
Making certificates programmable

John DeTreville

April 10, 2002

Technical Report
MSR-TR-2002-22

Microsoft Research
Microsoft Corporation

One Microsoft Way
Redmond, WA 98052

Making certificates programmable

John DeTreville
Microsoft Research

johndetr@microsoft.com

Abstract

Certificates carry signed statements within a Public-
Key Infrastructure (PKI). As we begin to build more com-
plex and more open PKIs, the limited expressiveness of
current certificate languages becomes a concern. While
certificates are traditionally treated as simple data struc-
tures conforming to a given schema, we show an alterna-
tive derivation of the concept of a certificate in which
certificates can contain control information in the form of
program code. One example is program code written in
declarative statements in a variant of the relational alge-
bra, which can work together in rich ways.

1. Introduction

In a Public-Key Infrastructure (PKI)—such as X.509
[10] or SDSI/SPKI [13, 7]—distributed parties can com-
municate using persistent signed data structures called
certificates. Certificates can carry authorizations that con-
trol access to distributed resources (saying, for example,
that John Smith can access a particular Web site at his
workplace) as well as more abstract data and rules that
can provide support for authorization decisions (e.g., John
Smith is a full-time programmer; programmers are em-
ployees; full-time employees can access the Web site).
Certificates conform to an established syntax—such as
ASN.1 for X.509 certificates [11] and encoded S-
expressions or XML for SDSI/SPKI certificates [12]—
and an established semantics.

As our ambitions for PKIs become greater, the ex-
pressiveness of their certificates can become a cause for
concern. We might wonder whether our certificates—
their syntax and their semantics—are expressive enough.
Can they convey the necessary sorts of information to
support the operation of the PKI? For example, if our
certificates are very simple data structures that can work
together only in a few restricted ways, it might be impos-
sible to support a rich variety of authorization structures.
While this may be seen as an advantage in some contexts
(for example, if we might wish to constrain the uses of a
PKI), it is certainly a potential shortcoming in a more
open environment.

We might also wonder if our certificates and our cer-
tificate language are suitably well-defined. Ensuring the
wide interoperability of certificates in an open PKI can be
difficult or impossible in practice [9]. We note for exam-
ple that certificates are often extended for new uses by
simply adding new fields in a manner that can change the
meaning of existing fields in subtle and perhaps unfore-
seen ways, breaking existing uses. Conversely, we might
expect that a more regular design, based on fewer base
concepts that can be used together in more ways, might
improve interoperability while at the same time increasing
expressiveness.

In this paper we rederive the concept of a certificate
in a novel way, in which a certificate can contain program
code, written in a simple declarative language, as well as
data. The use of program code can increase the expres-
siveness of certificates while eliminating a number of
special cases present in existing certificate languages, and

auth.
request

auth.
response

operation
request

operation
response

Figure 1: A hypothetical central authorization service

service
central

authorization
service

state logic resource

client

is one path toward deriving more powerful certificate
languages that will allow us to build richer and more
flexible PKIs.

2. A hypothetical central authorization
service

The principal purpose of certificates—let us say—is
to support authorization in an open distributed environ-
ment. Certificates therefore combine two distinct kinds of
information. First, they include information directly re-
lated to authorization. For example, they may state that a
certain group of people is authorized to access a shared
resource, or that a certain person belongs to that group.
They also include information required by their use in an
open distributed environment. For example, they may
include a validity interval, or an address to check for
revocation, or information that supports the proper chain-
ing of certificates.

To help separate these concerns, let us first consider a
hypothetical environment where all authorization deci-
sions have been centralized, as shown in Figure 1. When-
ever a client requests an operation from a service
controlling a resource, the service must determine
whether this client is authorized to perform this operation;
in this centralized model, the service simply passes an
authorization request to the central authorization service,
identifying the client, the resource, and the requested op-
eration. Based on its encapsulated state and logic, the
central authorization service authorizes or rejects the op-
eration; if the operation is authorized, the service per-
forms the requested operation and returns the result to the
client. The central authorization service encapsulates the
system’s authorization information (its “state”) and the
authorization rules (its “logic”) for all resources and for
all clients, and it is used only as a “black box” that can
only answer specific questions.

