or deny the requested access. 
In this example, service S would presumably allow John 
Smith to read resource R. 

Traditional systems store security statements in a va-
riety of data structures. The certificate shown here might 
be an X.509 certificate that attests to an identity [12]; the 
local policy might enumerate the X.509 roots that the 
service will trust to certify identities; and the ACL might 
be an ordered list of pairs that map users’ identities to 
their access rights. A predefined decision procedure 
matches these data structures against the identity of any 
client requesting an operation, thereby verifying the cli-
ent’s access rights. 

However these security statements are encoded, they 
must necessarily obey some formal schema. We can say 
that this schema and its accompanying decision procedure 
define a security language, and that our certificates, poli-
cies, ACLs, etc., are formed from security statements 
written in our security language and interpreted by its 
decision procedure. For example, since X.509 specifies 
the form and meaning of X.509 certificates, X.509 is a 
security language. SDSI and SPKI are other security lan-
guages, as are PolicyMaker and KeyNote, and so on. 

Many existing security languages are designed for 
very specific domains—like X.509, meant to control ac-
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Figure 1. Certificates, policies, and ACLs
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cess to an X.500 database—and each can express some 
statements more readily than others. X.509 excels at 
building chains of Certification Authorities (CAs). SDSI 
lets us define and refer to principals and groups of princi-
pals (e.g., the group of all company employees). Policy-
Maker is a language for encoding a service’s local secu-
rity policy. Inevitably, in any given domain, some security 
languages are more expressive than others. 

If we are designing a closed system with known re-
quirements, we may be able to choose a minimalist secu-
rity language, closely matching its design to our needs. 
Conversely, if we are designing an open system that will 
be used in unexpected ways and that will evolve in un-
known directions, then it might be better to make our lan-
guage more expressive than currently needed. 

This paper presents the design of a new logic-based 
security language for open systems—called Binder—that 
is intended to be more expressive than most existing secu-
rity languages, while remaining practical. Binder does not 
directly implement higher-level security concepts like 
delegation, but provides flexible low-level programming 
tools to do so. Our experience with Binder suggests that 
logic programming can be a useful foundation for a prac-
tical security language, and that it can also help us explore 
new and existing security languages. The section below 
on related work draws more specific comparisons with 
existing security languages. 

2. Datalog for authorization 

Binder is an extension of the datalog logic-program-
ming language, which can be decided in polynomial time 
[17]. (Datalog is a restricted subset of the well-known 
Prolog logic-programming language [15].) An EBNF 
grammar of Binder may be found in Appendix A. Binder 
extends datalog with constructs for communicating se-
curely across a distributed environment, but we use the 
datalog subset of Binder in this section to write local se-
curity programs that do not communicate. 

Let us imagine that John Smith wishes to read re-
source R. By convention, we will grant this access if and 
only if we can derive the authorization atom 

    can(john_smith, read, resource_r) 

(An atom combines a predicate and one or more terms. 

Here, can is a predicate and john_smith, read, and 

resource_r are constant terms.) A simple ACL for re-
source R might be represented by the (tedious) datalog 
program 

can(john_smith, read, resource_r). 
can(john_smith, write, resource_r). 
can(fred_jones, read, resource_r). 

… 

at service S. (Statements of this form, with a single 
atom—a single predicate applied to zero or more terms—
are called facts.) Since our authorization atom is part of 
this program, it is trivially derivable and access is granted. 

To raise the level of allowable abstraction, existing 
security languages like SDSI also let us define groups of 
principals (like John Smith and Fred Jones). We can also 
model groups in datalog, as in the different datalog pro-
gram 

can(X, read, resource_r) :- 
  employee(X, bigco). 
employee(john_smith, bigco). 

… 

The first statement is a rule stating that principal X—a 
variable term—can read resource R if X is a BigCo em-
ployee; the atom on the left is derivable if the atom or 
atoms to the right also are. (Variables begin with upper-
case letters, while constants begin with lower-case letters.) 
The second statement is a fact, stating that John Smith is a 
BigCo employee. Again, our authorization atom is deriv-

able with X=john_smith, and access is granted. 
While datalog can express abstractions that are also 

expressible in existing security languages, like groups, it 
can express more powerful and more general concepts too. 
Consider the following datalog program. 

can(X, read, resource_r) :- 
  employee(X, bigco), 
  boss(Y, X), 
  approves(Y, X, read, resource_r). 
employee(john_smith, bigco). 
boss(fred_jones, john_smith). 
approves(fred_jones, john_smith, 
         read, resource_r). 

