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1 Introduction

Trends towards personalizing information services and client-based applications have increased the importance of effective and efficient document categorization techniques. New user scenarios, including the use of devices with various specifications, have placed higher demand on performance considerations and computing resource management when designing and testing classification techniques. It is that aspect of text classification that led us to explore methods for training classifiers that optimally use the computing memory and processing cycles for the available training data. In particular, we consider tradeoffs between the quality of document classification, as measured by commonly used performance measures, and reductions of a feature set used to represent the data. 

The timing of our study coincides with the availability of a larger data collection for text classification research provided by Reuters [Reu00]. While most of the past research has been constrained by a limited availability of data sets suitable for experimentation, the new Reuters collection provides opportunities for numerous experimental designs. It enables researchers and practitioners to aim at designing and testing systems that can meet the requirements of real life operations. Indeed, while the popular, smaller Reuters collection [Lew98] contained less than 30,000 documents in total, requiring less than 30 MB of disk storage, the new collection contains more than 800,000 documents and amounts to over 2 GB of text data. 

In this study we propose a method for feature selection and iterative classifier training based on Support Vector Machines (SVM) with linear kernels. We explore how this and other feature selection methods can be used to make tradeoffs between the amount of training data and the sparsity of the document representation for the fixed amount of system memory.

Our experimental results show that the SVM-based feature selection provides a suitable way of preserving the classification performance while significantly reducing the size of the feature space and increasing the sparsity of data.

In the following sections we first describe the proposed feature selection and classifier training method pointing to relevant issues. We give a brief overview of feature selection methods used in the past research, describe the experiments in which we compare the effectiveness of these methods in the context of the proposed training strategy, and present the experimental results. We conclude a brief summary and the outline of future research.

2 Training with SVM Feature Selection 

In situations where there is an abundance of training data it is conceivable that the training of classifiers cannot be performed over the full set of data due to limited computing resources. Thus a question arises how the training of a given classifier can still be done so that the full training set is taken into account. Here we present a simple procedure that has proven quite effective, as our experimental results show (see Section 5). 

Our strategy is first to train linear Support Vector Machines (SVM) on a subset of training data to create initial classifiers. In this model each classifier is really a hyperplane separating ‘positive’ and ‘negative’ examples for the class (i.e. documents belonging to this class from those not belonging to it), and can be represented by the normal (i.e. a vector perpendicular to it) and a threshold. 

The second step involves eliminating features from the normal that have low weights in order to achieve a specified level of data sparsity. Sparsity is here defined as the average number of non-zero components in the vector representation of data or, in other words, the average number of terms left in documents after some terms have been discarded. 

Finally, using only features retained after the feature selection step, we create a representation of the full training set of documents. We retrain the linear SVM classifier in the fixed feature space and use the final normal to classify the test data.

This method is designed to take advantage of the memory freed as a result of increased data sparsity and include larger training sets while keeping the memory consumption constant. At the same time, we calibrate the performance controlling the possible negative impact of the reduced feature space.

In principle, the feature selection phase could include a separate validation set to suggest possible tradeoffs between sparsity and classification accuracy; alternatively, memory limitations may dictate what level of sparsity is necessary. However, here we do not investigate these decision-making aspects but instead just experiment with different levels of sparsity and observe their influence on the performance after feature selection was applied.

We should point out that in the current implementation we applied no linguistic processing to the document text. Documents were represented using single word features, weighted by the standard tf‑idf score
 [SB88] and retaining only those that occur in at least 4 documents in the whole training set. 

Intrigued by the efficacy of the SVM-based feature selection, we explored how it compares with other feature selection methods when used in conjunction with the proposed training strategy. When assessing feature selection methods we look at both the final classification performance of the resulting classifiers and the sparsity of the training data representation. In the following section we give a brief overview of the considered feature selection methods and refer to research related to our work.

3 Related Work

3.1 Feature Selection Methods 

In text categorization, feature selection (FS) is typically performed by sorting linguistic features according to some weighting measure and then setting up a threshold on the weights or simply specifying a number or percentage of highly scored features to be retained. Features with lower weights are discarded as having less significance for the classification decision. Experiments then typically evaluate the effect that feature selection has on the classification performance.

Numerous feature scoring measures have been proposed, e.g., information gain, odds ratio, (2, term strength, etc. Even the simple document frequency has been found to perform well in conjunction with the k Nearest Neighbor method, as measured by the 11-point average precision [YP97, MG99].

It is important to note that feature weighting and selection can be more or less coordinated with the classification model, in the sense that they may be governed by the same or distinct theoretical models. It has been a common practice to explore the impact of various FS methods in combination with different classification methods. For example, an approach for weighting features based on SVM has been proposed in [GF01], where SVM is used with a special kernel to learn the weights of features for use with a Naive Bayes classifier. On the other hand, there were conscious attempts to create FS methods that are compatible with the feature scoring of a particular classifier. In that respect feature scoring using odds ratio is seen as a good match for the Naive Bayes classifier and has been shown to improve its performance [Mla98b].

While the idea of preserving the integrity of a theoretical framework is attractive, it is not feasible unless the framework includes an inherent mechanism for feature selection. This is typically not the case with classification methods (more specifically, it may often be possible to obtain a feature ranking or weighting, indicating which features may be preferable over others, but without clear guidelines on how many features to keep) and thus we are inevitably guided by external factors when designing the selection criteria — in our case that is the targeted level of sparsity of the data representation.

We compare the effect of feature selection based on an SVM normal with two feature scoring measures that have been reported successful in text categorization: information gain and odds ratio. These two FS methods are interesting also because they seem to prefer different types of features: the information gain is known for its tendency to prefer common features over extremely rare ones, while the odds ratio ranks rare features highly as long as they are exclusively characteristic of positive class instances. Here we provide a brief description of the three FS methods.

3.1.1 Information gain

The information gain score (IG) of a term t is calculated using the following formula:

IG = (c ((({t,(t} P(c, () log[P(c, ()/P(c)P(()]

where c ranges over the classes (in our case, where a document might belong to several categories, and we treat each category as an individual two-class problem, c can be either positive or negative) and ( ranges over the values t and (t, referring to whether the term t under consideration is present in a document or not. 

This formula is equivalent to H(C) – H(C|T) where 

H(X) = (x P(X=x) log P(X=x)

is the entropy. 

It therefore measures how much we learn about C by knowing T, since H(C|T) measures how much remains unknown about C if we know T; hence the term “information gain”.

On the other hand, it is also equivalent to [H(C) + H(T)] – H(C, T), which can be interpreted as the amount of information that each of these variables contains about the other one. For that reason this measure is also known as (average) mutual information. It should not be confused with log[P(t|c)/P(t)] (or the maximum or average of this value over all c), which is also sometimes called mutual information.

Information gain has been found to work well with the k-nearest neighbor algorithm on the small Reuters collection and the OHSUMED collection [YP97], where an increase in the 11-point average precision (from 0.879 to 0.892) has been observed while merely 2% of features were kept. 

3.1.2 Odds ratio

The odds ratio score of a term t is calculated as follows:

OR = log[odds(t|pos)/odds(t|neg)]

where odds(t|c) = P(t|c)/(1–P(t|c)), c denotes a class c and pos and neg refer to the number of positive and negative examples in the training data, respectively. 

This measure gives a high score to features typical of positive documents and a low score to those typical of negative documents. One possible disadvantage of this scoring method is that features which occur in very few positive documents get very high scores as long as they do not occur in any negative documents. In this manner rare rather than representative features of the positive documents obtain high scores.

