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ABSTRACT
As current methods for content-based retrieval are incapable of capturing the semantics of images, we experiment with using spectral methods to infer a semantic space from user’s relevance feedback, so the system will gradually improve its retrieval performance through accumulated user interactions. In addition to the long-term learning process, we also model the traditional approaches to query refinement using relevance feedback as a short-term learning process. Based on the model we derived a theoretical mistake upper bound which indicates that the maximum number of feedbacks is logarithmic with the total number of features and linear with the number of relevant features. The proposed short- and long-term learning frameworks have been integrated into an image retrieval system. Experimental results on a large collection of images have shown the effectiveness and robustness of our proposed algorithms.

Categories and Subject Descriptors
Content-based multimedia retrieval, multimedia content analysis, audio/image/video processing
General Terms
Algorithms, Management, Performance, Experimentation, Human Factors, Standardization.
Keywords
Image retrieval, user’s relevance feedback, semantics, learning.

1. INTRODUCTION

Due to the rapid growth in the volume of digital images, there is an increasing demand for effective image management tools. Conventional content-based image retrieval (CBIR) systems [6][13][19] use low-level features (color, texture, shape, etc.) automatically extracted from the images themselves to search images relevant to a user’s query. While there are research efforts to improve performance by using different low-level features, and by modifying the similarity measures constructed from them, it’s argued in [21] that, as unconstrained object recognition is still beyond the reach of current technology, these content-based systems can only at best capture pre-attentive similarity, not semantic similarity. 

In recent years, much has been written about relevance feedback in content-based image retrieval from the perspective of machine learning [22][23][24][25][26], yet most learning methods only take into account current query session and the knowledge obtained from the past user interactions with the system is forgotten. To compare the effects of different learning techniques, a useful distinction can be made between short-term learning within a single query session and long-term learning over the course of many query sessions. Short-term learning is memory-less and aims to improve the retrieval performance of current query session. Long-term learning intends to acquire and accumulate knowledge from users, which could result in new feature representations for images in the database so that the system’s future retrieval performance is enhanced. Both short- and long-term learning processes are necessary for an image retrieval system though the former has been the primary focus of research so far. 

In spite of tremendous work on relevance feedback for image retrieval (i.e. short-term learning) in the past few years, little work was done from the theoretical perspective. In contrast, computational on-line learning algorithm [8] has been well analyzed in text retrieval [2][5][10][15]. These techniques have been better understood from a theoretical standpoint, leading to performance guarantees and guidance in parameter settings. In this paper, we adopt mistake-driven on-line learning algorithms to model the process of image retrieval based on user’s relevance feedback. Two on-line learning algorithms, winnow [11] and perceptron [17], are used to train an image classifier for searching more relevant images from the database based on the positive and negative examples provided by a user. Based on a theoretical analysis, we derive a mistake upper bound, i.e. at most how many relevance feedbacks are needed, for reaching a satisfactory performance in image retrieval.

To address the limitation of current systems on searching images at the semantic level, we propose a long-term learning method which creates a semantic space implicitly, based on user interactions in a relevance feedback driven query-by-example system. The idea is that, after several rounds of relevance feedback, the user has a pool of images which are relevant to his query. Assume these images belong to a semantic class, and aggregating such results, we incrementally construct a semantic space, with a concomitant improvement in the system’s performance. Considering the storage of semantic space and possible performance improvement, we use Singular Value Decomposition (SVD) to reduce the dimensionality of semantic space and construct a higher-order (similar concepts are merged) semantic space. As can be seen from our experiments, SVD helps to correlate relevance feedbacks from different search sessions and reduce the subjectivity and noise introduced from an individual user.
The rest of this paper is organized as follows: Section 2 relates a list of previous works to our work and summarizes our contribution. Section 3 describes the proposed method for long-term learning. Section 4 describes the proposed method for short-term learning with theoretical analysis. Our MiAlbum image retrieval system is introduced in section 5. The experimental results are shown in Section 6. Finally, we give concluding remarks and future work in Section 7.