… 

The first statement is a rule stating that principal X can 
read resource R if X is a BigCo employee and X’s boss (Y) 
approves. Using new predicates, datalog lets us define and 
use new relations as needed to express our desired secu-
rity policies. In contrast, SDSI’s existing mechanism for 
defining groups is not powerful enough to model this ex-
ample policy. 

Datalog programs can encode a wide range of secu-
rity policies, but an open distributed system with multiple 
administrative domains will have multiple interoperating 
policies. It is no more practical to encode these various 
interoperating policies in a single datalog program than it 
would be to encode them in a single global database. 
(What single party could maintain the program or the da-
tabase? How would everyone agree?) Instead, Binder lets 
separate programs (separate databases) interoperate cor-
rectly and securely. 
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Figure 3: Possible certificate flow
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3. Communicating contexts 

Each component of a distributed environment has its 
own local Binder context with its own Binder program, 
where certain local Binder atoms are derivable. A service 
uses its local Binder context to make its local authoriza-
tion decisions, and Binder provides extensions to datalog 
for these distributed contexts to work together. 

Binder contexts communicate via signed certificates, 
as shown in Figure 2. Each Binder context has its own 
cryptographic key pair; the exporting context uses the 
private key (which it keeps secret) to sign statements, and 
the corresponding public key—used to verify the signa-
ture at the importing context—also serves to name the 
context, as in SDSI/SPKI. 

A statement from one Binder context—fact, rule, or 
derivable atom—may be exported into a signed certificate, 

and later imported from the certificate into another con-
text. Imported statements are automatically quoted using 

says to distinguish them from local assertions. If the pub-

lic key rsa:3:c1ebab5d belongs to BigCo HR—real 
keys are much longer, of course—then the statement 

  employee(john_smith, bigco) 

exported by BigCo HR would be imported as 

  rsa:3:c1ebab5d says 

    employee(john_smith, bigco). 

(Appendix B contains a more precise explanation of the 
rules for importing statements.) If the importing context 
has a rule like 

  employee(X, bigco) 
    :- rsa:3:c1ebab5d says 
         employee(X, bigco). 

then employee(john_smith, bigco) is also derivable 
there. In the absence of any such rule, the imported state-
ment will by default be inert and will not take further part 
in the decision procedure. 

4. Delegation and trust 

In Binder, statements from any Binder context may 
be exported and later imported. Since imported statements 

are automatically quoted with says, the local context can 
treat imported statements differently from local state-
ments. The controlled importation of signed statements is 
Binder’s mechanism for “trust” (as in, “Service S trusts 
BigCo HR”) or “delegation” (“Service S delegates the 

identification of BigCo employees to 
BigCo HR”) or “speaks-for” (“BigCo 
HR speaks for service S”); Binder lets 
us implement an unambiguous logic-
based policy with the same effect. 

Let’s extend the example from 
Figure 1 by adding an additional level 

of indirection. In Figure 3, BigCo HR 
has delegated the identification of BigCo Labs (BCL) 
employees to BCL HR, and all BCL employees are BigCo 
employees. Our goal is still to convince service S that 
John Smith is a BigCo employee, but the necessary in-
formation can flow along multiple distinct paths in differ-
ent scenarios. 

In one scenario, BCL HR exports certificate c1 to 
BigCo HR, whose local policy allows its import. BigCo 

export import

Figure 2. Communicating contexts
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HR now concludes that John Smith is a BigCo employee, 
and exports certificate c2 to service S, whose local policy 
allows its import. Service S now concludes that John 
Smith is a BigCo employee. 

Alternatively, BCL HR can export certificate c1 di-
rectly to service S, and BigCo HR can export certificates 
c3 and c4 also directly to service S, which can now con-
clude, as above but on its own, that John Smith is a BigCo 
employee. Here, we model a traditional “chain of trust”: 
service S trusts BigCo HR to establish a policy, while 
BigCo HR trusts BCL HR. 