Such a centralized authorization service is of course
impractical in many ways. Its performance and availabil-
ity would be limited and it certainly could not scale to the
size of the Internet. Worse yet, such a large-scale service
would be impossible to administer, since it would com-
bine information from thousands or millions of autono-
mous administrative domains and would hard-code the
rules on how these domains operate and how they inter-
operate. It would be closed because third parties could not
readily extend its state and logic.

Let us imagine, though, that our centralized distribu-
tion service is otherwise powerful enough to perform the
needed authorization tasks, and that its only problems are
those due to its centralized nature. How can we solve
these problems, or at least ameliorate them? In other
words, how can we decentralize (i.e., distribute) the au-
thorization service?

3. Mobile code

One approach to decentralizing the authorization
service is to make its state and logic mobile—that is, to
encapsulate some piece of its state and logic in a
certificate that can travel across the network to the service
controlling the resource and execute there. There have
been various proposals that support this sort of mobile
code [4] and this approach is greatly simplified when the
authorization process is purely functional—without side-
effects—as is usually the case. We assume some
mechanism for executing the code in the certificate safely
at the receiving service.

Simply adding mobile code to our centralized design
is not enough. It improves performance, and it improves
availability, but it does not address the remaining problem
of administering the system's global authorization state
and logic. We can simply partition the state and logic, of
course—and such a partition is clearly the solution—but
the various partitioned administrative domains must still
be able to interoperate. Below, we derive a architecture
for partitioning that allows multiple administrative
domains to interact in flexible ways. Our language for
state and logic is purely applicative, thus allowing its safe
execution at the recipient.

4. Certificates as cache entries

One way to improve performance and availability in
any system is through the use of caching. Once a service
sends a request to our hypothetical central authorization
service and receives a response, it can cache the request-
response pair to avoid requerying the central service for
the same request in the future. Of course, the response
must not depend on state that can change.

In their simplest form, certificates are an extension of
the caching idea. As shown in Figure 2, a service can hold
a certificate, signed by the central authorization service,
encapsulating the request-response pair. It can use this
certificate exactly as it would use the corresponding cache
entry, but the certificate has several additional advantages.

• Cache entries are implicitly authenticated be-
cause the service (presumably) knows that the
information in the cache came from the central
authentication service, over an authenticated
connection. In contrast, a certificate is explicitly
authenticated because it carries a signature from
the central authentication service. A service can
trust a certificate received from another service,
or even from a client. This feature further im-
proves the performance and flexibility of the PKI.

operation
request

operation
response

Figure 2: Certificate issued by a central authorization service

client

certificate
“auth. request −>
auth. response”
(signed, central

authorization service)

service

resource

auth.
query

auth.
response

operation
request

operation
response

Figure 3: A hypothetical central authorization database

service
central

authorization
database

tables views resource

client

Figure 4: Tables and views
in the central authorization database

John Smith Internet gateway connect

...

...

John
Smith full-time

... ...John Smith

...

Employees (table)
Full-time

Employees
(view)

Authorizations (view)

...

... ...

• A certificate can potentially be obtained at a
convenient time before it is needed. While a
cache operates transparently, meaning that any
request might need to contact the central authori-
zation service, certificates allow us to explicitly
collect—ahead of time—all of the information
needed to authorize an operation, eliminating the
need for the central authorization service to be
available at the same time as each operation.
This feature improves the availability of the PKI.

• Instead of supplying the response for one par-
ticular request, a certificate can contain wild
cards, supplying the responses for a family of re-
quests. For example, a certificate can say that a
certain set of individuals—defined in some
way—is authorized to perform a certain set of
operations on a certain set of resources. This fea-
ture improves the performance and flexibility of
the PKI. We will return to the idea of wild cards
later in this paper.

In the simple use of certificates shown, the central
authorization service remains a black box and does not
expose or export its internal state and logic to its callers
except in the form of request-response pairs. In the fol-
lowing sections we will make the black box more trans-
parent by extending and regularizing the statements that
certificates can carry.

5. Using a relational database to represent
state and logic

To expose the internal structure of the central au-
thorization service, it is necessary first to specify what
forms the state and rules can take. In this section, we
demonstrate how its state and logic can be modeled by a
relational database [5, 8].