2.  PREVIOUS WORK

One of the most popular models used in information retrieval is the vector space model [20]. Various retrieval techniques have been developed for this model, including the method of relevance feedback. Most previous researches on relevance feedback have fallen into the following three categories: retrieval based on query point movement [19], retrieval based on re-weighting of different feature dimension [7] and retrieval based on updating the probability distribution of images in the database [4]. 
In recent years, some learning-based approaches are proposed. Wu et. al [24] proposed a Discriminant-EM algorithm within the transductive learning framework in which both labeled and unlabeled images are used. Tieu et. al [22] presented a framework for image retrieval based on representing images with a very large set of highly selective features. Queries are interactively learned online with a simple boosting algorithm. Tong et. al [23] proposed the use of a support vector machine active learning algorithm for conducting effective relevance feedback for image retrieval. While most machine learning algorithms are passive in the sense that they are generally applied using a randomly selected training set, the SVM active learning algorithm chooses the most informative images within the database to ask the user to label. All these approaches have achieved good empirical results. However, a common limitation of them is that they do not have a mechanism to memorize or accumulate relevance feedback information provided by users, while the knowledge obtained from the previous query and relevance feedback is forgotten. 
Cox. et. al [3] showed that query-by-example performance may improve by placing images in a semantic space, even if the user may not actually query by keyword (i.e. if the semantic attributes inducing the similarity measure are hidden.) In that experiment, pictures were visually examined to see which of approximately 125 keywords were relevant, and these ratings were used to construct a semantic space for the images. 

In [9], an image retrieval system based on an information embedding scheme is proposed. Using relevance feedback, the system gradually embeds correlations between images from a high-level semantic perspective. The semantic relationship between images are captured and embedded into the system by splitting/merging image clusters and updating the correlation matrix. By this way, the user provided information are gradually embedded into the system, however, the system may take a long time or never converge to an optimal case. 

Here we summarize the novel contributions of our work: 

1. A long-term learning method is proposed to infer a semantic space for improving the system’s retrieval performance over time. It consists of two parts: learning semantics from user interactions and from image content. A technique based on SVD is described to form a compact semantic feature representation and reduce the subjectivity and noise from an individual user. 

2. An on-line learning model for the traditional relevance feedback methods for image retrieval is proposed. Based on the model, a theoretical analysis of at most how many feedbacks are needed is performed. 

3. An image retrieval system integrating both the short- and long-term learning algorithms is developed. Our experimental results demonstrated that the proposed learning techniques are effective in capturing user’s relevance feedback for improving the system’s short-and long-term performances. 
3.  LONG-TERM LEARNING: INFERRING A SEMANIC SPACE 

Most existing relevance feedback techniques focus on improving the retrieval performance of current query session, and the knowledge obtained from the past user interactions with the system is forgotten. In this paper, we describe a long-term learning approach to construct a semantic space from user interactions and image content. The proposed learning technique is able to acquire and accumulate knowledge from users and gradually enhance the retrieval performance of system over time. 

3.1 Hidden Semantic Feature

We adopt the vector space model of information retrieval [20] to present the semantic space constructed from user-and-system interactions. In this model, one has a matrix B (say 
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), whose rows correspond to images and whose columns correspond to attributes. In a traditional image retrieval system, these columns correspond to low-level features (e.g., color and texture) or pre-annotated high-level semantic attributes (e.g., dog, cat, tree, people, etc). Bij is a measure of the extent to which image i has attribute j; it may be binary, weighted by frequency, etc. The ith row of B may then be regarded as the coordinates of the ith image in an n-dimensional vector space, and the dot-product between rows i1 and i2 of B may be regarded as a measure of the similarity between images i1 and i2. Dividing this dot-product by the norms of the rows i1 and i2 gives the cosine of the angle between rows i1 and i2, another commonly used similarity measure.

We argue that the images marked by the user as positive examples in a query session share a common semantic attribute. Since we do not know the exact meaning of the attribute unless the user specifically provides such information, we call it hidden semantic feature. The hidden semantic features accumulated from user-and-system interactions can be used to infer a semantic space B for image retrieval. We discuss how to construct such a space in the following. 

3.2 Constructing a Semantic Space

Let us assume that there exists a semantic matrix B for a database of m images. A row vector (n-dimensional) of the matrix B represents the hidden semantic feature of an image. A query q may, like the image, be represented as an n-dimensional vector, and the retrieval results r of the query as an m-dimensional vector, with r(i) the similarity of q to row i of B. Concisely, Bq = r, as illustrated in Fig. 1.
3.2.1 Learning Semantics from User Interactions
The long-term learning is essentially the process of inferring a semantic space B through knowledge of the result vectors r accumulated from the user’s relevance feedback. Suppose that r1,r2,…,rk  are the results of k queries with relevance feedback, with rj(i)=1 if the ith image was deemed relevant to the jth query [image: image1.wmf]n
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and with rj(i)=0  otherwise. We seek a matrix B (whose rows represent the images) and query vectors q1,q2,…,qk so that Bqj=rj for j=1,2,…,k. Equivalently, defining R to be the m(k matrix whose jth column is rj, we seek an m(n matrix B and an n(k matrix Q such that BQ = R. Note that m, the number of images, is forced on us, as is k, but there is some choice in n. One possibility is to take n = k, B = R, and Q = I. In this solution, jth column of Q stands for jth query session, whose jth element is one, and other elements are all zeros. Hence, this query session is going to retrieve those images having the jth hidden semantic feature. Multiplying B by qj, we get rj, which is the retrieval result. 
3.2.2 Incorporating Low-level Semantics from Image Content