5. Example of Binder programs 

This section shows the complete Binder programs for 
the examples from Figures 1 and 3. Here, BigCo HR’s 

public key is rsa:3:c1ebab5d, while BCL HR’s public 

key is rsa:3:8e72145b. 

5.1 Example from Figure 1 

Program 1 shows the English security statements 
from Figure 1 and their translations into Binder. 

# 
English 

statement 
Binder statement 

1a 

employee(john_smith, 
         bigco, 
         full_time). 

(original form, in the context of 

BigCo HR) 

1b 

“John Smith is a 
full-time BigCo 

employee” 
rsa:3:c1ebab5d says 
  employee(john_smith, 
           bigco, 
           full_time). 

(as imported into the context of 

service S) 

2 

“I trust BigCo 
HR to say 

who is a BigCo 
employee” 

employee(X, bigco, 
         S) :- 
  rsa:3:c1ebab5d says 
    employee(X, bigco, 
            S). 

3 

“Full-time BigCo 
employees 

can read resource 
R” 

can(X, read, 
    resource_r) 
:- employee(X, bigco, 
            full_time). 

4 
“John Smith can 
read resource R” 

can(john_smith, 
    read, resource_r). 

Program 1. English statements from Figure 1 

and their translations into Binder 

Statement 1a— “John Smith is a full-time BigCo em-
ployee”—is shown in the context of BigCo HR; while 

statement 1b is shown after it has been imported into the 
context of service S. Statement 1b is explicitly quoted as 

coming from BigCo HR (rsa:3:c1ebab5d). 
Statement 2 shows the establishment of trust in state-

ments from BigCo HR; variable S stands for the employ-

ment status (e.g., full_time). If BigCo HR’s public key 
appears often in our program, we might choose to write 

employee(X, bigco, full_time) :- 
  Y says employee(X, bigco, full_time), 
  bound(bigco_hr, Y). 
bound(bigco_hr, rsa:3:c1ebab5d). 

and bind the local name bigco_hr to a public key. We 
can even refer to local names elsewhere on the distributed 
system, simulating the linked name spaces of SDSI/SPKI, 
but without built-in language support. 

In this example, names like john_smith, bigco, 

and full_time pass unchanged from BigCo HR to ser-
vice S; more complex mappings can be implemented by 
additional rules, perhaps carrying along extra public keys 
to root these names as in SDSI/SPKI. For example, we 
might explicitly write 

employee( 
  rsa:3:c1ebab5d, john_smith, 
  rsa:3:c1ebab5d, bigco, 
  rsa:3:c1ebab5d, full_time) 

to associate these names with a particular name space, 
while modifying the other rules accordingly. 

Finally, statement 3 shows the statement “Full-time 
BigCo employees can read resource R,” while statement 4 
shows the derived atom at service S that gives John Smith 
access to resource R. 

5.2 Example from Figure 3 

Program 2 shows the English security statements 
from Figure 3 and their translations into Binder. 

# 
English 

statement 
Binder statement 

1a 

employee(john_smith, 
         bcl). 

(original form, in the context of 
BCL HR) 

1b 

“John Smith is a 
BCL employee” rsa:3:8e72145b says 

  employee(john_smith, 
           bcl). 

(as imported into the context of 

BigCo HR or service S) 

2a 

“I trust BCL HR 
to say 

who is a BCL 
employee” 

employee(X, bcl) :- 
  rsa:3:8e72145b says 
    employee(X, bcl). 

(original form, in the context of 

BigCo HR) 



 

 

2b 

 rsa:3:c1ebab5d says 
  employee(X, bcl) 
:- rsa:3:8e72145b says 
     employee(X, bcl). 

(as imported into the context of 

service S) 

3a 

employee(X, bigco) :- 
  employee(X, bcl). 

(original form, in the context of 

BigCo HR) 

3b 

“All BCL 
employees are 

BigCo 
employees” 

rsa:3:c1ebab5d says 
  employee(X, bigco) 
:- 
rsa:3:c1ebab5d says 
  employee(X, bcl). 

(as imported into the context of 

service S) 

4 

“I trust BigCo 
HR to say who is 

a BigCo 
employee” 

employee(X, bigco) :- 
  rsa:3:c1ebab5d says 
    employee(X, bigco). 

5a 
employee(john_smith, 
         bigco).  