As shown in Figure 3, the central authorization data-
base contains tables and views. Tables store data, while
views are defined in terms of data that appear in tables
and other views. The service receiving an operation re-
quest sends an authorization query to the database, and
receives an authorization response.

Figure 4 shows the internal organization of one ex-
ample database in further detail. Here, full-time employ-
ees are authorized to connect to an Internet gateway. An
Employees table holds the names of the employees and
their employment status. A Full-time Employees view is
derived from the Employees table, and the final Authori-
zations view is further derived from the Full-time Em-
ployees view. In this simple example, the Employees
table holds the raw data while the Full-time Employees
view and the Authorizations view serve to encode the
authorization logic.

When this example database is used, a service que-
ries the Authorizations view at the authorization database,
giving the client name (“John Smith,” or more generally a
public key), resource name (“Internet gateway”), and op-
eration name (“connect”) as keys. The database responds
to the query by returning all matching rows. In this exam-
ple, the database returns one row in case of authorization
success, and zero rows in case of failure.

We can define the database views and queries in a
number of forms, including relational algebra, which op-
erates on tables and queries using operators like select,
project, and join. In this paper, we extend the relational
algebra with two additional operators.

• We add a union operator that combines tables or
views with the same schema. Although the Au-
thorizations view is shown here as a simple view
on the Full-time Employees view, it would more
generally be the union of a number of views,
each of which might define authorizations on a
particular resource, set of resources, etc.

• We also add recursion, to allow for the computa-
tion of transitive closures. This is useful for
modeling authorization chains, as discussed be-
low.

Because nonmonotonicity can be unsafe in a distrib-
uted environment, we additionally restrict our relational
algebra to be monotonic by eliminating negation. It is a
topic for future work to characterize those uses of non-
monotonicity and negation that nevertheless can be safely
allowed.

While the schema of the Authorizations view must be
partly standardized—and known to the services querying
the authorization database—the schemas of the other
views and tables need not be standardized at all. This can
be seen as a significant advance over older PKI schemes
like X.509 and even SDSI/SPKI. The tables can include
arbitrary data with arbitrary structure, and the Authoriza-
tions view can be the result of arbitrary computations on
these tables. (Of course, these computations must be ex-
pressible in our extended relational algebra; this is true for
the classes of authorization problems that we have stud-
ied.)

Traditional security languages include special-case
syntax and semantics for encoding extra conditions and
information needed for authorization. Because of the use
of arbitrary schemas and the power of the extended rela-
tional algebra, though, the authorization database can
represent these conditions and information directly. For
example, while SDSI/SPKI includes a mechanism for
group membership, we note that our authorization data-
base can model groups directly in the relational algebra,
as in the example above. We can also represent different
kinds of groups, such as groups of resources or groups of
operations; this is impossible or limited in traditional lan-
guages. Similarly, we can model the idea of certification

authorities and certificate chains, as in X.509 and
SDSI/SPKI, directly in the extended relational algebra
instead of building it into our language. (This requires the
addition of recursion to the relational algebra, as dis-
cussed above.) Different administrative domains can be
programmed to have different properties, and we can also
generalize the use of one-dimensional chains to allow
more complex and more general trust relations.

(We note that the relational algebra is closely related
to the logic-programming language datalog [1]. The cen-
tral authorization database can therefore be replaced by a
program written in datalog or another logic-programming
language, as in the Binder security language [6].)

Choosing to represent our authorization information
and rules in a relational database system might seem as
merely shifting our problems from one domain to another.
However, there is a wealth of experience in designing
good relational database schemas [2]—such as the use of
normal forms—as well as formalizing the semantics of
schemas. We believe that many of the problems of au-
thorization are simplified by restatement in the context of
databases, relational algebra, and logic programming.
Furthermore, the greater generality of the database con-
text can lead to a more general solution to the authoriza-
tion problem.

6. Certificates as signed database excerpts

Certificates served to encapsulate request-reply pairs
with our original central authorization service, and they
play much the same role in conjunction with the central
authorization database. However, since we can now ex-
pose some of the internal structure of the central authori-
zation database—we can name its tables and its views and

give their schemas and definitions—we can now store
much richer information in our certificates.

