

“Binder, a logic-based security language”

John DeTreville

March 1, 2002

Technical Report

MSR-TR-2002-21

Microsoft Research

Microsoft Corporation

One Microsoft Way

Redmond, WA 98052

Binder, a Logic-Based Security Language

John DeTreville
Microsoft Research

johndetr@microsoft.com

Abstract

We introduce the concept of a security language, used

to express security statements in a distributed system.

Most existing security languages encode security state-

ments as schematized data structures, such as ACLs and

X.509 certificates. In contrast, Binder is an open logic-

based security language that encodes security statements
as components of communicating distributed logic pro-

grams. Binder programs can be more expressive than

statements in standard security languages, and the mean-

ings of standard security constructs and operations such

as certificates and delegation are simplified and clarified

by their formulation in Binder. Translation into Binder

has been used to explore the design of other new and ex-

isting security languages.

1. Security languages
1

Access control decisions in a loosely-coupled distrib-
uted environment are driven by distributed security state-

ments. As shown in the example in Figure 1, these state-
ments can be stored in a variety of places: in signed cer-

tificates that can flow among the parties; in policies local
to the services; in access control lists (ACLs) associated
with the individual resources; and perhaps elsewhere.
When a client requests an operation on a resource, the
service controlling that resource—here, service S controls
resource R—uses the security statements available to it to
determine whether to grant or deny the requested access.
In this example, service S would presumably allow John
Smith to read resource R.

Traditional systems store security statements in a va-
riety of data structures. The certificate shown here might
be an X.509 certificate that attests to an identity [12]; the
local policy might enumerate the X.509 roots that the
service will trust to certify identities; and the ACL might
be an ordered list of pairs that map users’ identities to
their access rights. A predefined decision procedure
matches these data structures against the identity of any
client requesting an operation, thereby verifying the cli-
ent’s access rights.

However these security statements are encoded, they
must necessarily obey some formal schema. We can say
that this schema and its accompanying decision procedure
define a security language, and that our certificates, poli-
cies, ACLs, etc., are formed from security statements
written in our security language and interpreted by its
decision procedure. For example, since X.509 specifies
the form and meaning of X.509 certificates, X.509 is a
security language. SDSI and SPKI are other security lan-
guages, as are PolicyMaker and KeyNote, and so on.

Many existing security languages are designed for
very specific domains—like X.509, meant to control ac-

© 2002 IEEE. Personal use of this material is permitted. However,

permission to reprint/republish this material for advertising or

promotional purposes or for creating new collective works for resale or

redistribution to servers or lists, or to reuse any copyrighted component

of this work in other works must be obtained from the IEEE.
Figure 1. Certificates, policies, and ACLs

Resource R

Service S

Client

ACL

“Full-time BigCo

employees can read

resource R.”

certificate

“John Smith is a full-

time BigCo employee.”

(signed, BigCo HR)

local policy

“I trust BigCo HR to

say who is a BigCo

employee.”

cess to an X.500 database—and each can express some
statements more readily than others. X.509 excels at
building chains of Certification Authorities (CAs). SDSI
lets us define and refer to principals and groups of princi-
pals (e.g., the group of all company employees). Policy-
Maker is a language for encoding a service’s local secu-
rity policy. Inevitably, in any given domain, some security
languages are more expressive than others.

If we are designing a closed system with known re-
quirements, we may be able to choose a minimalist secu-
rity language, closely matching its design to our needs.
Conversely, if we are designing an open system that will
be used in unexpected ways and that will evolve in un-
known directions, then it might be better to make our lan-
guage more expressive than currently needed.

This paper presents the design of a new logic-based
security language for open systems—called Binder—that
is intended to be more expressive than most existing secu-
rity languages, while remaining practical. Binder does not
directly implement higher-level security concepts like
delegation, but provides flexible low-level programming
tools to do so. Our experience with Binder suggests that
logic programming can be a useful foundation for a prac-
tical security language, and that it can also help us explore
new and existing security languages. The section below
on related work draws more specific comparisons with
existing security languages.

2. Datalog for authorization

Binder is an extension of the datalog logic-program-
ming language, which can be decided in polynomial time
[17]. (Datalog is a restricted subset of the well-known
Prolog logic-programming language [15].) An EBNF
grammar of Binder may be found in Appendix A. Binder
extends datalog with constructs for communicating se-
curely across a distributed environment, but we use the
datalog subset of Binder in this section to write local se-
curity programs that do not communicate.