Odds ratio was used as a feature selection method (in combination with Naive Bayes as the training algorithm) for categorizing web pages in a collection specially built for profiling web usage [Mla98a, Mla98b] and for classifying Yahoo data into Yahoo categories [Mla98b, MG99]. In the latter case, an increase in the F2 measure (from 0.13 to 0.6) was reported when only 0.2% and 5% of the original features were kept.

3.1.3 Normal-based feature selection

In this study we use the Support Vector Machine with linear kernels. Data instances are described by vectors xi = (xi1,...,xid), where d represents the dimensionality of the feature space, i.e., the number of distinct features in the model. In general, the class predictor trained by SVM has the form 

prediction(x) = sgn[b + (i αi K(x, xi)]

but in the case of a linear kernel K(x, z) = xTz this can be rewritten as 

sgn[b + wTx]     for     w = (i αi xi
where the vector of weights w = (w1,...,wd) can be computed and accessed directly. Geometrically, the predictor uses a hyperplane to separate the positive from the negative instances, and w is the normal to this hyperplane.

The linear classifier categorizes new data instances by testing whether the linear combination w1x1 + . . . + wdxd of the components of the vector x = (x1,...,xd) is above or below some threshold –b (possibly 0). In our feature selection approach we use the absolute value |wj| as the weight of a feature j. We retain features for which the value of |wj| exceeds the threshold value that is obtained from the data sparsity criteria. This type of feature weighting seems intuitively appealing because features with small values of |wj| do not have a large influence on the predictions of the classifier based on w; this can be seen as meaning that these features are not important for classification purposes, and that consequently they could be dispensed with in the training phase as well. 

A theoretical justification for retaining the highest weighted features in the normal has been independently derived in a somewhat different context in [SBR01]. The idea here is that one may consider a feature important if it significantly influences the width of the margin of the resulting hyper-plane; this margin is inversely proportional to ||w||, the length of w. Since w = (i αi xi for a linear SVM model, one can regard ||w||2 as a function of the training vectors x1,...,xl, where xi = (xi1,...,xid), and thus evaluate the influence of feature j on ||w||2 by looking at absolute values of partial derivatives of ||w||2 with respect to xij. (Of course this disregards the fact that if the training vectors changed, the values of the multipliers αi would also change, but the approach nevertheless seems appealing.) For the linear kernel, it turns out that 

(i |(||w||2/(xij| = k |wj|, 

where the sum is over support vectors and k is a constant independent of j. Thus the features with higher |wj| are more influential in determining the width of the margin. (The same reasoning could also be applied if a non-linear kernel was used, because ||w||2 can still be expressed using only the training vectors xi and the kernel function.)

In this study we also use the linear SVM classifier as the classification model since it has been shown to outperform most of other classification methods [DPHS98, Joa98]. Interaction of the normal-based FS with other classification methods will be subject of our future work.

Note that the normal-based approach to feature weighting and selection involves an important issue: the selection of a set of instances over which one trains the normal w that defines the feature weighting. Since training an SVM model requires a considerable amount of CPU time, and also practically requires all the training vectors to be present in main memory all the time, it is likely to be undesirable, or even unfeasible, to use the entire training set at one’s disposal to train the normal for feature selection. Furthermore, this would be justifiable only if there is a significant gain in the classification performance or general system performance (e.g., speed, computing resource consumption, etc.) because of the cost incurred due to the retraining of the classifiers. Thus we explore the effectiveness of this method in the scenarios where one might be constrained to train on a subset of the training set.

More precisely, we use the feature weighting defined by the model trained over a subset of data to choose which features to discard. After the removal of a large number of features both the time and the memory requirements for processing the entire training set are smaller and thus make that task feasible. Of course, having used only a subset of data to obtain the weighting and selection of features may mean that this approach performs worse as a feature selection method than others which take into account the whole data set. In our experiments we will also explore the relationship between the size of the subset used to train a normal and the performance of the feature weighting based on that normal. 

4 Experiment Description

4.1 Experimental strategy – Rationale

Since our main consideration is the classification performance under the constraint of limited computer resources we experiment with methods that vary the size of the training data and the sparsity level of the data representation. We compare the approach of using a smaller number of documents with a richer feature set and the alternative that involves applying a feature selection method to increase data sparsity so that a larger number of training data can be used within the fixed feature set. Recall that the sparsity is here defined as the average number of non-zero components in the vector representation of documents in the given document set, in this case the data used for training.

Our first set of experiments thus explores the relationship between feature reduction and sparsity achieved. The second set investigates the robustness of the classification method under the fixed feature set constraint: what is the impact on the classification performance if the classifiers are trained over a various data sets and the feature set is kept constant. 

4.2 Data Processing and Analysis

4.2.1 Training and test data

For experimentation we used the Reuters-2000 collection [Reu00], which includes a total of 806,791 documents, with news stories covering the period from 20 Aug 1996 through 19 Aug 1997. We divided this time interval into a training period, which includes all the 504,468 documents dated 14 April 1997 or earlier, and the test period, consisting of the remaining 302,323 documents. 

We used the documents from the entire test period as test data but for training we constructed a subset of data, here referred to as Train-1600, in the following way: for each Reuters category that contains 1600 or more documents in the training period (i.e., positive training examples), we randomly selected exactly 1600 documents. For categories with fewer than 1600 positive examples in the training period we took all such documents. 

The rationale behind this decision was to select a set of training data that can be used for multiple purposes, including the experiments in which the number of positive examples per category could be fixed across categories in order to understand the effect that parameter has on the classification performance. Although the current experiments do not control that variable, the future experiments along these lines will be comparable with ones presented in this study. 

Fortunately, the training set constructed in this way turns out to be also a good representative sample of the whole data set, as can be seen from Figure 1, which shows the comparison of category distributions in the Train-1600 sample and the whole corpus. 

Indeed, during sampling we treated categories as independent from each other, thus ignoring the hierarchical nature of the Reuters classification scheme and the fact that a document may be labeled by a number of distinct categories. As a result, the union of documents contains more than 1,600 positive examples for those categories whose labels typically co-occur with other categories. As can be seen from Figure 1, the achieved category distribution generally follows the trends of the full data set with only a slight modification: categories with very high distributions in the whole corpus get a slightly smaller relative representation while categories with fewer positive examples get a larger representation in the sample in comparison to the full corpus. It is interesting to note from the graph that, in fact, for two large categories (ecat and gcat), the proportion has increased because of the wide spread use of the categories.

In our experiments we use the ‘natural’ distribution of labeled documents in the Train-1600 set. In other words, we did not restrict training to the 1600 positive examples originally selected for a given category. We used all the documents that carry the category label, thus including all those that were contributed to the sample by other categories. 

For the experimentation purposes we further selected sub-samples of the Train-1600 set (of 118,924 documents) of size one half, referred to as Train-1/2, one quarter (Train-1/4), one eighth (Train-1/8), and one sixteenth (Train-1/16) of the full training set, respectively. Random selection
 of these subsets was strictly based on the target sample size, rather than the distribution of positive examples of individual categories. However, as Figure 1 shows, the natural distribution is followed for most of the categories and the desired distribution effects for small and large categories are achieved.

[image: image1.emf]Category distribution in different sets of documents

0.001%

0.010%

0.100%

1.000%

10.000%

100.000%

0.001% 0.010% 0.100% 1.000% 10.000% 100.000%

Percentage of documents belonging to this category

in the full Reuters 2000 collection

Percentage of documents belonging to this category

in other sets of documents

Train-1/16 Train-1/4 Entire training set Full Reuters-2000


Figure 1

4.2.2 Data Representation

We represent documents using the bag-of-words approach, applying a stop-word filter (from a standard set of 523 stop-words) and ignoring the case of the word surface form. Features that occur less than 4 times in Train-1600 are removed and the remaining features are weighted using the tf‑idf score and normalized so that each vector representing a document has unit length.