As shown in Figure 5, services still use the certifi-
cates issued by the central authorization database in lieu
of an on-line request and reply. Unlike the earlier use of
certificates, though—in which certificates simply cached
signed request-reply pairs—these certificates can store
additional information which the services can use to de-
rive future authorizations. Figure 5 outlines the two types
of certificates that the central authorization database can
now issue.

• The first type of certificate includes an excerpt—
one or more rows—from a table or view. Here,
the first certificate includes rows from the Em-
ployees table. This type of certificate states that
the excerpted rows were found in the named ta-
ble or view.

• The second type of certificate defines a view in
terms of a relational algebra expression involv-
ing other tables and other views. Here, the sec-
ond certificate includes the definition of the Full-
time Employees view in terms of the Employees
table.

These certificates are, of course, still signed by the
central authorization database, and can be received from
the central authorization database or from a client or other
service. These database certificates name the table or
view that their information comes from, and also include
enough schema information to allow their interpretation at
the service.

The database certificates can include enough infor-
mation to derive the replies for many different requests.
(This is an example of the wild-card feature described
earlier.) Just as we do not require these certificates to in-
clude all of the rows of a table or view, they also need not

operation
request

operation
response

Figure 5: Certificates issued by a central authorization database

client

certificate
(from employees table)

(signed, central
authorization database) service

resourcecertificate
full-time employees =
project(select(…), ...)

(signed, central
authorization database)

contain the complete definition of a view. For example, a
database certificate encapsulating the Authorizations
view—which might be the union of a large number of
views—can simply say that it includes one particular
view. Database certificates therefore contain only partial
information; they can say only that a given authorization
does exist, and cannot say that it does not. (Extensions to
partially eliminate this restriction are possible but are out-
side the scope of this paper.)

Constraining the structure of the central authorization
service to be a relational database thus allows our certifi-
cates to include richer, more general forms of information.
Our central authorization database can issue certificates
whose meaning cannot be represented in X.509 or in
SDSI/SPKI—as illustrated below—and it regularizes the
treatment of existing features.

7. Distributing the database
Our central authorization database is still centralized,

and while the use of certificates has reduced the problems
of performance and availability, they still exist. Worse,
we have not attacked the administrative problems inherent
in a centralized architecture. To eliminate these problems,
we now show how to partition the central authorization
database into a distributed authorization database.

Figure 6 illustrates the operation of the distributed
authorization database. The database still contains tables
and views, but they are stored in multiple services on the

network. In this example, for instance, a Human Re-
sources (HR) service holds the Employees table, but the
service controlling the resource itself can define the por-
tion of the Authorizations view that it interprets. Yet an-
other intermediate service can define the Full-time
Employees view referenced by the Authorizations view.

Although most tables and views can be stored any-
where on the network, we require that the Authorizations
view be distributed among the services that control the
various network resources. The distributed authorization
database thus follows the lead of the PolicyMaker lan-
guage [3], in which the root of all authorization decisions
is local by convention and is established administratively.
Distributed certificates are still used in the same way as
our earlier certificates. As shown earlier in Figure 5, a
service controlling a resource can use multiple certificates
to make authorization decisions. When these are distrib-
uted authorization certificates, they may come from mul-
tiple services.

As shown in Figure 7, certificates are signed by the
services that issue them. Here, Employee certificates are
signed by the HR service, while Full-time Employee cer-
tificates are signed by the intermediate service. The ser-
vice at the resource need not sign its definition of the
Authorizations view to use it, since it originates locally.
Each definition of a view identifies the public key used by
the tables or views it uses an inputs.

We have thus eliminated the need for the central da-
tabase service to issue and sign certificates. Since multi-
ple autonomous services can now issue certificates, we

can directly accommodate multiple administrative do-
mains. Administrative domains can interoperate because
they can explicitly refer to one another by the public keys
of the issuing services. The resulting system is similar in
many ways to traditional uses of certificates but it has
some notable differences. In particular, references to pub-
lic keys need not be constant, but can themselves be
drawn from tables and views, as shown in Figure 8. Here,
the policy expressed is that full-time employees can ac-
cess the Internet gateway if authorized by their bosses.
We combine our earlier Full-time Employees view with a
Bosses view, as well as an Approvals view local to each
boss.