Let us imagine that John Smith wishes to read re-
source R. By convention, we will grant this access if and
only if we can derive the authorization atom

 can(john_smith, read, resource_r)

(An atom combines a predicate and one or more terms.

Here, can is a predicate and john_smith, read, and

resource_r are constant terms.) A simple ACL for re-
source R might be represented by the (tedious) datalog
program

can(john_smith, read, resource_r).
can(john_smith, write, resource_r).
can(fred_jones, read, resource_r).

…

at service S. (Statements of this form, with a single
atom—a single predicate applied to zero or more terms—
are called facts.) Since our authorization atom is part of
this program, it is trivially derivable and access is granted.

To raise the level of allowable abstraction, existing
security languages like SDSI also let us define groups of
principals (like John Smith and Fred Jones). We can also
model groups in datalog, as in the different datalog pro-
gram

can(X, read, resource_r) :-
 employee(X, bigco).
employee(john_smith, bigco).

…

The first statement is a rule stating that principal X—a
variable term—can read resource R if X is a BigCo em-
ployee; the atom on the left is derivable if the atom or
atoms to the right also are. (Variables begin with upper-
case letters, while constants begin with lower-case letters.)
The second statement is a fact, stating that John Smith is a
BigCo employee. Again, our authorization atom is deriv-

able with X=john_smith, and access is granted.
While datalog can express abstractions that are also

expressible in existing security languages, like groups, it
can express more powerful and more general concepts too.
Consider the following datalog program.

can(X, read, resource_r) :-
 employee(X, bigco),
 boss(Y, X),
 approves(Y, X, read, resource_r).
employee(john_smith, bigco).
boss(fred_jones, john_smith).
approves(fred_jones, john_smith,
 read, resource_r).

…

The first statement is a rule stating that principal X can
read resource R if X is a BigCo employee and X’s boss (Y)
approves. Using new predicates, datalog lets us define and
use new relations as needed to express our desired secu-
rity policies. In contrast, SDSI’s existing mechanism for
defining groups is not powerful enough to model this ex-
ample policy.

Datalog programs can encode a wide range of secu-
rity policies, but an open distributed system with multiple
administrative domains will have multiple interoperating
policies. It is no more practical to encode these various
interoperating policies in a single datalog program than it
would be to encode them in a single global database.
(What single party could maintain the program or the da-
tabase? How would everyone agree?) Instead, Binder lets
separate programs (separate databases) interoperate cor-
rectly and securely.

import

importexport

export

Figure 3: Possible certificate flow

certificate c1

“John Smith is a BCL

employee.” (signed:

BCL HR)

certificate c2

“John Smith is a

BigCo employee.”

(signed: BigCo HR)

certificate c4

“All BCL employees

are BigCo

employees.” (signed:

BigCo HR)

certificate c3

“I trust BCL HR to say

who is a BCL

employee.” (signed:

BigCo HR)

“John Smith is a

BCL employee.”

BCL HR

BigCo HR

“All BCL

employees are

BigCo

employees.”

“I trust BCL HR

to say who is a

BCL employee.”
“I trust BigCo HR

to say who is a

BigCo

employee.”

Service S

3. Communicating contexts

Each component of a distributed environment has its
own local Binder context with its own Binder program,
where certain local Binder atoms are derivable. A service
uses its local Binder context to make its local authoriza-
tion decisions, and Binder provides extensions to datalog
for these distributed contexts to work together.

Binder contexts communicate via signed certificates,
as shown in Figure 2. Each Binder context has its own
cryptographic key pair; the exporting context uses the
private key (which it keeps secret) to sign statements, and
the corresponding public key—used to verify the signa-
ture at the importing context—also serves to name the
context, as in SDSI/SPKI.

A statement from one Binder context—fact, rule, or
derivable atom—may be exported into a signed certificate,

and later imported from the certificate into another con-
text. Imported statements are automatically quoted using

says to distinguish them from local assertions. If the pub-

lic key rsa:3:c1ebab5d belongs to BigCo HR—real
keys are much longer, of course—then the statement

 employee(john_smith, bigco)

exported by BigCo HR would be imported as

 rsa:3:c1ebab5d says

 employee(john_smith, bigco).