In the previous section, a Boolean semantic space B = R can be constructed using accumulated user interactions. A natural enhancement is to integrate the local topology of low-level feature space into this semantic space. That is, the entry Rij can be a measure of probability that the ith image has the jth hidden semantic feature. In the rest of this section, we use p(j|xi) to denote this probability.

Considering computational tractability, we use the Gaussian density function to characterize these probabilities. The distribution of those images having the jth hidden semantic feature can be expressed as:
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where x is a l-dimensional vector in low-level feature space, µ is the l-dimensional mean vector, and C is the l(l covariance matrix. Based on Bayes’s formula, we can obtain the posterior probability P(j|x) as follows:
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where ( is a normalization factor.

Given a training set (positive examples provided by the user in the jth retrieval process) T = {x1, x2, … , xt}, let X denote the t(l matrix formed by the t examples. Let z1, z2 , … , zl denote l random variables corresponding to l low-level image features. Each random variable zi has t samples (the ith column of matrix X). Our learning algorithm is described below: 

1. Compute the Gaussian density function: the mean vector µ can be estimated from the sample. For the sake of simplicity, we assume that the covariance matrix C is a diagonal matrix. Thus,
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2. Let ( denote the set of all images in database, and S=((T. For each image xi(S, calculate the posterior probability p(j|xi).

3. Sort the posterior probabilities p(j|xi) (xi(S) in descending order. Select the top k images, and set their corresponding Rij to p(j|xi), where k is a suitable constant according to the size of data.

4. For those images in T (positive examples), set their corresponding Rij to 1. Set all other entries of R to zero, and B=R.

3.2.3 Reduce Semantic Space using Singular Value Decomposition (SVD)

In section 3.2.1, choosing Q = I implies that all queries are orthogonal. But, in practice, different queries may contain common high-level semantics that people use to search for images. This solution does not explore the correlation between queries by simply appending each retrieval result r with user’s relevance feedback as a column vector in matrix B. As such, the size of B grows linearly as the number of query sessions increases. 

For storage and performance improvements it is desirable to merge related hidden semantic features and construct a lower-dimensional space B. We may compute the Singular Value Decomposition (SVD) of R, R = USVT, with UTU=I, VTV=I, and S diagonal. Let p be the rank of R (which is equal to the number of nonzero entries on the diagonal of S). It can be at most min(m,k), and is possibly much smaller, since there may be linear dependencies among the rj (for instance when one category is the disjoint union of others).

Delete all but the first p columns of U and V and all but the upper p(p sub-matrix of S. Then we still have R = USVT and we can let B be the m(p matrix US and Q the p(k matrix VT. since RRT = (BVT)(BVT) T = B(VTV)BT = BBT, this gives the same inter-image similarities as using B=R, but with reduced storage if p<k (R is usually quite sparse, while US may not be).

Now our result vectors ri are constructed from user relevance judgments as to which images are relevant to a given query (contain the same hidden semantic feature). But as the user doesn’t generally inspect all the images in the database, there may be some spurious 0’s in r. And different users may disagree on certain images even if seeking essentially the same semantic class. Thus the matrix R may be noisy, and of artificially increased rank. The cleaner, ideal results may be generated by a linear process of rank less than rank(R). By taking n<rank(R), deleting all but the first n columns of U and V and all but the upper n(n sub-matrix of S as before, and taking B = US and Q = VT as before, we obtain a still lower dimensional semantic space. It’s no longer true that BQ = R, but instead BQ is the best rank-n approximation of R, in the least squares sense (i.e., under the Frobnenius norm). Furthermore, for any two query vectors qi , qj (two columns of Q), they may not be orthogonal. This agrees with the real case. 

The above idea is similar to Latent Semantic Indexing (LSI) on text retrieval, and it’s been shown that relative precision can improve by 30% by reducing the rank of document-term matrices in this fashion [1]. The claim is that meaningless distinctions between words are reduced. Theoretical results which go some ways towards explaining these empirical successes appear in [14], though under fairly restrictive hypotheses.