In order to experiment with the sparsity of document representations, we set an appropriate threshold on the number of features retained in order to obtain document vectors with a desired average number of nonzero components, i.e., desired sparsity. For each combination of the target category and the number of features to be kept, temporary copies of document vectors are made with the unwanted features removed; these copies are used for training. Finally, the models obtained during the training are used to classify the test documents. The test documents are represented using only the features kept after feature selection.

We used the SvmLight program (version 3.50) by Thorsten Joachims for SVM training and classification [Joa99]. The program is particularly appropriate for our experiments because of its optimizations for working with linear kernels. It computes the normal vector w explicitly rather than working entirely with the dual representation i iyixi as is necessary for other kernels.

4.2.3 Category selection

Training classifiers for all 103 Reuters categories over relatively large sets would be a time consuming and process intensive task. Therefore we restricted our study to a sample of 16 categories. These categories were selected based on the results of a preliminary experiment that involved training the SVM over a smaller training set Train-200 for the complete set of Reuters categories. 

The set Train-200 (19,213 documents) was constructed in exactly the same way as the Train-1600 except that we used only 200 documents per category. The test set was also constructed in the same way, except that documents from the test period were used, and that only 100 random representatives of each category taken; this resulted in a sample of 9,596 test documents, referred to as Test-100.

The selection process was based on two characteristics of the categories: the distribution of positive examples in the whole corpus and the break-even point (BEP) achieved for the category by SVM, with Train-200 and Test-100. In order to obtain a sample representative of the whole set of categories, we created a 2-D histogram (with the log scale for the document distribution and 0.2 interval partition of the BEP range) and selected a subset that follows approximately the statistical distribution of the 103 category set. The 16 categories chosen include: godd, c313, gpol, ghea, c15, e121, gobit, m14, m143, gspo, e132, e13, c183, e21, e142, and c13 (see Figure 2 and Appendix B for more details).
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Figure 2

4.2.4 Comparison of Two Classifiers

We have partitioned the test data set into ten disjoint subsets and recorded performance measures of the classifiers, such as F1, separately for each subset. Thus, to compare two classifiers, we can perform a paired t-test on the corresponding two groups of ten F1 values. This is done both for micro- or macro-averaged F1 values. 

Alternately, one may perform a separate t-test for each category and then count how many times one classifier has been found to be significantly better than the other, or vice versa. These values can be quite informative, but the downside is that the comparison of two methods is now described by two numbers, rather than a single confidence value as would be obtained from a single t-test. In principle, one could reach a single confidence value by applying a sort of sign test (along the lines of the “macro sign test” from [YL99]). 

Still another option is to compute, for each category, the average F1 over the entire test set, resulting in a sequence of as many values as there are categories; then one can compare two methods by taking a paired t-test over the corresponding two sequences. This approach (referred to as a “macro T-test” in [YL99]) has been often used, although it has also been criticized because it treats performance values on different categories as random samples from a normal distribution [Lew92].

In our experience, all types of tests tend to give similar results; however, the category-paired t-test is slightly more conservative (i.e., less likely to declare differences to be significant) than the t-test on macroaveraged F1-values, and the t-test on microaveraged F1-values is much more liberal in considering differences to be significant. For the remainder of this paper, we will report significance results from the t-tests based on macroaveraged F1 values.

5 Experiment Results

5.1 Sparsity and the number of features

Most of the existing research has focused on the reduction of the number of features (i.e., reduction of feature space dimensionality) rather than sparsity of the resulting vectors (i.e., reduction of memory requirements for vector storage). It is interesting to explore the relationship between these two data representation aspects.

It is expected that by reducing the number of features to a certain percentage of the initial set one will increase the sparsity of vectors. However, for a fixed percentage of features to be retained, various feature scoring methods yield significantly different levels of vector sparsity. 

Figures 3 and 4 show a comparison of the levels of sparsity achieved by the odds ratio (OR), information gain (IG) and normal-based feature selection on the positive and negative documents in our training data, respectively. For each of these methods we create a ranked list of features, according to the score associated by the method, and plot the curve that shows the sparsity (i.e., the average density) of the vector representation of documents in a given document set as various numbers of top ranked features are used in the vector representation of documents. In principle, for any given list of ranked features and a set of documents that contain these features we can calculate the corresponding sparsity cruve.

Appendix C contains a table of statistics showing the relationship between the number of features retained and the level of sparsity for the three methods we consider here. In the following charts, as well as in later sections, we will discuss several variants of the normal-based feature weighting, depending on how large a set of documents the normal in question has been trained on. If the full Train-1600 training set is used to obtain the normal for feature selection, we call the resulting weighting normal-1; if Train-1/k is used, the resulting weighting is denoted by normal-1/k. For each of these weightings we study the corresponding sparsity curve.

Of course, each category has its own feature weightings and the actual level of sparsity attained if a fixed number of features is kept will vary from one category to another. The values shown in these charts and discussed below are averages across all categories.
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Figure 3
Figure 4

5.1.1 Odds ratio sparsity curves

As can be seen from the two charts, OR has the greatest preference for features that are not commonly present in the documents of the collection. In fact, our analysis of the Train-1600 shows that OR needs to retain almost 1300 features to reach an average of one nonzero component per training vector. On the other hand, IG requires only 20 features to achieve the same.

Comparing OR curves from the two charts we see that the preference for ‘rare’ features is particularly pronounced for features typical of positive documents as the OR curve in Figure 3 ascends much sooner and more rapidly. For large numbers of features kept, the curve levels off since at that point the number of nonzero components in positive documents hardly increases, as the features added then are present almost exclusively in negative documents. Indeed, OR assigns lowest scores to features present in negative documents only. This results in the ascent that begins in the OR curve of Figure 4 after approximately 60,000 features are added. Indeed, by inspection of the feature set, we find that the remaining features practically always have ten or more occurrences in negative documents but none in the positive ones.

5.1.2 Information gain sparsity curves

IG seems to be the most inclined to rank highly features that are common in the document set. It is, however, interesting to note the fast ascents at the right end of the curves in Figures 3 and 4. They essentially show that adding features from the very bottom of the scored feature list increases the average density of vectors rapidly, indicating that these are rather common features but with low IG scores. As expected based on the IG formula, manual inspection shows that these are features that are equally common in positive and negative documents, thus with P(t|pos) ( P(t|neg). 

5.1.3 Normal-based sparsity curves

We observe that the normal-based feature selectors have sparsity curves that fall between these two methods. While the curves for different training sets are very close to each other, a closer look reveals that normals trained on smaller subsets of training data have a stronger preference for common features than those trained on larger subsets. That is, it seems that as larger subsets of training data are used, more features, including relatively uncommon ones, receive a score that is high enough to promote the ranking of the feature and thus include it in the truncated normal. 

In order to understand this phenomenon better we made a simple exploration of density curves associated with the feature weightings normal-1 and normal‑1/16. Since normal‑1/16 was obtained by training over a subset of Train‑1600 (called Train‑1/16), and normal‑1 was obtained by training on the whole Train-1600, the features present in normal‑1/16 are also present in normal-1, although they may have different weights and different rank among the scored features. If we simply truncate the normal-1 so that it excludes features which are not present in the normal‑1/16 (e.g., by setting their weights to 0), thus obtaining the normal-1', the sparsity curve for the resulting feature weighting (denoted in the following paragraphs) is steeper and comes closer to the curve of normal‑1/16 (see Figure 5). This shows that newly introduced features, some uncommon but highly ranked, account for a part of the curve ‘slowdown’. 