(Appendix B contains a more precise explanation of the
rules for importing statements.) If the importing context
has a rule like

 employee(X, bigco)
 :- rsa:3:c1ebab5d says
 employee(X, bigco).

then employee(john_smith, bigco) is also derivable
there. In the absence of any such rule, the imported state-
ment will by default be inert and will not take further part
in the decision procedure.

4. Delegation and trust

In Binder, statements from any Binder context may
be exported and later imported. Since imported statements

are automatically quoted with says, the local context can
treat imported statements differently from local state-
ments. The controlled importation of signed statements is
Binder’s mechanism for “trust” (as in, “Service S trusts
BigCo HR”) or “delegation” (“Service S delegates the

identification of BigCo employees to
BigCo HR”) or “speaks-for” (“BigCo
HR speaks for service S”); Binder lets
us implement an unambiguous logic-
based policy with the same effect.

Let’s extend the example from
Figure 1 by adding an additional level

of indirection. In Figure 3, BigCo HR
has delegated the identification of BigCo Labs (BCL)
employees to BCL HR, and all BCL employees are BigCo
employees. Our goal is still to convince service S that
John Smith is a BigCo employee, but the necessary in-
formation can flow along multiple distinct paths in differ-
ent scenarios.

In one scenario, BCL HR exports certificate c1 to
BigCo HR, whose local policy allows its import. BigCo

export import

Figure 2. Communicating contexts

statement

context_1

context_1 says

statement

context_2certificate

statement

(signed: context_1)

HR now concludes that John Smith is a BigCo employee,
and exports certificate c2 to service S, whose local policy
allows its import. Service S now concludes that John
Smith is a BigCo employee.

Alternatively, BCL HR can export certificate c1 di-
rectly to service S, and BigCo HR can export certificates
c3 and c4 also directly to service S, which can now con-
clude, as above but on its own, that John Smith is a BigCo
employee. Here, we model a traditional “chain of trust”:
service S trusts BigCo HR to establish a policy, while
BigCo HR trusts BCL HR.

5. Example of Binder programs

This section shows the complete Binder programs for
the examples from Figures 1 and 3. Here, BigCo HR’s

public key is rsa:3:c1ebab5d, while BCL HR’s public

key is rsa:3:8e72145b.

5.1 Example from Figure 1

Program 1 shows the English security statements
from Figure 1 and their translations into Binder.

English

statement
Binder statement

1a

employee(john_smith,
 bigco,
 full_time).

(original form, in the context of

BigCo HR)

1b

“John Smith is a
full-time BigCo

employee”
rsa:3:c1ebab5d says
 employee(john_smith,
 bigco,
 full_time).

(as imported into the context of

service S)

2

“I trust BigCo
HR to say

who is a BigCo
employee”

employee(X, bigco,
 S) :-
 rsa:3:c1ebab5d says
 employee(X, bigco,
 S).

3

“Full-time BigCo
employees

can read resource
R”

can(X, read,
 resource_r)
:- employee(X, bigco,
 full_time).

4
“John Smith can
read resource R”

can(john_smith,
 read, resource_r).

Program 1. English statements from Figure 1

and their translations into Binder

Statement 1a— “John Smith is a full-time BigCo em-
ployee”—is shown in the context of BigCo HR; while

statement 1b is shown after it has been imported into the
context of service S. Statement 1b is explicitly quoted as

coming from BigCo HR (rsa:3:c1ebab5d).
Statement 2 shows the establishment of trust in state-

ments from BigCo HR; variable S stands for the employ-

ment status (e.g., full_time). If BigCo HR’s public key
appears often in our program, we might choose to write

employee(X, bigco, full_time) :-
 Y says employee(X, bigco, full_time),
 bound(bigco_hr, Y).
bound(bigco_hr, rsa:3:c1ebab5d).

and bind the local name bigco_hr to a public key. We
can even refer to local names elsewhere on the distributed
system, simulating the linked name spaces of SDSI/SPKI,
but without built-in language support.