3.3 Updating the Semantic Space

In the retrieval process of real world, the semantic matrix B may be periodically replaced by US in a reduced-rank SVD approximation USVT of B. If one doesn’t have an a priori estimate of the rank of the underlying linear process, one may resort to ad hoc methods for choosing the dimension for the reduced rank SVD based on examining the sizes of the singular values, or assessing the retrieval performance of the algorithm. In theory, the optimal rank is closely related to the number of semantic categories in the image database. If this number can be roughly estimated, it can be used as a guideline to select the best rank for updating the semantic space. In other words, as more vectors r appended and B becomes bloated, it is then subjected to an SVD again to keep the rank of B within a certain range. 

4.  SHORT-TERM LEARNING: QUERY REFINEMENT BASED ON RELEVANCE FEEDBACK
In section 3, we have described our algorithm to construct a semantic space. With this semantic space (or a space combined with low-level features), short-term learning aims to infer the user’s information need by applying supervised learning to refine the query for differentiating relevant images from irrelevant ones in the database. In the following section, we first introduce the idea of target function in the user’s query corresponding to the semantic space. 

4.1 Target Function in the Semantic Space

Our proposed short-term learning for image retrieval can be modeled as the following process: find a function g(x) which takes an image (x represents its n-dimensional feature vector) as input, and outputs 1 if this image is relevant and outputs 0 if it is irrelevant. Hence the system uses g(x) to distinguish relevant images from irrelevant ones. The goal of the short-term learning is to find g(x) and make as few mistakes as possible, assuming that both the choice of relevant features and the choice of feedback examples are under the control of the user. We call g(x) target function. 
4.2 Short-term Learning from Examples in the Mistake Bound Model

Traditionally, the user’s relevance feedbacks are used to update the query vector or adjust the weighting of different dimension. This process is equivalent to an on-line learning process where the image retrieval system acts as a learner and the user acts as a teacher. In the rest of this paper, these two terms (short-term learning and on-line learning) are used interchangeably. The typical retrieval process is outlined as follows:

1. The user provides his relevance feedback to the system by labeling images as “relevant” or “irrelevant”.

2. The system compares the user’s judgment with the one generated by the current target function g(x).

3. The system modifies g(x) such that it generates a judgment coherent to the user’s feedback.
If the system’s judgment disagrees with the one from the user, we say that the system makes a mistake. A mistake-driven learning algorithm updates g(x) only when a mistake is made. In this paper, we adopted two most widely used on-line learning algorithms of linear functions, Rosenblatt’s perceptron learning algorithm (PLA) [17] and Littlestone’s winnow [11], to perform short-term learning (i.e. query refinement) for image retrieval. The basic difference between these two algorithms is the mechanism used to update the weight vector. PLA is an additive update algorithm, while winnow is a multiplicative update algorithm. 
4.3 Representing Query Example with Hidden Semantics

When an example image is presented to the system as a query, its low level features (color, texture, etc) are extracted to conduct the first iteration of search. Note that we do not have hidden semantic features for images unless they are in the database. After the first retrieval, the semantic representation of the query image can be formed based on the user’s relevance feedback as follows: from the first retrieval, suppose the user provides s positive examples and t negative examples. Each of these s+t images is represented by a semantic vector xj, j=1,…,s+t. Then, the semantic feature for the query image can be represented as
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where 
[image: image7.wmf]j

i

x

 is the ith element of semantic vector 
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4.4 Winnow-Like Mistake-Driven On-Line Learning in Boolean Semantic Space

With user’s relevance feedback and interaction with the system, our algorithm can learn the disjunction of inherent semantic features that the user desires. An image in n-dimensional Boolean semantic space is represented by a Boolean vector 
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,

,

,

(

2

1

n

x

x

x

L

=

x

. The image has the ith hidden semantic feature if and only if xi = 1. Thus, the task is to learn a target (discriminating) function g : {0,1}n({0,1}. If the output is one, the system classifies the image as relevant, while if the output is zero, the system classifies the image as irrelevant. Specifically, the optimal g is a disjunction function gopt(x)
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 are the subscript of the k relevant features (i.e. those hidden semantic features the user desires). We assume that, in ideal settings, the user acts as the disjunction function gopt(x) to teach the search engine. That is, for a given image, the user classifies it as positive example if it has at least one relevant feature. Otherwise, the user classifies it as negative example. Since the images classified by gopt(x) is linear separable (In fact, for any concept
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), our goal is to find a linear hyperplane, which separates the images with at least one relevant feature from those images with no relevant feature, as gopt(x) does. In our system, the linear discriminant function is defined as follows: 
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where hscore(x) is a function to evaluate the score of image x while ranking, and ( is a threshold. The simplest score functions are linear, that is, they may be expressed as the dot product of a weight vector w and the hidden semantic feature vector x:
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A winnow-like mistake driven on-line learning algorithm is used to learn the discriminant function g(x). Initially, the weight vector w is set to be the query vector q, which is obtained by the method described in section 4.2. Those images with the highest scores along with some random images are presented to the user. If  hscore(x) ( ( (the current classifier labels it as “irrelevant”) while the user labels it as “relevant”, we say a positive mistake occurs. Correspondingly, if hscore(x) > ( (the current classifier labels it as “relevant”) while the user labels it as “irrelevant”, we say a negative mistake occurs. When the user’s relevance feedback contradicts with the current classification, the algorithm updates the weight vector as follows:

· Negative mistake :
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· Positive mistake :
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where ( controls the adjusting rate and is greater than one. In our experiment, ( is set to 1.5, and ( is n/2. 

4.5 At Most How Many Feedbacks Are Needed – Theoretical Analysis of Mistake Bound 

In spite of tremendous research on using relevance feedback for image retrieval, little theoretical analysis was performed so far. In this section, we provide a theoretical analysis of mistake upper bound from the perspective of machine learning based on a winnow-like expansion. Each time a new query comes, we regard it as a classification problem that a linear classifier is trained to classify the images in database as relevant and irrelevant. A linear classifier is represented by a pair (w,(), where w ( Rn is an n-dimensional weight vector and ( ( R is a threshold.

With the user interactions, the algorithm updates the weight vector each time a mistake occurs. Our goal is to minimize the total number of mistakes that the algorithm makes. Hence, the user can retrieve the target images as quickly as possible. The following theorem gives the theoretical upper bound of required number of feedbacks.

Theorem Assume n is the total number of hidden semantic features in the database. The winnow-like image retrieval algorithm with threshold 
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 mistakes when the target concept is a disjunction of k hidden semantic features. 
Proof: For the sake of simplicity, we define relevant weight={
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 are the subscripts of the corresponding relevant features. We define the total weight for each trial (each time a mistake occurs) equal to
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, where w(t) is the weight vector in the tth trial. Any positive mistake will increase at least one relevant weight. And a negative mistake will not decrease any of the relevant weights. This is because all the positions corresponding to the relevant features should be occupied by zero, otherwise the example image is not a negative example. Note that we assume that the user is an optimal teacher. Furthermore, each of these relevant weights can be increased at most 1+log(( times, since only weights that are less than ( can ever be increased. Therefore, the algorithm makes at most Mp=k(1+ log(() positive mistakes. For each positive mistake, the weight
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Hence 
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This gives us estimation that at most how many feedbacks are needed. A note needs to be pointed out is that this result is obtained in an ideal settings. In the real world, the user is not an optimal teacher most of cases. That is, sometimes the user is unable to tell whether an image is relevant or irrelevant. The estimation of mistake bound under such conditions is beyond the scope of this paper and left for future studies.

4.6 Perceptron

In low-level feature space, or in the semantic space after dimensionality reduction, the representation of an image is no longer a Boolean vector, but a real-value vector. In this case, perceptron learning algorithm can be used to learn the target function so as to retrieve target images. Perceptron also keeps an n-dimensional weight vector
[image: image40.wmf])

,

,

,

(

2

1

n

w

w

w

L

=

w

like winnow. The entries correspond to the set of potential features, which is also updated whenever a mistake occurs. If the current example is incorrectly classified, we update the weight vector according to the following rule:

· [image: image48.emf]Figure 8. The retrieval accuracy in the semantic space with  20% noise. In other words, 20% of the user’s feedback has  incorrect classification. As can be see n , though the system with  noise performs a little worse than the system without noise, the  differe nce is not very significant. We further conducted  experiments in the  SVD  compressed semantic space, the  performance difference becomes smaller.  
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If the user labels this image as “irrelevant” while the current classifier classifies it as “relevant”:
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· If the user labels this image as “relevant” while the current classifier classifies it as “irrelevant”:
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In above equations, x is an image feature vector, and ( controls the learning speed. In our experiments, ( is empirically set to a value of 1.0, and the initial classifier 
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 where q is the query vector and ( is set to 0.8. Note that we only update the weight vector (query vector) when a mistake occurs, which is different from Rocchio’s algorithm [16]. 
5. THE MIALBUM IMAGE RETRIEVAL SYSTEM

We have integrated this learning framework into the MiAlbum [12] image retrieval system developed in Microsoft Research Asia. Fig. 2 shows the user interface of this system. In this paper, we focus on image retrieval based on “query by example” and using the user’s relevance feedback and interaction to improve the system’s short-term and long-term performances. Fig. 3 shows the flowchart of our system. When the user submits an image example as a query, the system first computes low-level features of the query image and then uses them to retrieve and rank the images in the database. Note that no semantic feature is involved at this stage. Then, the user provides his feedback by clicking on the “thumb up” or “thumb down” button according to his judgment of the relevance of retrieval. With the user’s relevance feedback, the system starts to take advantage of the hidden semantic features and train the on-line classifier to improve search performance. The search result continues to be refined iteratively until the user is satisfied. The accumulated relevance feedbacks are used to construct and update the semantic space, as described in the long-term learning process. 