However, the difference between the sparsity curves of normal-1' and normal‑1/16 is still significant. As the feature set is the same for both this is purely due to the difference in relative ranking of features. The question is what influences the difference in ranking: the volume of training data (e.g., the statistical characteristics of the data set, regardless of the number of features used in the data representation) or the feature set used in the training phrase. 

To explore this question we fix the feature set to the one obtained from normal‑1/16  (i.e., the features from Train‑1/16) and train a linear classifier over the full training set Train‑1600. Thus, the system uses the full Train‑1600 set of documents (the same that was used in training normal-1) but represented by only those features that were seen when training normal‑1/16 . The resulting weighting, called normal-1", can be compared with both normal‑1/16   and normal-1', which contain the same set of features but with possibly different weights: normal‑1/16   was trained over a smaller subset, Train‑1/16 , while normal-1'  is essentially normal-l truncated (after training) to include only those features that are present in Train‑1/16 (see Table 1).

	Feature weighting
	normal-1
	normal-1'
	normal-1"
	normal‑1/16

	Training set
	Train-1600
	Train-1600
	Train-1600
	Train‑1/16

	Feature set used in training
	Train-1600
	Train-1600
	Train‑1/16
	Train‑1/16

	Final feature set
	Train-1600
	Train‑1/16
	Train‑1/16
	Train‑1/16


Table 1

Comparison of the corresponding sparsity curves for normal-1' and normal-1" shows almost no difference. Thus it is the amount of training data rather than the feature set that influences the difference in sparsity between these two normals.
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Figure 5

In summary, there are two factors that account for the differences in sparsity between normals trained over different size training sets. First, as more examples are considered, the pool of features becomes larger and many relatively uncommon but nonetheless helpful features get the opportunity to obtain a moderately high position in the ranking. (Hence the difference between normal‑1 and normal‑1'.) Second, the statistical properties of the considered feature set change with the volume of training data used and that seems to play a significant role. Many of the less common features, even if they do appear in a smaller training set, might be largely ignored in the ranking trained on that training set only, while they achieve a much higher position in a ranking trained on a larger training set. (Hence the difference between normal‑1'' and normal‑1/16.)

5.2 Dimensionality reduction and classification performance

It is also interesting to relate the reduction in dimensionality to the reduction in classification performance.
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Figure 6

From Figure 6 we see that OR needs to retain one or two orders of magnitude more features to achieve a performance that is comparable to the other FS methods when used with the linear SVM classifier. This is not surprising in view of the observations we made in the previous section. Indeed, OR scores highly features that are characteristic of positive documents, among those also the ones that are ‘rare’ and thus do not necessarily make an impact on the document representations and the SVM training process.

In many practical situations the management of computing resources is important and thus the sparsity seems to be of high practical importance. In the remainder of the study we will focus on sparsity and use dimensionality reduction to meet the sparsity requirements. 

5.3 Experiments with the fixed memory constraint

Part of the motivation for using feature selection is to describe documents with sparser vectors and thus process larger sets of documents with a given amount of memory. However, we need to establish evidence that such an approach is plausible and that it is possible to achieve an effective tradeoff between selecting a subset of features (to make vectors sparser) and selecting a subset of documents (to have fewer vectors). For example, if we have only a quarter of the amount of memory required for storing full vectors of the complete set of training data we could: (i) keep full vectors but only for 1/4 of the training documents; or (ii) keep 1/2 of the documents, and use feature selection to make the vectors twice as sparse; or (iii) keep all the documents, and use feature selection to make the vectors four times sparser; etc.

In order to explore these possibilities we evaluate the classification performance for the following type of scenarios. Let us assume that storing all N documents from Train-1600 at sparsity
 S=80 would require M units of memory (S·N=M), and that we only have M/2K units available for some integer K. We are seeking the values S' and N' such that S'·N'=M/2K and for which the classification performance is not significantly degraded. Thus, we experiment with values S'=S/2k and N'=N/2K–k, for k=0,...,K. Note that ideally we would vary the values of S and N on a finer scale but the current approach is already quite informative as the experiment results show (see Figure 7 and Table 1). 

For a given K, we first need to obtain a ranking of features, to be used as the basis of feature selection. Since the SVM model on which this ranking will be based will have to be trained over full vectors, it can use at most N/2K documents to respect the memory constraint. Then, for a given higher sparsity level S/2k , k=0,...,K, we select as many top features from the ranking as are necessary to achieve this sparsity level, and then train a new model over the largest training set that can fit into the available memory given the fact that vectors are now sparser (this is the set containing N/2K–k documents). Thus, for a given K, the result at sparsity 80 is based on a training set that is only half as large as the set used for the experiment with sparsity 40, only one-quarter the size of the training set used for sparsity 20, and so on.
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Figure 7.

	Sparsity vs. Training Set Size Tradeoff

	Sparsity
	K=1, Memory: M/2
	K=2, Memory: M/4
	K=3, Memory: M/8
	K=4, Memory: M/16

	
	Training Set
	F1
	Training Set
	F1
	Training Set
	F1
	Training Set
	F1

	S = 80
	N/2
	67.3
	N/4
	65.2
	N/8
	62.7
	N/16
	56.4

	40
	N
	68.4
	N/2
	66.5
	N/4
	64.9
	N/8
	63.1

	20
	
	
	N
	67.0
	N/2
	64.6
	N/4
	62.9

	10
	
	
	
	
	N
	64.2
	N/2
	62.2

	5
	
	
	
	
	
	
	N
	60.1


Table 2.

Figure 7 and Table 2 show the classification performance measured by the macroaverage of the F1 measure. The error bars on the graph show standard errors of F1 macro-averages over the 10 subsets of the test set. For comparison, if the memory constraint is removed (i.e. K=0) the classifier based on S=80 and the full training set achieves a macroaveraged F1 of 69.0%. 

The results confirm that for a fixed memory constraint (fixed K) one can achieve a better performance by applying feature selection and using a larger set of training documents than by using the full set of features but a smaller training set. For example, it is beneficial to reduce the number of nonzero components by 50% and double the number of training documents if one is working under the memory constraint (this always brought a statistically significant improvement in performance in the above experiments). That is, in some sense, expected, based on the evidence from related research that reducing the feature space typically does not dramatically affects the classification performance.

More radical reduction of the feature space (i.e., using k>1) generally does not bring additional improvements in performance, and eventually, when the size of the training set requires vectors to be very sparse to fit in the available memory, performance may deteriorate. This is not surprising since in this case the original set of documents used to generate the initial normal may be too small to provide useful terminology and statistics for effective feature ranking. The fixed feature set is simply not rich enough to allow generalization of the classifier to the test data. 

Finally, the performance at different values of K confirms that having twice as much memory practically always allows one to achieve better performance, either by increasing the number of training vectors or by keeping more features and making the vectors less sparse.
Experiments at fixed sparsity levels

In these experiments we use Train-1600 as the training set and different feature scoring methods to achieve a desired level of sparsity, i.e., a desired average number of nonzero components per training vector. In particular we look at sparsity of 2, 2.5, 5, 10, 20, 40, and 80 features per document as well as the full document vectors which have about 88.3 nonzero components per document on average. 

For feature scoring methods we use Odds Ratio (OR), Information Gain (IG), and ranking based on SVM normals: normal‑1, normal‑1/2, normal‑1/4, normal‑1/8, and normal‑1/16. The methods normal‑1/k use SVM normals obtained from the set Train‑1/k, containing 1/k of the documents in the full training set (Train-1600); after feature selection, the final linear SVM model is trained on the full training set but with the reduced set of features. This allows us to see how robust SVM classifier is with respect to the fixed feature sets obtained from smaller amounts of training data.