(in the context of BigCo HR) 

5b 

rsa:3:c1ebab5d says 
  employee(john_smith, 
           bigco).  

(in the context of service S, after 
certificate import or local deri-

vation) 

5c 

“John Smith is a 
BigCo 

employee” 

employee(john_smith, 
         bigco)  

(in the context of service S, after 

further local derivation) 

Program 2. Security statements from Figure 3 

and their translations into Binder 

Statement 1—“John Smith is a BCL employee”—is 
shown in its original form at BCL HR and as imported 
into either BigCo HR or service S. 

Statement 2 shows the establishment of trust in state-
ments from BCL HR, both at BigCo HR and as imported 
into service S. Note that statement 2b has been rewritten 
from its expected form; this is discussed in detail in Ap-
pendix B. 

Statement 3 is shown at BigCo HR and at service S. 
Statement 4 is shown at service S. 

Statement 5 is shown in multiple forms because of 
the different certificate flows possible. Statement 5a can 
be derived at BigCo HR and imported into service S as 
statement 5b; statement 5b can also be derived directly at 
service S using statements 1b and 2b; statement 5c can be 
derived at service S using statements 4 and 5b. 

6. Proofs, monotonicity, and revocation 

A service grants access to a resource in Binder only 
when it can derive an atom saying it should; otherwise, by 
default, access is denied. The derivation steps form a 
proof that access should be granted. 

A proof can be generated at the service—as tradition-
ally—or we can require that the client generate the proof 
and transmit it with the request. If so, the service need 
only check the proof; this optimization can offload work 
from a heavily loaded service onto its less busy clients, 
while also helping avoid denial-of-service attacks. (This 
approach is also used by Jim [13] and by Appel and Fel-
ten [3].) Since the service’s policy is stored as a Binder 
program, and since Binder statements can be passed in 
certificates, the service can pass its policy to the client in 
preparation for the construction of such a proof. 

Binder is monotonic—if an atom is derivable, it’s still 
derivable if we add more statements [15]. Monotonicity is 
appropriate in a distributed environment, since withhold-
ing some statements from a service will not cause it to 
grant greater access rights. Moreover, a proof generated 
on a client with little information available will still check 
on a service with more information. 

One consequence of monotonicity is that traditional 
certificate revocation cannot be modeled from inside 
Binder; it requires additional mechanism. We have studied 
three ways to extend Binder to support revocation reliably. 

One is through short-lived statements. We can attach 
validity intervals to each Binder statement, as with tradi-
tional certificates, and constrain the validity intervals of 
derived atoms accordingly. Once a statement expires, it 
can be removed from all contexts, along with all atoms 
that cannot be derived without it. 

A second approach is through a language extension 
allowing freshness constraints on statements. If a deriva-

tion rule depends on fresh P(X, Y), say, instead of just 

P(X, Y), then a new P(X, Y) must be derived for each 
use. This may involve contacting the exporters of old cer-
tificates to obtain fresher ones. A generalization of this 
mechanism is to allow each use of a certificate to specify 
how fresh it must be. 

The final approach is to reference distributed state. 

For example, a statement could have an associated Boo-
lean state “valid” that turns from true to false if it is re-
voked. This state could be explicitly referenced from 
Binder, perhaps with a freshness constraint. Such support 
for state, while problematical, might also be needed for 
Binder to emulate features of digital rights management 
languages as discussed below. 

If the validity of a proof can vary with time, a proof 
that checks at a client may not check at the service. If so, 
the client can be informed of its error—e.g., that a par-
ticular statement is no longer fresh enough—and asked to 
regenerate the proof. 



 

 

7. Taxonomy and related work 

The Binder security language has five key properties. 
1) A statement in Binder can be translated into a de-

clarative, stand-alone English sentence. This is 
known good practice for messages in a security 
protocol [1] and we propose that it is even better 
practice for statements in a security language. 

2) Binder programs can explicitly define new, ap-
plication-specific predicates, which can act as 
lemmas in proofs. Predicates can be defined re-
cursively. Rich proofs are allowed. 

3) Certificates can contain arbitrary statements, in-
cluding definitions and uses of new application-
specific predicates. These certificates can be 
safely interpreted outside their exporting context. 

4) Binder statements can appear in certificates, in 
policies, in ACLs, and elsewhere, and these 
statements can interoperate freely. 