In this example, names like john_smith, bigco,

and full_time pass unchanged from BigCo HR to ser-
vice S; more complex mappings can be implemented by
additional rules, perhaps carrying along extra public keys
to root these names as in SDSI/SPKI. For example, we
might explicitly write

employee(
 rsa:3:c1ebab5d, john_smith,
 rsa:3:c1ebab5d, bigco,
 rsa:3:c1ebab5d, full_time)

to associate these names with a particular name space,
while modifying the other rules accordingly.

Finally, statement 3 shows the statement “Full-time
BigCo employees can read resource R,” while statement 4
shows the derived atom at service S that gives John Smith
access to resource R.

5.2 Example from Figure 3

Program 2 shows the English security statements
from Figure 3 and their translations into Binder.

English

statement
Binder statement

1a

employee(john_smith,
 bcl).

(original form, in the context of
BCL HR)

1b

“John Smith is a
BCL employee” rsa:3:8e72145b says

 employee(john_smith,
 bcl).

(as imported into the context of

BigCo HR or service S)

2a

“I trust BCL HR
to say

who is a BCL
employee”

employee(X, bcl) :-
 rsa:3:8e72145b says
 employee(X, bcl).

(original form, in the context of

BigCo HR)

2b

 rsa:3:c1ebab5d says
 employee(X, bcl)
:- rsa:3:8e72145b says
 employee(X, bcl).

(as imported into the context of

service S)

3a

employee(X, bigco) :-
 employee(X, bcl).

(original form, in the context of

BigCo HR)

3b

“All BCL
employees are

BigCo
employees”

rsa:3:c1ebab5d says
 employee(X, bigco)
:-
rsa:3:c1ebab5d says
 employee(X, bcl).

(as imported into the context of

service S)

4

“I trust BigCo
HR to say who is

a BigCo
employee”

employee(X, bigco) :-
 rsa:3:c1ebab5d says
 employee(X, bigco).

5a
employee(john_smith,
 bigco).

(in the context of BigCo HR)

5b

rsa:3:c1ebab5d says
 employee(john_smith,
 bigco).

(in the context of service S, after
certificate import or local deri-

vation)

5c

“John Smith is a
BigCo

employee”

employee(john_smith,
 bigco)

(in the context of service S, after

further local derivation)

Program 2. Security statements from Figure 3

and their translations into Binder

Statement 1—“John Smith is a BCL employee”—is
shown in its original form at BCL HR and as imported
into either BigCo HR or service S.

Statement 2 shows the establishment of trust in state-
ments from BCL HR, both at BigCo HR and as imported
into service S. Note that statement 2b has been rewritten
from its expected form; this is discussed in detail in Ap-
pendix B.

Statement 3 is shown at BigCo HR and at service S.
Statement 4 is shown at service S.

Statement 5 is shown in multiple forms because of
the different certificate flows possible. Statement 5a can
be derived at BigCo HR and imported into service S as
statement 5b; statement 5b can also be derived directly at
service S using statements 1b and 2b; statement 5c can be
derived at service S using statements 4 and 5b.

6. Proofs, monotonicity, and revocation

A service grants access to a resource in Binder only
when it can derive an atom saying it should; otherwise, by
default, access is denied. The derivation steps form a
proof that access should be granted.

A proof can be generated at the service—as tradition-
ally—or we can require that the client generate the proof
and transmit it with the request. If so, the service need
only check the proof; this optimization can offload work
from a heavily loaded service onto its less busy clients,
while also helping avoid denial-of-service attacks. (This
approach is also used by Jim [13] and by Appel and Fel-
ten [3].) Since the service’s policy is stored as a Binder
program, and since Binder statements can be passed in
certificates, the service can pass its policy to the client in
preparation for the construction of such a proof.

Binder is monotonic—if an atom is derivable, it’s still
derivable if we add more statements [15]. Monotonicity is
appropriate in a distributed environment, since withhold-
ing some statements from a service will not cause it to
grant greater access rights. Moreover, a proof generated
on a client with little information available will still check
on a service with more information.

One consequence of monotonicity is that traditional
certificate revocation cannot be modeled from inside
Binder; it requires additional mechanism. We have studied
three ways to extend Binder to support revocation reliably.

One is through short-lived statements. We can attach
validity intervals to each Binder statement, as with tradi-
tional certificates, and constrain the validity intervals of
derived atoms accordingly. Once a statement expires, it
can be removed from all contexts, along with all atoms
that cannot be derived without it.