Allowing views in one service to refer to tables or
views in another allows the PKI designer to use an arbi-
trary number of levels of indirection. Since it is a folk
theorem in Computer Science that any problem in com-
puting can be solved by adding another level of indirec-
tion, we can expect that this will be a powerful technique,
and that it will serve to make explicit and to extend some
number of security assumptions that might otherwise be
wired into the system architecture.

In particular, this distributed certificate structure pro-
vides a concrete interpretation of the abstract notion of
“trust.” One service trusts another if its views depend on
tables or views from that other service. Because the data-
base can hold the names of services (e.g., their public
keys), we can organize services into groups or other more
complex relations. For example, we might have a table of
which services “trust” which others. Certification Au-
thorities are no longer special entities in our PKI; we can
choose to implement them in the same form as in tradi-
tional PKIs—that is, their certificates can continue to bind
names to identities, or to delegate the power to issue fur-

ther certificates—or we can choose different schemas that
take advantage of our greater flexibility and generality.

9. Conclusions and future work

We have shown how certificates can be made more
expressive and more precise by allowing them to include
program code written in a language such as an enhanced
relational algebra. While we have outlined the operation
of such a system, much future work is clearly needed.

We have not touched on certificate revocation in this
paper. While the standard techniques for revocation con-
tinue to apply, we would still like to understand how to
make revocation programmable, as well as checking for
revocation. More generally, we have assumed that the
statements in our system has no side effects, which is
clearly a poor assumption in many cases.

While making certificates programmable increases
their expressiveness, greater expressiveness can always be
misused and can in fact keep us from saying the right
things by making it too easy to say the wrong things, or to
understand the implications of our statements. Thus, the
choice of a security language ultimately involves an engi-
neering tradeoff between increasing generality and main-
taining usability. Understanding this tradeoff again
requires further experience.

operation
request

operation
response

Figure 7:
Certificates issued by a distributed authorization database

client

certificate
(from “employees”)

(signed, HR service) service

resourcecertificate
full-time employees =
project(select(…), ...)
(signed, intermediate

service)

References

[1] M. Ajtai and Y. Gurevich. “Datalog vs. first-order
logic.” In Proc. 30th IEEE Symp. on Foundations of
Computer Science, pages 142–146, 1989.
[2] J. Biskup. “Achievements of relational database
schema design theory revisited.” In B. Thalheim and L.
Libkin, eds., Semantics in Databases, Lecture Notes in
Computer Science, Vol. 1358, pages 29–54. Springer-
Verlag, 1998.
[3] M. Blaze, J. Feigenbaum, and J. Lacy, “Decentralized
trust management,” in Proc. 1996 IEEE Symp. on
Security and Privacy, May 1996.
[4] L. Cardelli. “Abstractions for mobile computation.”
In J. Vitek and C. Jensen, eds., Secure Internet Program-
ming: Security Issues for Mobile and Distributed Objects,
vol. 1603 of LNCS, pp. 51–94. Springer-Verlag, 1999.
[5] E. F. Codd. “A relational model for large shared data
banks.” Comm. of the ACM, 13(6):377–387, June 1970
[6] DeTreville, J. 2002. “Binder: a logic-based security
language.” To appear, Proc. 2002 IEEE Symp. on Secu-
rity and Privacy, May 2002.
[7] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Tho-
mas, and T. Ylonen. “SPKI certificate theory.” IETF RFC
1693, September 1999.

[8] J. Gray, et al. “System R: Relational approach to da-
tabase management.” ACM Trans. on Database Systems
1(2), pages 97–137, June 1976.
[9] P. Gutmann, “X.509 style guide,” available at
http://www.cs.auckland.ac.nz/~pgut001/pubs/x509guide.t
xt, October 2000.
[10] ITU-T Recommendation X.509, “The directory:
public-key and attribute certificate frameworks.” March
2000.
[11] ITU-T Recommendation X.680. “Abstract Notation
One (ASN.1): Specification of basic notation.” December
1997.
[12] X. Orri & Mas, J.M. 2001. “SPKI-XML certificate
structure.” IETF Internet Draft, November 2001.
[13] R. Rivest and B. Lampson, “SDSI—a simple
distributed security infrastructure,” available at
http://theory.lcs.mit.edu/~cis/ sdsi.html.