Figure 8 contains graphs that show the SVM classification performance based on four measures: macro-averages of F1, break-even-point (BEP), precision, and recall. The test set has been divided into ten folds, and the macroaveraged value (i.e., average over all categories) of each performance measure has been calculated separately for each fold. The average of this over all ten folds is then shown in the charts. (Thus, references to “average precision” in the charts should not be confused with average 11-point precision, another popular performance measure, which however we have not employed in these experiments.)
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Figure 8.

5.3.1 Comparison of the normal-1 ranking with Odds Ratio and Information Gain

From the perspective of F1 and BEP measures, SVM-based ranking of features is most effective for the purpose of feature selection. The performance is dominated by this method for all levels of sparsity, except when only a couple of features per document are used. OR seems to perform better in that scenario according to the F1 measure for S=2. Similarly, OR provides better recall for S(2.5. 

This is not surprising since OR retains a much larger set of features than the normal to achieve the same sparsity level (see Figure 3). Furthermore, it focuses on features that are characteristic of positive examples, which in turn enables SVM to capture the positive examples more easily. However, for the same reason, the precision of classification based on OR selection suffers, as can be seen from the precision graph. Information gain, on the other hand, ensures a consistently better precision than normal-1 for all sparsity levels S>5 (these differences are statistically significant at S=20 and 80). 

5.3.2 Comparison of normal-1/k, k=1,2,4,8,16

SVM normals obtained from larger data sets have a clear advantage on all performance measures except for precision. Indeed they all seem to perform similarly according to that measure. Thus, if one is concerned with precision only one need not hesitate to fix the feature set to the one obtained from a smaller set of data and then retrain. Using more data in the initial phase introduces features that definitely help recall but do not affect precision. Normal-based selection seems to pick the features important for precision even from smaller sets of data.

5.3.3 Comparison of Odds Ratio and Information Gain
Similar to our earlier observations, the tendency of OR feature selection to prefer rare features present in positive documents causes OR to perform better than IG on recall but consistently worse according to the precision for all levels of sparsity. The trade-off between recall and precision for both methods, as seen from F1 and BEP measures, is such that IG outperform OR for sparsity levels above 20 features per document on both of these measures.

5.4 Effectiveness

Although the above results show that feature selection generally does not improve performance of the linear SVM classifier, we can see that the normal-based feature selection with sparsity S=80 does produce a statistically significant improvement over the performance of vectors with the complete feature set which corresponds to S=88.3.

	Feature selection method
	Number and percentage of features retained at S = 80
	Macroaveraged

F1 at S=80
	P-value from t-test

	Odds ratio
	57,197
	75.42 %
	0.6857 ± 0.0053
	0.881

	Information gain
	60,234
	79.42 %
	0.6843 ± 0.0047
	0.685

	Normal-1/16
	20,316
	26.79 %
	0.6789 ± 0.0050
	0.882

	Normal-1/8
	22,274
	29.37 %
	0.6859 ± 0.0048
	0.901

	Normal-1/4
	24,338
	32.09 %
	0.6864 ± 0.0050
	0.949

	Normal-1/2
	26,303
	34.68 %
	0.6894 ± 0.0050
	0.998

	Normal-1
	28,638
	37.76 %
	0.6904 ± 0.0050
	0.997

	Full feature set
	75,839
	100.00 %
	0.6837 ± 0.0049
	


Table 3. Linear SVM performance with different feature selection methods at S = 80

The test set has been split into ten folds and the macro-average of F1 computed for each fold. Averages and standard errors across these ten folds are shown. The last column shows the p-value from the t-test comparing the performance of the linear SVM classifier for each FS method at S=80 with the performance for full document vectors (S=88.3). We observe that at S=80 the performance is never significantly worse and for normal‑1/2 and normal-1 it is significantly better than the performance with full vectors. A more systematic analysis of this phenomenon, e.g., exploration of the effects of sparsities S=85, 75, 70, etc., will be subject of future research.
Note that the number of features that needs to be retained to achieve a desired level of sparsity varies from category to category since each classifier gives rise to a different feature ranking. Shown here are averages across the 16 categories considered.

The statistics in Table 3 show that the normal-based feature selection discards as many as 60% to 75% of features to achieve the sparsity of S=80. In some cases, even greater sparsities can be reached without significantly decreasing the performance. This can be seen in Table 4, which shows that normal‑1 at sparsity 40 actually still performs significantly better than full vectors, while the performance of normal‑1/2 and normal‑1/4 at sparsity 40, and that of normal‑1 at sparsity 20, is not significantly different from the performance of the full feature set.

	Feature selection method
	
Sparsity
	Number and percentage of features retained
	Macroaveraged

F1
	P-value from t-test

	Normal-1/4
	40
	4278
	5.65 %
	0.6831 ± 0.0056
	0.591

	Normal-1/2
	40
	4628
	6.11 %
	0.6842 ± 0.0042
	0.564

	Normal-1
	20
	1545
	2.04 %
	0.6786 ± 0.0037
	0.876

	Normal-1
	40
	5079
	6.70 %
	0.6905 ± 0.0045
	0.970

	Full feature set
	88.3
	75839
	100.00 %
	0.6837 ± 0.0049
	


Table 4. Linear SVM performance with different feature selection methods at S = 40 and 20.

5.5 Training on the full training period

In the experiments presented so far, the largest training set, and the one used most of the time, was Train-1600, which consists of 118,924 documents, selected from the training period of documents dated 14 April 1997. However, the entire training period contains 504,468 documents, i.e., almost four times as many. Thus it is natural to ask how much we lose by limiting ourselves to training on the approximately 24% of the training documents (i.e., those included in Train-1600). Because it would be too time-consuming to conduct an exhaustive set of experiments on the full training period, we only trained one model for each category, without any feature selection. We compare the results with the performance of the linear SVM model trained on Train-1600, also without any feature selection applied.

As can be seen from Table 5, training on Train-1600 tends to yield better performance for smaller categories but poorer for larger categories, while the contrary is true when training on the entire training period. The set of positive examples for small categories is in fact the same in both training sets, implying that it is the relative representation of the category within the training set that causes the difference in performance. Recall that the sampling procedure by which Train-1600 was obtained tends to make sure that smaller categories are well represented at the expense of the larger ones which may cover a relatively smaller proportion of documents than they do in the full training period. This also explains why the results over Train-1600 have a higher macroaveraged F1 but a lower microaveraged F1 than over the full training period.

However, part of the extremely poor F1 performance of classifiers for some of the smaller categories (e.g., c313) when trained on the entire training period may also be due to a poorly chosen threshold  b  (see Section 3.1.3). Indeed, the breakeven point measure (also shown in Table 5), which involves calculating precision and recall of the document ranking based on scores that involve only the normal w, does not suffer such an extreme decrease when the full training period is involved.

	
	Train-1600 (118,924 docs.)
	Entire training period (504,468 docs.)

