

Feature Selection Using Linear Support Vector Machines

Janez Brank
Marko Grobelnik

Nataša Milić-Frayling
Dunja Mladenić

12 June 2002

Technical Report
MSR-TR-2002-63

Microsoft Research
Microsoft Corporation

One Microsoft Way
Redmond, WA 98052

 Feature Selection Using Linear Support Vector Machines

Janez Brank, Marko Grobelnik, Dunja Mladenić
Jožef Stefan Institute, Ljubljana, Slovenia

Nataša Milić-Frayling

Microsoft Research, Cambridge, United Kingdom

1 Introduction
Trends towards personalizing information services and client-based applications have increased the
importance of effective and efficient document categorization techniques. New user scenarios,
including the use of devices with various specifications, have placed higher demand on performance
considerations and computing resource management when designing and testing classification
techniques. It is that aspect of text classification that led us to explore methods for training classifiers
that optimally use the computing memory and processing cycles for the available training data. In
particular, we consider tradeoffs between the quality of document classification, as measured by
commonly used performance measures, and reductions of a feature set used to represent the data.

The timing of our study coincides with the availability of a larger data collection for text classification
research provided by Reuters [Reu00]. While most of the past research has been constrained by a
limited availability of data sets suitable for experimentation, the new Reuters collection provides
opportunities for numerous experimental designs. It enables researchers and practitioners to aim at
designing and testing systems that can meet the requirements of real life operations. Indeed, while the
popular, smaller Reuters collection [Lew98] contained less than 30,000 documents in total, requiring
less than 30 MB of disk storage, the new collection contains more than 800,000 documents and
amounts to over 2 GB of text data.

In this study we propose a method for feature selection and iterative classifier training based on
Support Vector Machines (SVM) with linear kernels. We explore how this and other feature selection
methods can be used to make tradeoffs between the amount of training data and the sparsity of the
document representation for the fixed amount of system memory.

Our experimental results show that the SVM-based feature selection provides a suitable way of
preserving the classification performance while significantly reducing the size of the feature space and
increasing the sparsity of data.

In the following sections we first describe the proposed feature selection and classifier training method
pointing to relevant issues. We give a brief overview of feature selection methods used in the past
research, describe the experiments in which we compare the effectiveness of these methods in the
context of the proposed training strategy, and present the experimental results. We conclude a brief
summary and the outline of future research.

2 Training with SVM Feature Selection
In situations where there is an abundance of training data it is conceivable that the training of classifiers
cannot be performed over the full set of data due to limited computing resources. Thus a question arises
how the training of a given classifier can still be done so that the full training set is taken into account.
Here we present a simple procedure that has proven quite effective, as our experimental results show
(see Section 5).

Our strategy is first to train linear Support Vector Machines (SVM) on a subset of training data to
create initial classifiers. In this model each classifier is really a hyperplane separating ‘positive’ and
‘negative’ examples for the class (i.e. documents belonging to this class from those not belonging to it),
and can be represented by the normal (i.e. a vector perpendicular to it) and a threshold.

The second step involves eliminating features from the normal that have low weights in order to
achieve a specified level of data sparsity. Sparsity is here defined as the average number of non-zero
components in the vector representation of data or, in other words, the average number of terms left in
documents after some terms have been discarded.

Finally, using only features retained after the feature selection step, we create a representation of the
full training set of documents. We retrain the linear SVM classifier in the fixed feature space and use
the final normal to classify the test data.

This method is designed to take advantage of the memory freed as a result of increased data sparsity
and include larger training sets while keeping the memory consumption constant. At the same time, we
calibrate the performance controlling the possible negative impact of the reduced feature space.

In principle, the feature selection phase could include a separate validation set to suggest possible
tradeoffs between sparsity and classification accuracy; alternatively, memory limitations may dictate
what level of sparsity is necessary. However, here we do not investigate these decision-making aspects
but instead just experiment with different levels of sparsity and observe their influence on the
performance after feature selection was applied.