[image: image49.emf]Fig ure   7.   The r etrieval accuracy in  the  semantic space with  different  degree of  dimensionality  reduction. The evaluation  is conducted after 3 iterations (the system starts to converge  at this point).  As  can be seen, the system reaches the best  performance   when the number of dimensions approximates  the number of semantic classes, i.e. 79.  
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6.  EXPERIMENTAL RESULTS 

We performed several experiments to evaluate the effectiveness of the proposed approach over a large image database. The image database we use consists of 10,000 images of 79 semantic categories from the Corel dataset. It is a large and heterogeneous image set. A retrieved image is considered correct if it belongs to the same category of the query image. Three types of color features and three types of texture features are used in our system, which are listed in Table 1. 
We designed an automatic feedback scheme to model the short-term retrieval process. At each iteration, the system marks the first three incorrect images from the top 100 matches as irrelevant examples, and also selects at most 3 correct images as relevant examples (relevant examples in the previous iterations are excluded from the selection). These automatic generated feedbacks are used as training data to perform short-term learning. To model the long-term learning, we randomly select images from each category as the queries. For each query, a short-term learning process is performed and the positive feedbacks are used to construct the semantic space. That is, for each single session of retrieval, a hidden semantic feature is learned and appended as a new column to the semantic matrix. To evaluate the performance of our algorithms, we define the retrieval accuracy as follows:

[image: image50.emf]Figure 6. Image retrieval performance in the Boolean semantic  space, probabilistic semantic space and  dimension - reduced  semantic space .  
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[image: image51.emf]Figure   5. The retrieval accuracy  of the system improves as  the semantic degree of the system increases. The graphs also  show the system can quickly reach a reasonably good  performance with 2 - 3 iterations.  
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[image: image52.emf]Figure 4.  The comparison of our on - line learning algorithm  with Rui ’ s approach.  T he  on - line learning algorithm  outperforms  Rui’s  approach , e specially when the number of  iteration increases, the improvement gets more significant.  
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Five experiments were designed to evaluate our proposed algorithms. The experiments with the on-line learning algorithm are discussed in section 6.1. In section 6.2, we show how the image retrieval performance improves as the semantic space is constructed based on the user’s interaction with the system. In section 6.3, we show the image retrieval performance in probabilistic semantic space. We further test the system’s performance in the dimension-reduced semantic space using SVD in section 6.4. The system’s resistibility to noisy is evaluated in section 6.5. 

6.1 On-Line Learning Algorithm
We compared the performance of our proposed on-line learning algorithm with the relevance feedback approach described in Rui [18]. Without the loss of generality, the comparison was made in the low-level feature space with no semantic features involved. Fig. 4 shows the experimental result by looking at the top 20 retrieval. Similar results have been obtained by considering a varied number of top retrieval to 100. As can be seen, our proposed on-line learning algorithm outperforms Rui’s approach. Especially when the number of iteration increases, the improvement gets more significant. 

6.2 Image Retrieval in Boolean Semantic Space - System Evolution Evaluation

As discussed previously, the high-level semantic space is constructed as the system evolves. To evaluate the degree of system evolution, a measurement called semantic degree is defined as follows: 
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For simplicity, a semantic space with semantic degree (% is referred to (% semantic space in this paper. The semantic degree of a semantic space can be measured by the number of columns of the semantic matrix, namely, the number of hidden semantic features. For example, there are 10,000 images in our database. A 3% semantic space is corresponding to a 10,000×300 semantic matrix before compression. 

In the following, we evaluate how the system retrieval performance is improved as the semantic space is learned from the user-system interactions. The experiments were conducted based on the use of the winnow-like mistake-driven on-line learning algorithm in the Boolean semantic space of different semantic degree. In figure 5, each curve stands for the average retrieval performance. To train the system, (% images of each category are randomly selected as query images to learn the (% semantic space. Then the rest of images are used as test data to evaluate the retrieval accuracy of our system at different degree of evolution. As can be seen, the system performance improves as the semantic degree of the system increases. In addition, we also see that our system learns to retrieve the target images quite quickly. It reaches a reasonably good performance within 2-3 iterations. 