	Category name
	Size
	F1
	BEP
	Size
	F1
	BEP

	c13
	9,895
	(8.32%)
	0.4891
	0.5504
	24,332
	(4.82%)
	0.5186
	0.5873

	c15
	9,272
	(7.80%)
	0.8956
	0.9024
	89,373
	(17.72%)
	0.9167
	0.9169

	c183
	2,240
	(1.88%)
	0.7469
	0.7457
	4,715
	(0.93%)
	0.7283
	0.7572

	c313
	741
	(0.62%)
	0.3467
	0.3603
	741
	(0.15%)
	0.0804
	0.2935

	e121
	1,444
	(1.21%)
	0.7442
	0.7602
	1,444
	(0.29%)
	0.7720
	0.7585

	e13
	3,053
	(2.57%)
	0.7917
	0.9715
	4,135
	(0.82%)
	0.8036
	0.7961

	e132
	602
	(0.51%)
	0.8109
	0.8267
	602
	(0.12%)
	0.8360
	0.8453

	e142
	135
	(0.11%)
	0.4632
	0.5280
	135
	(0.03%)
	0.3582
	0.4920

	e21
	8,484
	(7.13%)
	0.8129
	0.8154
	27,031
	(5.36%)
	0.8254
	0.8315

	ghea
	2,616
	(2.20%)
	0.6442
	0.6497
	3,963
	(0.79%)
	0.6269
	0.6532

	gobit
	551
	(0.46%)
	0.3838
	0.4360
	551
	(0.11%)
	0.1722
	0.5157

	godd
	1,642
	(1.38%)
	0.2687
	0.3701
	1,798
	(0.36%)
	0.0829
	0.3807

	gpol
	9,867
	(8.30%)
	0.7146
	0.7260
	36,650
	(7.27%)
	0.7437
	0.7562

	gspo
	1,931
	(1.62%)
	0.9653
	0.9761
	22,876
	(4.53%)
	0.9792
	0.9802

	m14
	9,812
	(8.25%)
	0.9398
	0.9413
	50,543
	(10.02%)
	0.9470
	0.9478

	m143
	2,649
	(2.23%)
	0.9224
	0.9257
	13,121
	(2.60%)
	0.9264
	0.9285

	Macroaverage
	
	
	0.6837
	0.7178
	
	
	0.6448
	0.7150

	Microaverage
	
	
	0.8461
	
	
	
	0.8635
	


Table 5. Comparison of the performance of classifiers trained on
Train-1600 and those trained on the full training period. No feature 
selection was performed in either case.

The time needed to train all 16 models (one for each category) was 2,435 s when working with Train-1600 and 15,769 s when working with the entire training period (these timings were obtained on a computer with a 700 MHz PIII processor and 1 GB main memory).

5.6 Combining feature weightings from several training data subsets

In comparing the sparsity behaviour of the normal‑1/16 weighting, obtained from a smaller set of documents (Train‑1/16), with that of normal‑1, obtained from the full Train‑1600 set, we have seen that part of the difference stems from the unability of normal‑1/16 to consider more documents at the same time, but part of it also stems from the simple fact that many features from Train-1600 simply never occur in Train‑1/16, hence normal‑1/16 has no good alternative but to assign them a weight of 0 (see section 5.1.3). This in turn affects the classification performance of models based on the resulting feature ranking (see Figure 8).

Since our objective is to maximize the effectiveness of feature selection from smaller subsets of data, we explore the ways to increase the pool of features from which the final selection is made. (This will address the second of the two above-mentioned reasons of the poorer performance of weightings based on smaller subsets.) We consider the following extension of the feature weighting procedure: (1) obtain several subsets of the basic training set (i.e., subsets of Train-1600); (2) train a linear svm model on each of the subsets; (3) from each model, assign a weight to each feature, equal to the absolute value of the corresponding component of the normal; (4) obtain the final weight of a feature by combining the weights obtained from models trained on individual subsets. In our preliminary experiments we used the average and the maximum as combining functions in step (4), and observed no significant differences between the two. Thus we decided to use the maximum in the following experiments.

The rationale behind this approach is that it allows us to work within the same memory limits as by limiting ourselves to a single small subset of the training set, while it also permits us to process all the documents and give all the features a chance to obtain a weight. It also helps reduce bias that would be introduced by the choice of a single subset.

To test this idea, we divided the Train-1600 into 16 random disjoint subsets, without any particular regard for the distribution of categories within each of the 16 subsets. Thus, since the combined weightings approach needs to consider only one of the subsets at the same time, and because the subsets are approximately 1/16 the size of the full training set, its memory requirements should be similar to those for normal‑1/16. 
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Figure 9.

The chart on Figure 9 shows a performance comparison of the combined feature weighting approach as described above and the normal‑1/16, normal‑1/4, and normal‑1 weightings. As can be seen from the chart, the performance of the combined weightings approach is roughly halfway between those for normal‑1/16 and normal‑1, and is indeed comparable to the performance of normal‑1/4. In addition, the combined weightings approach performs particularly well at lower sparsity levels, which suggests that combining several weightings is a comparably robust feature weighting method.

Concerning the time requirements of the combined weighting approach, note that it actually takes less time to train n models on subsets 1/n the size of the full training set than to train one model on the full training set, because the training of an SVM model is not a linear-time algorithm. In order to obtain feature weightings for all 16 categories used in our experiments, the combined weighting approach requires 1,214 s, while normal‑1 required 3,934 s; however, normal‑1/4, which is comparable in performance to the combined weighting approach, only requires 546 s. Incidentally, these figures suggest that, for the version of SvmLight we were using, the running time of SVM training (for N training documents) is on the order of O(N1.43).

6 Summary and future work

In this study we emphasized the concept of sparsity as a more appropriate characteristic of the data representation than the number of features used, particularly when a variety of feature selection procedures are considered. 

We also proposed a feature ranking and feature selection method based on the linear SVM that is then used in conjunction with the SVM classifier. However, this method can be combined with other classification algorithms as well. An interesting question then arises: is it still good to use feature selection based on SVM, or is it better to devise a feature selection method based on the training algorithm itself? In other words, can we say anything about the compatibility of the feature selection method with the final classification algorithm when applying the proposed iterative training strategy?

Furthermore, other linear classifiers could be similarly used to weight and select features, including Perceptron [Ros58], Winnow [Litt88], Bayes Point Machine [HGC01], LLSF [YC92], Widrow-Hoff [LSCP96], exponentiated gradient [KW94, LSCP96], and so on. (Naive Bayes is also essentially a linear classifier if we work with logarithms of probabilities. This has been exploited by e.g. [GF01].) While these methods are known to be more or less successful in classifying documents, it would be interesting to see how they compare with the SVM-based feature selection method in reducing the feature space. 

Finally, it would be interesting to evaluate our approach on other data sets, perhaps on domains outside text categorization.

Appendix A: About the Reuters-2000 Corpus

The Reuters-2000 corpus, released on 3 November 2000 as “Reuters Corpus, Volume 1”, contains 806,791 Reuters news articles from the period 20 August 1996 through 19 August 1997. They are distributed by Reuters in compressed form (zip files), occupying approximately 984 MB of space. Each document is a small xml file and when uncompressed these files have a total size of approximately 2,369 MB.

We only consider the body of each document, i.e., the contents of the (text( element in the xml file containing that document. The body of each document contains an average of 1,180.13 non-whitespace characters (median: 883), thus the total for the corpus is approximately 950 million characters (908 MB). Most of the difference between this and the 2,369 MB quoted above is due to the meta-data present in each file. 

There are on average approx. 206.8 words in the body of a document (median: 150), or 118.8 (median: 88) if multiple occurrences of the same word in a document are treated as one. However, if we ignore stopwords (from a list of 523 stopwords, of which 519 actually appeared in the corpus (of course one will wonder what the missing stopwords were: “howbeit”, “qv”, “thanx”, “uucp”)), the average number of words in the body of a document is 118.47 (median: 88), or 88.4388 (median: 65) if multiple occurrences are treated as one. On the average, a term appears in 136.4 documents, or 96.42 if stopwords are ignored; the median is 2 in both cases (329,226 terms occur in only one document and 100,404 terms occur in only two documents).