A second approach is through a language extension
allowing freshness constraints on statements. If a deriva-

tion rule depends on fresh P(X, Y), say, instead of just

P(X, Y), then a new P(X, Y) must be derived for each
use. This may involve contacting the exporters of old cer-
tificates to obtain fresher ones. A generalization of this
mechanism is to allow each use of a certificate to specify
how fresh it must be.

The final approach is to reference distributed state.

For example, a statement could have an associated Boo-
lean state “valid” that turns from true to false if it is re-
voked. This state could be explicitly referenced from
Binder, perhaps with a freshness constraint. Such support
for state, while problematical, might also be needed for
Binder to emulate features of digital rights management
languages as discussed below.

If the validity of a proof can vary with time, a proof
that checks at a client may not check at the service. If so,
the client can be informed of its error—e.g., that a par-
ticular statement is no longer fresh enough—and asked to
regenerate the proof.

7. Taxonomy and related work

The Binder security language has five key properties.
1) A statement in Binder can be translated into a de-

clarative, stand-alone English sentence. This is
known good practice for messages in a security
protocol [1] and we propose that it is even better
practice for statements in a security language.

2) Binder programs can explicitly define new, ap-
plication-specific predicates, which can act as
lemmas in proofs. Predicates can be defined re-
cursively. Rich proofs are allowed.

3) Certificates can contain arbitrary statements, in-
cluding definitions and uses of new application-
specific predicates. These certificates can be
safely interpreted outside their exporting context.

4) Binder statements can appear in certificates, in
policies, in ACLs, and elsewhere, and these
statements can interoperate freely.

5) Queries in Binder are decidable in polynomial
time, as outlined in Appendix C.

None of the existing languages compared below—
X.509, SDSI/SPKI, PolicyMaker and KeyNote, SD3 and
other logic-based security languages, and various digital
rights management (DRM) languages—shares all of these
properties. With a few exceptions, we believe that Binder
provides functionality as great as any of these languages
and is more appropriate for use in open systems.

7.1 X.509

An X.509 certificate is a signed n-tuple, where n is
large and most of the fields are optional. This n-tuple can
be thought of as asserting a predicate P(x1, x2, x3, …, xn)
over the values it contains, but X.509 certificates have no
straightforward way to say which P is being used. (Thus,
the translation of an X.509 certificate into English has no
verb. Perhaps the predicate is best thought of as the con-
stant is_an_X509_certificate.) X.509 thus does not share
properties 1–3. X.509 also fails property 4; it can be used
only in certificates, not in policies or ACLs.

A complex X.509 certificate may often be factored
into a number of smaller Binder certificates, rather like a
translation from a CISC architecture to a RISC architec-
ture; the operations may require more steps but these in-
dividual steps can combine in more ways. The access
control decisions in Binder programs are more explicit
than in X.509, and perhaps more understandable in many
cases.

In X.509 it is easy to talk about a security decision
requiring the approval of one of a certain class of CAs,
but hard to talk about the approval of k-out-of-n CAs.
This is because X.509 depends so directly on the con-
struction of linear chains of certificates.

Much of the difficulty in using X.509 comes from its
great complexity and many implicit mechanisms [9]. We
can expect that a simpler, more explicit language like
Binder might be easier to use as well as more expressive.

7.2 SDSI and SPKI

SDSI/SPKI programs do not explicitly encode the
predicate being defined. Instead, SDSI statements build
their meaning from an implicit “speaks-for” predicate [16,
2], while SPKI also encodes the predicate into the “tags”
in SPKI statements [8]. Nevertheless, SDSI/SPKI state-
ments can be translated directly into English. While SPKI
programs can define multiple predicates, SDSI programs
can define only the speaks-for predicate, and thus SDSI
does not share properties 2 and 3. Even SPKI cannot de-

fine arbitrary predicates: the boss example in Section 2
cannot easily be defined in SPKI, since the tags cannot
contain (i.e., be parameterized by) constrained variables

like Y.
Formalizing SDSI’s speaks-for relationship is diffi-

cult [10], and Binder does not attempt to do so. Instead,
much the same effect is achieved using explicit rules in
the Binder language, as in the “trust” statements in Pro-
grams 1 and 2.