5) Queries in Binder are decidable in polynomial 
time, as outlined in Appendix C. 

None of the existing languages compared below—
X.509, SDSI/SPKI, PolicyMaker and KeyNote, SD3 and 
other logic-based security languages, and various digital 
rights management (DRM) languages—shares all of these 
properties. With a few exceptions, we believe that Binder 
provides functionality as great as any of these languages 
and is more appropriate for use in open systems. 

7.1 X.509 

An X.509 certificate is a signed n-tuple, where n is 
large and most of the fields are optional. This n-tuple can 
be thought of as asserting a predicate P(x1, x2, x3, …, xn) 
over the values it contains, but X.509 certificates have no 
straightforward way to say which P is being used. (Thus, 
the translation of an X.509 certificate into English has no 
verb. Perhaps the predicate is best thought of as the con-
stant is_an_X509_certificate.) X.509 thus does not share 
properties 1–3. X.509 also fails property 4; it can be used 
only in certificates, not in policies or ACLs.  

A complex X.509 certificate may often be factored 
into a number of smaller Binder certificates, rather like a 
translation from a CISC architecture to a RISC architec-
ture; the operations may require more steps but these in-
dividual steps can combine in more ways. The access 
control decisions in Binder programs are more explicit 
than in X.509, and perhaps more understandable in many 
cases. 

In X.509 it is easy to talk about a security decision 
requiring the approval of one of a certain class of CAs, 
but hard to talk about the approval of k-out-of-n CAs. 
This is because X.509 depends so directly on the con-
struction of linear chains of certificates. 

Much of the difficulty in using X.509 comes from its 
great complexity and many implicit mechanisms [9]. We 
can expect that a simpler, more explicit language like 
Binder might be easier to use as well as more expressive. 

7.2 SDSI and SPKI 

SDSI/SPKI programs do not explicitly encode the 
predicate being defined. Instead, SDSI statements build 
their meaning from an implicit “speaks-for” predicate [16, 
2], while SPKI also encodes the predicate into the “tags” 
in SPKI statements [8]. Nevertheless, SDSI/SPKI state-
ments can be translated directly into English. While SPKI 
programs can define multiple predicates, SDSI programs 
can define only the speaks-for predicate, and thus SDSI 
does not share properties 2 and 3. Even SPKI cannot de-

fine arbitrary predicates: the boss example in Section 2 
cannot easily be defined in SPKI, since the tags cannot 
contain (i.e., be parameterized by) constrained variables 

like Y. 
Formalizing SDSI’s speaks-for relationship is diffi-

cult [10], and Binder does not attempt to do so. Instead, 
much the same effect is achieved using explicit rules in 
the Binder language, as in the “trust” statements in Pro-
grams 1 and 2.  

Delegation is represented clumsily in SPKI. If the lo-
cal Department of Motor Vehicles (DMV) is to be author-
ized to license drivers, then the DMV must itself be a li-
censed driver. Binder’s explicit handling of delegation 
avoids such problems. 

Although SDSI/SPKI let us talk about k-out-of-n 
principals from a group, it does not let us talk about prin-
cipals from different groups. There is no easy way, as in 
the following Binder rule 

    can(read, P, resource_r) :- 
      vouched-for(P, D), 
      vouched-for(P, R), 
      senator(D, democrat), 
      senator(R, republican). 

to talk about access being vouched for by any one De-
mocrat and any one Republican from the U.S. Senate. 

7.3 PolicyMaker and KeyNote 

Statements in PolicyMaker [4] and KeyNote [5] ex-
press conditions for granting access. This can be thought 

of as defining some abstract can predicate. PolicyMaker 
and KeyNote programs can state various conditions on the 

can predicate but cannot define additional lemma predi-
cates, so they violate properties 2 and 3. For example, the 

boss example in Section 2 is difficult for PolicyMaker or 

KeyNote to encode. Binder lets us express the boss rela-

tion separately from can, while PolicyMaker and Key-



 

 

Note require us to collapse their definitions into its single 

can predicate. 
PolicyMaker and KeyNote each construct a proof 

chain for a request, starting from the local policy, where 
each link of the chain can assert a filter (condition) on the 
request’s parameters. One limitation of PolicyMaker and 
KeyNote is that this chain must be linear, while a Binder 
proof can be a directed acyclic graph (DAG). Policy-
Maker and KeyNote also limit themselves to rules that 
state conditions on the request itself, and they cannot state 
conditions on other relations which may be lemmas to the 
request. Binder, in contrast, allows lemma predicates to be 
stated and composed. 