There are 103 categories, organized hierarchically. For example, ccat is the common supercategory of all categories with names beginning in c; likewise there are ecat, gcat, and mcat. In addition, if one category name is the prefix of another, the latter category is a subcategory of the former. However, we did not take the hierarchical structure of the categories into account. The sizes of categories vary widely as can be seen in Table B1 in Appendix B. Further statistics of interest: a document belongs to 3.20 categories on average (the median value is 3); 2,364 documents belong to no categories at all; 70% of the documents belong to 2 or 3 categories; one document belongs to 17 categories, none belong to more than 17.

Statistics such as these given here will of course depend somewhat on the procedure used to break documents into words. Our procedure is as follows: (1) convert the document into lowercase; (2) extract, from each paragraph, maximal contiguous subsequences of non-whitespace characters; (3) for each such subsequence: (3a) if it contains no alphabetic characters, discard it; (3b) otherwise, strip leading and trailing non-alphanumeric characters, and report the remainder as a term occurring in the current document. — This approach has the potentially welcome characteristic of treating compounds consisting of two words connected with a hyphen as single units but it would do the same for two words connected by a sequence of dots, which sometimes occurs when such punctuation is used to simulate tables in the documents. However, such occurrences are relatively rare.   

Appendix B: Classification of 103 categories over Train-200 

This section presents the results of preliminary experiments on which our choice of 16 categories for further work was based.

For these preliminary experiments, a smaller training set, called Train-200, was prepared in the same way as the Train-1600 used elsewhere in this paper (see Section 4.2.1). Similarly, a test set, called Test-100, was prepared from the test period data (analogously to the way Train-200 and Train-1600 were prepared from the training period) to evaluate the performance of the classifiers. Train-200 consists of 19213 documents, and Test-100 consists of 9596 documents. 

After discarding features occurring in less than 4 documents from Train-200, each document was represented by a normalized tf-idf vector. Each category was treated as a two-class problem, and a linear SVM model was trained for it using the documents from Train-200. This model was then tested on Test-100, and the resulting precision-recall break-even point (BEP in the table below) was used as an indicator of how difficult or easy that individual category is. Table B1 below reports the break-even points for all categories as well as the size of each category, i.e., the number of the documents (from the full Reuters-2000 corpus) that belong to the category. 

Note that the full corpus contains 806,791 documents. The names of the 16 categories chosen for further experiments are displayed in italics.

	
	Category
	BEP
	Size
	
	
	Category
	BEP
	Size
	
	
	Category
	BEP
	Size
	

	
	c11
	0.3552
	24,325
	
	
	e12
	0.6671
	27,078
	
	
	g159
	0.0000
	40
	

	
	c12
	0.6299
	11,944
	
	
	e121
	0.8051
	2,182
	
	
	gcat
	0.8845
	234,873
	

	
	c13
	0.5227
	37,410
	
	
	e13
	0.8353
	6,345
	
	
	gcrim
	0.7612
	32,219
	

	
	c14
	0.6645
	7,410
	
	
	e131
	0.7751
	5,659
	
	
	gdef
	0.7169
	8,842
	

	
	c15
	0.7412
	150,164
	
	
	e132
	0.9083
	939
	
	
	gdip
	0.6732
	37,739
	

	
	c151
	0.7833
	81,875
	
	
	e14
	0.8119
	2,086
	
	
	gdis
	0.8106
	8,657
	

	
	c1511
	0.7673
	23,212
	
	
	e141
	0.7155
	376
	
	
	gent
	0.7119
	3,801
	

	
	c152
	0.5480
	73,092
	
	
	e142
	0.8000
	200
	
	
	genv
	0.6988
	6,261
	

	
	c16
	0.7257
	1,920
	
	
	e143
	0.8684
	1,206
	
	
	gfas
	0.8350
	313
	

	
	c17
	0.7557
	41,829
	
	
	e21
	0.7243
	43,128
	
	
	ghea
	0.6522
	6,030
	

	
	c171
	0.6966
	18,313
	
	
	e211
	0.6368
	15,768
	
	
	gjob
	0.8101
	17,241
	

	
	c172
	0.7600
	11,487
	
	
	e212
	0.7596
	27,405
	
	
	gmil
	0.0000
	5
	

	
	c173
	0.6441
	2,636
	
	
	e31
	0.8300
	2,342
	
	
	gobit
	0.7752
	844
	

	
	c174
	0.9262
	5,871
	
	
	e311
	0.8101
	1,701
	
	
	godd
	0.4394
	2,802
	

	
	c18
	0.7585
	51,480
	
	
	e312
	0.6500
	52
	
	
	gpol
	0.6518
	56,878
	

	
	c181
	0.6741
	43,374
	
	
	e313
	0.9111
	111
	
	
	gpro
	0.6740
	5,498
	

	
	c182
	0.6154
	4,671
	
	
	e41
	0.8030
	16,900
	
	
	grel
	0.7778
	2,849
	

	
	c183
	0.7484
	7,406
	
	
	e411
	0.7246
	2,136
	
	
	gsci
	0.7879
	2,410
	

	
	c21
	0.4357
	25,403
	
	
	e51
	0.6612
	20,722
	
	
	gspo
	0.9302
	35,317
	

	
	c22
	0.4306
	6,119
	
	
	e511
	0.6798
	2,933
	
	
	gtour
	0.8319
	680
	

	
	c23
	0.5821
	2,625
	
	
	e512
	0.6261
	12,634
	
	
	gvio
	0.7003
	32,615
	

	
	c24
	0.5396
	32,153
	
	
	e513
	0.6522
	2,290
	
	
	gvote
	0.7037
	11,532
	

	
	c31
	0.5935
	40,506
	
	
	e61
	0.9100
	391
	
	
	gwea
	0.7847
	3,878
	

	
	c311
	0.6911
	4,299
	
	
	e71
	0.8818
	5,270
	
	
	gwelf
	0.6967
	1,869
	

	
	c312
	0.5902
	6,648
	
	
	ecat
	0.8503
	117,539
	
	
	m11
	0.7549
	48,700
	

	
	c313
	0.4808
	1,115
	
	
	g15
	0.8541
	19,152
	
	
	m12
	0.7041
	26,036
	

	
	c32
	0.7308
	2,084
	
	
	g151
	0.5317
	3,307
	
	
	m13
	0.7610
	52,972
	

	
	c33
	0.6006
	15,331
	
	
	g152
	0.4663
	2,107
	
	
	m131
	0.7411
	28,185
	

	
	c331
	0.8319
	1,210
	
	
	g153
	0.7534
	2,360
	
	
	m132
	0.6885
	26,752
	

	
	c34
	0.7528
	4,835
	
	
	g154
	0.8312
	8,404
	
	
	m14
	0.8813
	85,100
	

	
	c41
	0.7756
	11,354
	
	
	g155
	0.3922
	2,124
	
	
	m141
	0.8522
	47,708
	

	
	c411
	0.7792
	10,272
	
	
	g156
	0.6515
	260
	
	
	m142
	0.8779
	12,136
	

	
	c42
	0.6855
	11,878
	
	
	g157
	0.7865
	2,036
	
	
	m143
	0.8895
	21,957
	

	
	ccat
	0.8711
	374,316
	
	
	g158
	0.5767
	4,300
	
	
	mcat
	0.8317
	200,190
	

	
	e11
	0.5650
	8,568
	
	
	
	
	
	
	
	
	
	
	


Table B1: Category size and break-even-point performance statistics of the linear SVM model for 103 Reuters categories over Train-200 data set

The selected 16 categories are used in experiments that involve various sets of training and test data. The following table shows the names of the selected categories and the number (and percentage) of positive examples for each of these categories within several data sets. The document sets shown are: Train-1600 (the largest of the sets actually used for training); Train‑1/4 and Train‑1/16 (subsets of Train-1600; see section 4.2.1 for details); the full training period (all documents dated 14 April 1997 or earlier); the full test period (all documents dated after 14 April 1997); and the entire Reuters-2000 corpus.