We should point out that in the current implementation we applied no linguistic processing to the
document text. Documents were represented using single word features, weighted by the standard
TF-IDF score1 [SB88] and retaining only those that occur in at least 4 documents in the whole training
set.

Intrigued by the efficacy of the SVM-based feature selection, we explored how it compares with other
feature selection methods when used in conjunction with the proposed training strategy. When
assessing feature selection methods we look at both the final classification performance of the resulting
classifiers and the sparsity of the training data representation. In the following section we give a brief
overview of the considered feature selection methods and refer to research related to our work.

3 Related Work

3.1 Feature Selection Methods
In text categorization, feature selection (FS) is typically performed by sorting linguistic features
according to some weighting measure and then setting up a threshold on the weights or simply
specifying a number or percentage of highly scored features to be retained. Features with lower weights
are discarded as having less significance for the classification decision. Experiments then typically
evaluate the effect that feature selection has on the classification performance.

Numerous feature scoring measures have been proposed, e.g., information gain, odds ratio, χ2, term
strength, etc. Even the simple document frequency has been found to perform well in conjunction with
the k Nearest Neighbor method, as measured by the 11-point average precision [YP97, MG99].

It is important to note that feature weighting and selection can be more or less coordinated with the
classification model, in the sense that they may be governed by the same or distinct theoretical models.
It has been a common practice to explore the impact of various FS methods in combination with
different classification methods. For example, an approach for weighting features based on SVM has
been proposed in [GF01], where SVM is used with a special kernel to learn the weights of features for
use with a Naive Bayes classifier. On the other hand, there were conscious attempts to create FS
methods that are compatible with the feature scoring of a particular classifier. In that respect feature
scoring using odds ratio is seen as a good match for the Naive Bayes classifier and has been shown to
improve its performance [Mla98b].

While the idea of preserving the integrity of a theoretical framework is attractive, it is not feasible
unless the framework includes an inherent mechanism for feature selection. This is typically not the
case with classification methods (more specifically, it may often be possible to obtain a feature ranking
or weighting, indicating which features may be preferable over others, but without clear guidelines on
how many features to keep) and thus we are inevitably guided by external factors when designing the
selection criteria — in our case that is the targeted level of sparsity of the data representation.

We compare the effect of feature selection based on an SVM normal with two feature scoring measures
that have been reported successful in text categorization: information gain and odds ratio. These two

1 There are several variants of the TF-IDF score. We use the following formulas: IDF(t)= log(1+N/DF(t)) where DF(t)
is the “document frequency” of term t, i.e. the number of documents in the training set that contain the term t, and
N is the total number of documents in the training set. The weight of term t in document d is then defined as
TF(t,d) ⋅ IDF(t), where is TF(t,d) the “term frequency”, which is simply the number of occurrences of term t in
document d.

FS methods are interesting also because they seem to prefer different types of features: the information
gain is known for its tendency to prefer common features over extremely rare ones, while the odds ratio
ranks rare features highly as long as they are exclusively characteristic of positive class instances. Here
we provide a brief description of the three FS methods.

3.1.1 Information gain
The information gain score (IG) of a term t is calculated using the following formula:

IG = ∑c ∑τ∈{t,¬t} P(c, τ) log[P(c, τ)/P(c)P(τ)]

where c ranges over the classes (in our case, where a document might belong to several categories, and
we treat each category as an individual two-class problem, c can be either positive or negative) and τ
ranges over the values t and ¬t, referring to whether the term t under consideration is present in a
document or not.

This formula is equivalent to H(C) – H(C|T) where

H(X) = ∑x P(X=x) log P(X=x)

is the entropy.

It therefore measures how much we learn about C by knowing T, since H(C|T) measures how much
remains unknown about C if we know T; hence the term “information gain”.

On the other hand, it is also equivalent to [H(C) + H(T)] – H(C, T), which can be interpreted as the
amount of information that each of these variables contains about the other one. For that reason this
measure is also known as (average) mutual information. It should not be confused with log[P(t|c)/P(t)]
(or the maximum or average of this value over all c), which is also sometimes called mutual
information.