Delegation is represented clumsily in SPKI. If the lo-
cal Department of Motor Vehicles (DMV) is to be author-
ized to license drivers, then the DMV must itself be a li-
censed driver. Binder’s explicit handling of delegation
avoids such problems.

Although SDSI/SPKI let us talk about k-out-of-n
principals from a group, it does not let us talk about prin-
cipals from different groups. There is no easy way, as in
the following Binder rule

 can(read, P, resource_r) :-
 vouched-for(P, D),
 vouched-for(P, R),
 senator(D, democrat),
 senator(R, republican).

to talk about access being vouched for by any one De-
mocrat and any one Republican from the U.S. Senate.

7.3 PolicyMaker and KeyNote

Statements in PolicyMaker [4] and KeyNote [5] ex-
press conditions for granting access. This can be thought

of as defining some abstract can predicate. PolicyMaker
and KeyNote programs can state various conditions on the

can predicate but cannot define additional lemma predi-
cates, so they violate properties 2 and 3. For example, the

boss example in Section 2 is difficult for PolicyMaker or

KeyNote to encode. Binder lets us express the boss rela-

tion separately from can, while PolicyMaker and Key-

Note require us to collapse their definitions into its single

can predicate.
PolicyMaker and KeyNote each construct a proof

chain for a request, starting from the local policy, where
each link of the chain can assert a filter (condition) on the
request’s parameters. One limitation of PolicyMaker and
KeyNote is that this chain must be linear, while a Binder
proof can be a directed acyclic graph (DAG). Policy-
Maker and KeyNote also limit themselves to rules that
state conditions on the request itself, and they cannot state
conditions on other relations which may be lemmas to the
request. Binder, in contrast, allows lemma predicates to be
stated and composed.

Because PolicyMaker allows any programming lan-
guage to be used to state policies, it fails property 5. Addi-
tionally, we cannot easily reason about PolicyMaker pro-
grams

7.4 SD3 and other logic-based security languages

Like Binder, SD3 is a security language based on
datalog [13]. SD3 does not allow the transmission of rules
in certificates, however; SD3 certificates can contain only
facts. SD3 thus violates property 3.

D1LP [14] is also based on predicate calculus. It has
a built-in treatment of “speaks-for” for delegation, but
allows for the definition of other predicates that can be
used in lemmas. D1LP does not allow the explicit con-
struction of rules defining variants of delegation or for
passing these rules in certificates; it therefore violates
properties 2 and 3.

Appel and Felten have defined a security language
based on a higher-order logic. Their system is more pow-
erful than Binder but it has no decision procedure, and
thus it violates property 4. Although undecidability is not
a problem for a service if proofs come from the clients,
where a given request might be more constrained and per-
haps more decidable, we believe it would be impractical
to require each request site to contain a significant amount
of hand-crafted custom code to generate proofs.

7.5 DRM languages

Digital Rights Management languages (DRM lan-
guages) model consumers’ access rights for digital media;
XrML and ODRL are two examples [7, 11]. A DRM rule
might give permission to play a movie two times, after
paying $5. DRM rules can therefore talk about action
(paying $5) as well as state (the number of plays remain-
ing), while Binder cannot. Actions and state are difficult
to discuss in a logic-based language, but we are currently
investigating ways to extend Binder to handle these fea-
tures of DRM languages.

Note that if multiple proofs are possible for an access
request, but with different side-effects—for example, if

different proofs draw on different accounts—then only the
client may be in a situation to know which proof is prefer-
able.

8. Experience with Binder

Most experience with Binder to date has involved
writing small Binder programs, either to compare Binder
with other security languages or using Binder as a lan-
guage for expressing and comparing sample security poli-
cies. In particular, Binder has been used as a target for
translating proposed security languages, in order to under-
stand what statements Binder can express but these lan-
guages cannot, or vice versa. This work has included the
prototyping of automated translators from these proposed
languages to Binder, as well as the hand-translation of
many examples.

Some features originally considered for Binder have
been left out because they were not needed in our experi-
ence to date. This has resulted in a relatively simple lan-
guage that is nevertheless as expressive as needed in our
experience. Further experience is needed with the con-
struction of large Binder programs to understand, for ex-
ample, whether Binder’s current limited mechanisms for
the composition of rules are adequate or whether extend-
ing them could make large Binder programs easier to
write or to understand.