6.3 Image Retrieval in Probabilistic Semantic Space

In the previous experiments, a Boolean semantic space is constructed only by user’s relevance feedback, while the low-level image feature hasn’t been efficiently used. As we expected, it converges very fast when the winnow-like on-line learning is used as short-term learning. However, in the real world, people may expect to achieve better result by integrating low-level features into high-level semantic space.  Here, we evaluate the image retrieval performance in a probabilistic semantic space, which is learned from user’s relevance feedback and image content.

[image: image53.emf]Fig ure   3. Flow chart of the system operation.  

Three percents of images from each category are randomly selected as queries, which result in 300 images in total. After the long-term learning, a 3% Boolean semantic space and a 3% probabilistic semantic space are constructed correspondingly, represented by two 10,000×300 semantic matrices. We compare the image retrieval performance in these two semantic spaces. Figure 6 shows the experimental results. As can be seen, image retrieval in probabilistic semantic space outperforms that in Boolean semantic space.

6.4 Image Retrieval in Dimension-reduced Semantic Space

In this section, we evaluate the image retrieval performance in a dimension-reduced semantic space. The SVD is used to achieve dimensionality reduction in the original probabilistic semantic space, and then the on-line learning is applied to search images in this space. After the long-term learning, a 3% probabilistic semantic space represented by a 10,000×300 semantic matrix is constructed. We compare the image retrieval performance in the original probabilistic semantic space with dimension-reduced ones. Figure 7 shows the experimental results.
[image: image54.emf]Color - 1  Color histogram in HSV space with quantization  256   Color - 2  First and second moments in Lab space   Color - 3  Color coherence vector in LUV space with  quantization 64   Texture - 1  Tamura coarseness histogram   Texture - 2  Tamura directionary   Texture - 3  Pyr amid wavelet texture feature     Table 1.  Image  features used in  our system    

As we have discussed in section 3.3, the fundamental problem for updating the semantic space and reducing the dimensionality is to estimate the rank of the semantic space. The optimal rank is closely related to the number of semantic classes in the database. If the image database administrator has a prior knowledge about this number, it can be used as a guideline to control the dimensionality reduction. Intuitively, the system reaches the best performance (in terms of accuracy and efficiency) when the rank of the semantic space is close to the number of semantic classes. Further compression of the semantic space with dimensionality lower than this rank will start to cause information loss and decrease the retrieval accuracy. This intuition has been proved in our experiments. As we can see from the Figure 7, when the number of dimensions of the inferred semantic space approximates the number of semantic classes (in this case, it is 79), the system achieves the best performance. 
6.5 Learning Semantic Space under a Noisy Environment

In the previous experiments, the simulated user’s relevance feedback is generated based on the ground true, i.e. 79 image categories from the Corel image library. In this case, the user is regarded as an optimal teacher. That is, the positive feedbacks always belong to the same semantic class. However, in the real world, the user may make mistakes in providing feedbacks. For instance, a user may unconsciously select images of “wolf” as positive examples while he is actually looking for images of “dog”. Hence noise could be introduced into the system when the semantic space is inferred and constructed. The noise has two effects on the system: for long term learning, the noise will degrade the reliability of the inferred semantic space; for the short-term learning, the noise will mislead the current retrieval session. In this section, we examine how the noise affects the long-term learning. The experiments were conducted in original semantic space with 20% noise introduced. In other words, 20% of the user’s feedback has incorrect classification. As can be see from Figure 8, though the system with noise performs a little worse than the system without noise, the difference is not very significant. We further conducted experiments in the SVD compressed semantic space, the performance difference gets smaller. This suggests that SVD not only reduces the dimensionality but also helps to remove the noise introduced in the long-term learning process. After 4 iterations, the performance difference is less than three percents. These experiments indicate that our proposed learning algorithms for inferring the semantic space are robust under a noisy environment, which are crucial for practical use in the real world. 
7.  CONCLUSIONS AND FUTURE WORK

In this paper, we described a learning framework which makes use of relevance feedback to enhance the performance of image retrieval system from both short-term and long-term perspectives. The proposed long-term learning scheme infers a semantic space from user interactions and image content. A method of updating [image: image55.emf]Figure 2.  The MiAlbum image retrieval  system.  The user  can provide his feedback by clicking “thumb up” or “thumb  down” buttons associated with each retrieved image.  

of the semantic space and a guideline of choosing the optimal dimensionality (rank) were also discussed. As can be seen from the experiments, this learned semantic space supplements the low-level features in making the image search result more satisfactory to users. 