Because PolicyMaker allows any programming lan-
guage to be used to state policies, it fails property 5. Addi-
tionally, we cannot easily reason about PolicyMaker pro-
grams 

7.4 SD3 and other logic-based security languages 

Like Binder, SD3 is a security language based on 
datalog [13]. SD3 does not allow the transmission of rules 
in certificates, however; SD3 certificates can contain only 
facts. SD3 thus violates property 3. 

D1LP [14] is also based on predicate calculus. It has 
a built-in treatment of “speaks-for” for delegation, but 
allows for the definition of other predicates that can be 
used in lemmas. D1LP does not allow the explicit con-
struction of rules defining variants of delegation or for 
passing these rules in certificates; it therefore violates 
properties 2 and 3. 

Appel and Felten have defined a security language 
based on a higher-order logic. Their system is more pow-
erful than Binder but it has no decision procedure, and 
thus it violates property 4. Although undecidability is not 
a problem for a service if proofs come from the clients, 
where a given request might be more constrained and per-
haps more decidable, we believe it would be impractical 
to require each request site to contain a significant amount 
of hand-crafted custom code to generate proofs. 

7.5 DRM languages 

Digital Rights Management languages (DRM lan-
guages) model consumers’ access rights for digital media; 
XrML and ODRL are two examples [7, 11]. A DRM rule 
might give permission to play a movie two times, after 
paying $5. DRM rules can therefore talk about action 
(paying $5) as well as state (the number of plays remain-
ing), while Binder cannot. Actions and state are difficult 
to discuss in a logic-based language, but we are currently 
investigating ways to extend Binder to handle these fea-
tures of DRM languages. 

Note that if multiple proofs are possible for an access 
request, but with different side-effects—for example, if 

different proofs draw on different accounts—then only the 
client may be in a situation to know which proof is prefer-
able. 

8. Experience with Binder 

Most experience with Binder to date has involved 
writing small Binder programs, either to compare Binder 
with other security languages or using Binder as a lan-
guage for expressing and comparing sample security poli-
cies. In particular, Binder has been used as a target for 
translating proposed security languages, in order to under-
stand what statements Binder can express but these lan-
guages cannot, or vice versa. This work has included the 
prototyping of automated translators from these proposed 
languages to Binder, as well as the hand-translation of 
many examples. 

Some features originally considered for Binder have 
been left out because they were not needed in our experi-
ence to date. This has resulted in a relatively simple lan-
guage that is nevertheless as expressive as needed in our 
experience. Further experience is needed with the con-
struction of large Binder programs to understand, for ex-
ample, whether Binder’s current limited mechanisms for 
the composition of rules are adequate or whether extend-
ing them could make large Binder programs easier to 
write or to understand. 

Because Binder is close in form to Prolog, Binder 
programs can be translated into Prolog; we can simulate 
Binder’s extra proof rules in a straightforward way. 
Binder programs have thereby been executed in an exist-
ing Prolog environment. 

9. Future work 

Is Binder strong enough? Binder may be too weak a 
language to model some real authorization problems; it 
might not be expressive enough to write certain security 
programs, or to write them well. For example, the wordi-
ness caused by expressing all trust relations explicitly 
might complicate writing large security programs in 
Binder. Alternatively, Binder’s current inability to talk 
about actions and state might become a problem. Further 
experience with writing large Binder programs will help 
us understand such possible problems. Strengthening 
Binder might involve strengthening the Binder logic, pre-
sumably by adding additional modal proof rules, such as 
direct support for predicates like “speaks-for.” 

It is also possible that Binder is already too strong a 
language. Although Binder provides powerful constructs, 
it may be too easy to misuse them and build a complex, 
incorrect security policy. It is possible that a simpler lan-
guage might be easier to use and yet still be expressive 
enough in practice. Again, further experience will help us 
decide. 