Because Binder is close in form to Prolog, Binder
programs can be translated into Prolog; we can simulate
Binder’s extra proof rules in a straightforward way.
Binder programs have thereby been executed in an exist-
ing Prolog environment.

9. Future work

Is Binder strong enough? Binder may be too weak a
language to model some real authorization problems; it
might not be expressive enough to write certain security
programs, or to write them well. For example, the wordi-
ness caused by expressing all trust relations explicitly
might complicate writing large security programs in
Binder. Alternatively, Binder’s current inability to talk
about actions and state might become a problem. Further
experience with writing large Binder programs will help
us understand such possible problems. Strengthening
Binder might involve strengthening the Binder logic, pre-
sumably by adding additional modal proof rules, such as
direct support for predicates like “speaks-for.”

It is also possible that Binder is already too strong a
language. Although Binder provides powerful constructs,
it may be too easy to misuse them and build a complex,
incorrect security policy. It is possible that a simpler lan-
guage might be easier to use and yet still be expressive
enough in practice. Again, further experience will help us
decide.

Although an open security language must be highly
expressive, most of its uses will be application-specific
and perhaps constrained. We might use Binder to define
families of application-specific predicates that would be
less powerful and less flexible, but easier for non-special-
ists to apply. While each application-specific family
would be restricted in expressiveness, there would be no
such restriction in the core language, and programs in
these various families would interoperate via their ulti-
mate definition in Binder. Again, more experience is
needed to validate such an approach.

Acknowledgements

The author would like to thank Martín Abadi for his
many helpful comments and insights on earlier drafts of
this paper. The author would also like to thank Tony
Hoare and the anonymous referees of the 2002 IEEE
Symposium on Security and Privacy for their advice on
improving the paper’s presentation.

References

[1] M. Abadi and R. Needham. 1996. “Prudent engineer-
ing practices for cryptographic protocols,” IEEE Transac-

tions on Software Engineering, January 1996, pp. 6–15.
[2] M. Abadi, “On SDSI’s linked local name spaces,”
Proceedings of the 10

th
 IEEE Computer Security Founda-

tions Workshop, Rockport, Mass., June 1997, pp. 98–108.
[3] A. Appel and E. Felten. “Proof-carrying authentica-
tion,” Proceedings of the 6

th
 ACM Conference on Com-

puter and Communications Security, Singapore, Novem-
ber 1999, pp. 52–62.
[4] M. Blaze, J. Feigenbaum, and J. Lacy. “Decentralized
trust management,” Proceedings of the 17

th
 IEEE Sympo-

sium on Security and Privacy, Oakland, Calif., May 1996,
pp. 164–173.
[5] M. Blaze, J. Feigenbaum, J. Ioannidis, and A.
Keromyrtis. “The KeyNote Trust Management System
Version 2,” IETF RFC 2704, September 1999.
[6] Clocksin, W., and C. Mellish. Programming in

Prolog (3rd ed.), Springer-Verlag, 1987.
[7] ContentGuard, Inc., eXtensible rights Markup

Language (XrML) 2.0 Specification, available at
http://www.xrml.org.
[8] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Tho-
mas, and T. Ylonen, “SPKI certificate theory,” IETF Net-
work Working Group RFC 1693, September 1999.
[9] P. Gutmann, “X.509 style guide,” available at
http://www.cs.auckland.ac.nz/~pgut001/pubs/x509guide.t
xt, October 2000.
[10] J. Halpern, and R. van der Meyden, “A logic for
SDSI’s linked local name spaces,” Proceedings of the 12

th

IEEE Computer Security Foundations Workshop, 1999,
pp. 111–122.

[11] Iannella, R., editor, Open Digital Rights Language

(ODRL), available at http://odrl.net.
[12] ITU-T Recommendation X.509, “The directory:
public-key and attribute certificate frameworks,” March
2000.
[13] T. Jim, “SD3: a trust management system with certi-
fied evaluation,” Proceedings of the 22

nd
 IEEE Sympo-

sium on Security and Privacy, Oakland, Calif., May 2001.
[14] N. Li, B. Grosof, and J. Feigenbaum, “A practically
implementable and tractable delegation logic,” Proceed-

ings of the 21
st
 IEEE Symposium on Security and Privacy,

Oakland, Calif., May 2000, pp. 27–42.
[15] D. McDermott and J. Doyle, “Nonmonotonic logic
I,” Artificial Intelligence, 1980, pp. 41–72.
[16] R. Rivest and B. Lampson, “SDSI—a simple
distributed security infrastructure,” available at
http://theory.lcs.mit.edu/~cis/ sdsi.html.
[17] J. Ullman, Database and Knowledge-Base Systems,
volume 2, Computer Science Press, Rockville, Maryland,
1989.