For the short-term learning, two mistake-driven learning algorithms, winnow and perceptron, were used to learn the target function for retrieving target images in the database. A theoretical analysis of the winnow-like algorithm showed that the mistake bound in short-term learning is logarithmic with the total number of features, and linear with the number of relevant features. In fact, without considering the effect of the low-level features, the semantic degree of the constructed semantic space determines at most how many relevant images can be retrieved for a given query, and the mistake bound provides estimation about at most how many feedbacks are needed to retrieve all these relevant images.  

In our proposed learning approaches, the positive examples from the user’s relevance feedback are mainly used for inferring the semantic space in the long-term learning. A possible extension of our work is to consider assigning a negative value for those negative examples while appending a new column to the semantic matrix. We are currently exploring the effect and impact of this extension. On the other hand, as many other researchers have suggested, the negative examples, which correspond to the failure of current classifier (target function) in the short-term learning, contain the most valuable information for improving the performance of current query session. Though our system does not explicitly direct users to provide this kind of feedbacks, we believe that the system will converge to the satisfactory result with fewer steps if such guidance is provided to users. Furthermore, the feedbacks provided by real-world users often contain inaccurate information. Although our proposed learning approaches can tolerate noise to some extent, it may be necessary to conduct filtering to remove unreliable feedbacks before using them for training the system. 
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[image: image56.emf]Figure 1. Image retrieval in the semantic space can be  thought of a matrix operation.   B  is a semantic matrix .  q  i s  a  query vector.  Bq = r  is the result vector  containing the  similarity measure  with each image in the database .  
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[image: image58.emf]Figure 2.  The MiAlbum image retrieval  system.  The user  can provide his feedback by clicking “thumb up” or “thumb  down” buttons associated with each retrieved image.  
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[image: image60.emf]Fig ure   3. Flow chart of the system operation.  

[image: image61.emf]Figure   5. The retrieval accuracy  of the system improves as  the semantic degree of the system increases. The graphs also  show the system can quickly reach a reasonably good  performance with 2 - 3 iterations.  
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[image: image62.emf]Figure 4.  The comparison of our on - line learning algorithm  with Rui ’ s approach.  T he  on - line learning algorithm  outperforms  Rui’s  approach , e specially when the number of  iteration increases, the improvement gets more significant.  
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[image: image63.emf]Figure 6. Image retrieval performance in the Boolean semantic  space, probabilistic semantic space and  dimension - reduced  semantic space .  
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[image: image64.emf]Fig ure   7.   The r etrieval accuracy in  the  semantic space with  different  degree of  dimensionality  reduction. The evaluation  is conducted after 3 iterations (the system starts to converge  at this point).  As  can be seen, the system reaches the best  performance   when the number of dimensions approximates  the number of semantic classes, i.e. 79.  
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Figure 8. The retrieval accuracy in the semantic space with 20% noise. In other words, 20% of the user’s feedback has incorrect classification. As can be seen, though the system with noise performs a little worse than the system without noise, the difference is not very significant. We further conducted experiments in the SVD compressed semantic space, the performance difference becomes smaller.
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Figure 7. The retrieval accuracy in the semantic space with different degree of dimensionality reduction. The evaluation is conducted after 3 iterations (the system starts to converge at this point). As can be seen, the system reaches the best performance when the number of dimensions approximates the number of semantic classes, i.e. 79.
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Figure 3. Flow chart of the system operation.
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Figure 5. The retrieval accuracy of the system improves as the semantic degree of the system increases. The graphs also show the system can quickly reach a reasonably good performance with 2-3 iterations.
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Figure 6. Image retrieval performance in the Boolean semantic space, probabilistic semantic space and  dimension-reduced semantic space.
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Figure 4. The comparison of our on-line learning algorithm with Rui’s approach. The on-line learning algorithm outperforms Rui’s approach, especially when the number of iteration increases, the improvement gets more significant.
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Figure 2. The MiAlbum image retrieval system. The user can provide his feedback by clicking “thumb up” or “thumb down” buttons associated with each retrieved image.
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		Color-1

		Color histogram in HSV space with quantization 256



		Color-2

		First and second moments in Lab space



		Color-3

		Color coherence vector in LUV space with quantization 64



		Texture-1

		Tamura coarseness histogram



		Texture-2

		Tamura directionary



		Texture-3

		Pyramid wavelet texture feature





Table 1. Image features used in our system
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Figure 1. Image retrieval in the semantic space can be thought of a matrix operation. B is a semantic matrix. q is a query vector. Bq=r is the result vector containing the similarity measure with each image in the database.
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