	
	Train-1/16
	Train-1/4
	Train-1600
	Full training period
	Full test period
	Full Reuters-2000

	
	(7432 docs.)
	(29731 docs.)
	(118924 docs.)
	(504468 docs.)
	(302323 docs.)
	(806971 docs.)

	c13
	702
	(9.45%)
	2,645
	(8.90%)
	9,895
	(8.32%)
	24,332
	(4.82%)
	13,078
	(4.33%)
	37,410
	(4.64%)

	c15
	515
	(6.93%)
	2,199
	(7.40%)
	9,272
	(7.80%)
	89,373
	(17.72%)
	60,791
	(20.11%)
	150,164
	(18.61%)

	c183
	128
	(1.72%)
	561
	(1.89%)
	2,240
	(1.88%)
	4,715
	(0.93%)
	2,691
	(0.89%)
	7,406
	(0.92%)

	c313
	50
	(0.67%)
	197
	(0.66%)
	741
	(0.62%)
	741
	(0.15%)
	374
	(0.12%)
	1,115
	(0.14%)

	e121
	101
	(1.36%)
	380
	(1.28%)
	1,444
	(1.21%)
	1,444
	(0.29%)
	738
	(0.24%)
	2,182
	(0.27%)

	e13
	217
	(2.92%)
	883
	(2.97%)
	3,053
	(2.57%)
	4,135
	(0.82%)
	2,210
	(0.73%)
	6,345
	(0.79%)

	e132
	47
	(0.63%)
	199
	(0.67%)
	602
	(0.51%)
	602
	(0.12%)
	337
	(0.11%)
	939
	(0.12%)

	e142
	16
	(0.22%)
	67
	(0.23%)
	135
	(0.11%)
	135
	(0.03%)
	65
	(0.02%)
	200
	(0.02%)

	e21
	510
	(6.86%)
	2,158
	(7.26%)
	8,484
	(7.13%)
	27,031
	(5.36%)
	16,097
	(5.32%)
	43,128
	(5.35%)

	ghea
	205
	(2.76%)
	733
	(2.47%)
	2,616
	(2.20%)
	3,963
	(0.79%)
	2,067
	(0.68%)
	6,030
	(0.75%)

	gobit
	44
	(0.59%)
	148
	(0.50%)
	551
	(0.46%)
	551
	(0.11%)
	293
	(0.10%)
	844
	(0.10%)

	godd
	120
	(1.61%)
	430
	(1.45%)
	1,642
	(1.38%)
	1,798
	(0.36%)
	1,004
	(0.33%)
	2,802
	(0.35%)

	gpol
	590
	(7.94%)
	2,385
	(8.02%)
	9,867
	(8.30%)
	36,650
	(7.27%)
	20,228
	(6.69%)
	56,878
	(7.05%)

	gspo
	100
	(1.35%)
	449
	(1.51%)
	1,931
	(1.62%)
	22,876
	(4.53%)
	12,441
	(4.12%)
	35,317
	(4.38%)

	m14
	557
	(7.49%)
	2,325
	(7.82%)
	9,812
	(8.25%)
	50,543
	(10.02%)
	34,557
	(11.43%)
	85,100
	(10.55%)

	m143
	133
	(1.79%)
	608
	(2.05%)
	2,649
	(2.23%)
	13,121
	(2.60%)
	8,836
	(2.92%)
	21,957
	(2.72%)


Table B2: Distribution of positive examples for the 16 selected Reuters categories
in various data sets used in the experiments.

Appendix C: Number of features and sparsity statistics

The following table shows the relationship between the number of features retained in the feature set and the sparsity, i.e., the average number of non-zero components in the corresponding vector representations of documents in a given set. The statistics presented here are obtained over the Train-1600 data set.  

	Number of features
	Odds ratio
	Information gain
	Normal-1/16
	Normal-1/4
	Normal-1

	10
	0.002
	0.542
	0.271
	0.270
	0.301

	20
	0.004
	0.998
	0.559
	0.507
	0.534

	30
	0.005
	1.446
	0.786
	0.796
	0.777

	50
	0.007
	2.224
	1.238
	1.292
	1.222

	75
	0.009
	3.172
	1.772
	1.804
	1.733

	100
	0.015
	4.111
	2.249
	2.301
	2.270

	200
	0.037
	7.123
	4.187
	4.266
	4.328

	300
	0.074
	9.708
	6.140
	6.322
	6.074

	500
	0.152
	14.040
	9.674
	9.703
	9.132

	750
	0.343
	17.966
	13.612
	13.261
	12.464

	1000
	0.634
	21.339
	17.044
	16.453
	15.333

	2000
	2.583
	30.405
	28.025
	26.385
	24.319

	3000
	6.152
	35.989
	36.253
	33.477
	30.769

	5000
	11.158
	43.087
	48.674
	44.405
	40.914

	7500
	17.900
	48.364
	58.597
	53.896
	49.829

	10000
	25.689
	51.566
	65.621
	60.790
	56.088

	20000
	56.612
	57.138
	79.338
	75.700
	71.944

	30000
	70.085
	60.469
	83.996
	82.288
	79.682

	40000
	73.803
	62.900
	85.622
	85.210
	83.959

	50000
	75.002
	66.192
	86.587
	86.535
	86.137

	60000
	76.221
	70.803
	87.389
	87.377
	87.261

	70000
	79.046
	78.843
	87.980
	88.007
	87.910

	75839
	88.266
	88.266
	88.266
	88.266
	88.266


Table C1: Sparsity levels achieved on the Train-1600 document set by retaining a given number of top ranked features for each of the five feature scoring methods considered 
Each feature scoring method implies a ranking of features. Limiting the document representation to the highest scoring N features reduces the average number of terms that remain in a document and hence the average number of non-zero components in the vectors representing the documents. It interesting to see the difference in the achieved sparsity of the document representations for the same number of features retained for each of the five considered feature ranking methods: odds ratio, information gain, and three normal based feature selections. 
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� There are several variants of the tf�idf score. We use the following formulas: idf(t)=log(1+N/df(t)) where df(t) is the “document frequency” of term t, i.e. the number of documents in the training set that contain the term t, and N is the total number of documents in the training set. The weight of term t in document d is then defined as tf(t,d)(idf(t), where is tf(t,d) the “term frequency”, which is simply the number of occurrences of term t in document d.


� Subsets of the Train-1600 are prepared as follows: in the list of 1600 representatives for each category, each example is given a random number between 0 and 1, and is kept in the subset if this number is less than some threshold T. Thus, a document proposed as a representative of several categories also has a greater chance of being kept in the subset. The threshold T was chosen so as to yield the desired number of documents in the new sample.  For example, a threshold of approximately 0.45 was used to obtain the 59,462 documents for the sample Train-1/2 containing half the documents of Train-1600. Note that, as a consequence, small categories may be poorly represented in the smaller subsets. For example, e312, with 32 documents in the training period, has all these documents included in Train-1600, but only one has made it into Train-1/16 (however, we did not include any such extremely small categories in our experiments, and it is therefore unclear how these sampling anomalies would affect the performance).


� In fact, the full vectors of the training set Train-1600 have approximately 88.3 nonzero components on average. 