Appendix A. EBNF grammar for Binder

<statement> ::= <clause>
<clause> ::= <head> [“:-” <body>] “.”
<head> ::= <atom>
<body> ::= [<atom> (“,” <atom>)*]
<atom> ::= [<context> “says”]
 <pred> [“(” <args> “)”]
<pred> ::= <constant>
<args> ::= <term> (“,” <term>)*
<term> ::= <constant>
 | <variable>
<context> ::= <term>
<constant> ::= <lower> <idchar>*
 | “"” <strchar>* “"”
<var> ::= <upper> <idchar>*
 | “_” <char*>

Here, <upper> is an upper-case letter; <lower> is a

lower-case letter; <char> is any character; <idchar> is

any character that can appear in an identifier; <strchar>
is any character that can appear in a string.

The Binder grammar differs from a datalog grammar

only in the optional quoting of atoms via <context>

says. Quoting can appear only to depth 1; a quoted atom
cannot be quoted again. Terms cannot be quoted at all.
These restrictions are designed to interoperate with the
rules for importing Binder statements, discussed below.

Appendix B. Semantics of Binder

The semantics of Binder are based on the semantics
of datalog. We can transliterate a Binder program into

datalog by moving the says quoting into an ex-

tra argument in every atom; C says pred(args) be-

comes pred(C, args), while pred(args) becomes

pred(null, args) where null is a new term that ap-
pears nowhere else in the program. After such a rewriting,
we can adopt datalog’s proof rules directly for Binder.

Under certain circumstances, a Binder statement from

a context C—a fact, a rule, or a derivable atom—can be

exported in a certificate signed by C, and imported into

another context quoted by C. Below, we consider deriv-
able atoms separately from facts and rules, as we extend
datalog’s standard proof rules with two additional proof
rules for Binder (stated here informally).

B.1. Proof Rule 1

A certificate signed by C and containing a derivable

atom that is not quoted with says (i.e., an atom of the

form pred(args)) can be imported into any context,

quoted with C. For example, the atom-bearing certificate

 member(john_smith, bcl).
 (signed: C)

can be imported as

 C says member(john_smith, bcl).

An atom that is already quoted cannot be imported.

B.2 Proof Rule 2

A rule can be imported if the atom in its head is not
quoted. A fact is equivalent to a rule with an empty body.
When a rule in a certificate from context C is imported, its

head will be quoted with C, and all unquoted atoms in its

body will be quoted with C. For example, the rule-bearing
certificate

 member(X, bigco) :- member(X, bcl).
 (signed: C)

can be imported as

 C says member(X, bigco) :-
 C says member(X, bcl).

while the certificate

 member(X, bigco) :-
 C′ says member(X, bigco).
 (signed: C)

can be imported as

 C says member(X, bigco) :-
 C′ says member(X, bigco).

Since an imported rule will have quoting in its head, an
imported rule cannot be exported and imported again.
Instead, the original certificate must be reused.

Appendix C. Time complexity of Binder

At any point in the execution of a Binder program at
some context, the current rules and derivable atoms can
be translated into datalog as described in Appendix B.
Since datalog is decidable in polynomial time, there is a
local polynomial-time decision procedure for Binder that
ignores future communication.

While the restrictions on statement import in Binder
may seem onerous, we suspect they may not be very sig-
nificant in practice. We can imagine removing these re-
strictions, while at the same time generalizing Binder so
that each atom can be quoted by zero or more terms, con-
stant or variable, and terms can themselves be quoted by
contexts to provide namespaces—as a generalization of
SDSI—but so generalized a language would soon be no
longer decidable. We suspect that there are lesser gener-
alizations to Binder that retain a polynomial-time decision
procedure, and we are currently exploring possible alter-
natives.