 

 

Although an open security language must be highly 
expressive, most of its uses will be application-specific 
and perhaps constrained. We might use Binder to define 
families of application-specific predicates that would be 
less powerful and less flexible, but easier for non-special-
ists to apply. While each application-specific family 
would be restricted in expressiveness, there would be no 
such restriction in the core language, and programs in 
these various families would interoperate via their ulti-
mate definition in Binder. Again, more experience is 
needed to validate such an approach. 
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Appendix A. EBNF grammar for Binder 

<statement> ::= <clause> 
<clause> ::= <head> [ “:-” <body> ] “.” 
<head> ::= <atom> 
<body> ::= [ <atom> (“,” <atom>)* ] 
<atom> ::= [ <context> “says” ] 
           <pred> [ “(” <args> “)” ] 
<pred> ::= <constant> 
<args> ::= <term> (“,” <term>)* 
<term> ::= <constant> 
         | <variable> 
<context> ::= <term> 
<constant> ::= <lower> <idchar>* 
             | “"” <strchar>* “"” 
<var> ::= <upper> <idchar>* 
        | “_” <char*> 

Here, <upper> is an upper-case letter; <lower> is a 

lower-case letter; <char> is any character; <idchar> is 

any character that can appear in an identifier; <strchar> 
is any character that can appear in a string. 

The Binder grammar differs from a datalog grammar 

only in the optional quoting of atoms via <context> 

says. Quoting can appear only to depth 1; a quoted atom 
cannot be quoted again.  Terms cannot be quoted at all. 
These restrictions are designed to interoperate with the 
rules for importing Binder statements, discussed below. 

Appendix B. Semantics of Binder 

The semantics of Binder are based on the semantics 
of datalog. We can transliterate a Binder program into 

datalog by moving the says quoting into an ex- 

tra argument in every atom; C says pred(args) be-

comes pred(C, args), while pred(args) becomes 

pred(null, args) where null is a new term that ap-
pears nowhere else in the program. After such a rewriting, 
we can adopt datalog’s proof rules directly for Binder. 

Under certain circumstances, a Binder statement from 

a context C—a fact, a rule, or a derivable atom—can be 

exported in a certificate signed by C, and imported into 

another context quoted by C. Below, we consider deriv-
able atoms separately from facts and rules, as we extend 
datalog’s standard proof rules with two additional proof 
rules for Binder (stated here informally). 

B.1. Proof Rule 1 

A certificate signed by C and containing a derivable 

atom that is not quoted with says (i.e., an atom of the 

form pred(args)) can be imported into any context, 

quoted with C. For example, the atom-bearing certificate 

    member(john_smith, bcl). 
    (signed: C) 

can be imported as 

    C says member(john_smith, bcl). 

An atom that is already quoted cannot be imported. 

B.2 Proof Rule 2 

A rule can be imported if the atom in its head is not 
quoted. A fact is equivalent to a rule with an empty body. 
When a rule in a certificate from context C is imported, its 

head will be quoted with C, and all unquoted atoms in its 

body will be quoted with C. For example, the rule-bearing 
certificate 

    member(X, bigco) :- member(X, bcl). 
    (signed: C) 

can be imported as 

    C says member(X, bigco) :- 
      C says member(X, bcl). 

while the certificate 

    member(X, bigco) :- 
      C′ says member(X, bigco). 
    (signed: C) 

can be imported as 

    C says member(X, bigco) :- 
      C′ says member(X, bigco). 

Since an imported rule will have quoting in its head, an 
imported rule cannot be exported and imported again. 
Instead, the original certificate must be reused. 

Appendix C. Time complexity of Binder 

At any point in the execution of a Binder program at 
some context, the current rules and derivable atoms can 
be translated into datalog as described in Appendix B. 
Since datalog is decidable in polynomial time, there is a 
local polynomial-time decision procedure for Binder that 
ignores future communication. 

While the restrictions on statement import in Binder 
may seem onerous, we suspect they may not be very sig-
nificant in practice. We can imagine removing these re-
strictions, while at the same time generalizing Binder so 
that each atom can be quoted by zero or more terms, con-
stant or variable, and terms can themselves be quoted by 
contexts to provide namespaces—as a generalization of 
SDSI—but so generalized a language would soon be no 
longer decidable. We suspect that there are lesser gener-
alizations to Binder that retain a polynomial-time decision 
procedure, and we are currently exploring possible alter-
natives. 