Information gain has been found to work well with the k-nearest neighbor algorithm on the small
Reuters collection and the OHSUMED collection [YP97], where an increase in the 11-point average
precision (from 0.879 to 0.892) has been observed while merely 2% of features were kept.

3.1.2 Odds ratio
The odds ratio score of a term t is calculated as follows:

OR = log[odds(t|pos)/odds(t|neg)]

where odds(t|c) = P(t|c)/(1–P(t|c)), c denotes a class c and pos and neg refer to the number of positive
and negative examples in the training data, respectively.

This measure gives a high score to features typical of positive documents and a low score to those
typical of negative documents. One possible disadvantage of this scoring method is that features which
occur in very few positive documents get very high scores as long as they do not occur in any negative
documents. In this manner rare rather than representative features of the positive documents obtain
high scores.

Odds ratio was used as a feature selection method (in combination with Naive Bayes as the training
algorithm) for categorizing web pages in a collection specially built for profiling web usage [Mla98a,
Mla98b] and for classifying Yahoo data into Yahoo categories [Mla98b, MG99]. In the latter case, an
increase in the F2 measure (from 0.13 to 0.6) was reported when only 0.2% and 5% of the original
features were kept.

3.1.3 Normal-based feature selection
In this study we use the Support Vector Machine with linear kernels. Data instances are described by
vectors xi = (xi1, . . . ,xid), where d represents the dimensionality of the feature space, i.e., the number of
distinct features in the model. In general, the class predictor trained by SVM has the form

prediction(x) = sgn[b + ∑i αi K(x, xi)]

but in the case of a linear kernel K(x, z) = xTz this can be rewritten as

sgn[b + wTx] for w = ∑i αi xi

where the vector of weights w = (w1,...,wd) can be computed and accessed directly. Geometrically, the
predictor uses a hyperplane to separate the positive from the negative instances, and w is the normal to
this hyperplane.

The linear classifier categorizes new data instances by testing whether the linear combination w1x1 +
. . . + wdxd of the components of the vector x = (x1,.. .,xd) is above or below some threshold –b (possibly
0). In our feature selection approach we use the absolute value |wj| as the weight of a feature j. We
retain features for which the value of |wj| exceeds the threshold value that is obtained from the data
sparsity criteria. This type of feature weighting seems intuitively appealing because features with small
values of |wj| do not have a large influence on the predictions of the classifier based on w; this can be
seen as meaning that these features are not important for classification purposes, and that consequently
they could be dispensed with in the training phase as well.

A theoretical justification for retaining the highest weighted features in the normal has been
independently derived in a somewhat different context in [SBR01]. The idea here is that one may
consider a feature important if it significantly influences the width of the margin of the resulting hyper-
plane; this margin is inversely proportional to ||w||, the length of w. Since w = ∑i αi xi for a linear SVM
model, one can regard ||w||2 as a function of the training vectors x1,...,xl, where xi = (xi1,.. .,xid), and
thus evaluate the influence of feature j on ||w||2 by looking at absolute values of partial derivatives of
||w||2 with respect to xij. (Of course this disregards the fact that if the training vectors changed, the
values of the multipliers αi would also change, but the approach nevertheless seems appealing.) For the
linear kernel, it turns out that

∑i |∂||w||2/∂xij| = k |wj|,

where the sum is over support vectors and k is a constant independent of j. Thus the features with
higher |wj| are more influential in determining the width of the margin. (The same reasoning could also
be applied if a non-linear kernel was used, because ||w||2 can still be expressed using only the training
vectors xi and the kernel function.)

In this study we also use the linear SVM classifier as the classification model since it has been shown
to outperform most of other classification methods [DPHS98, Joa98]. Interaction of the normal-based
FS with other classification methods will be subject of our future work.

Note that the normal-based approach to feature weighting and selection involves an important issue:
the selection of a set of instances over which one trains the normal w that defines the feature weighting.
Since training an SVM model requires a considerable amount of CPU time, and also practically
requires all the training vectors to be present in main memory all the time, it is likely to be undesirable,
or even unfeasible, to use the entire training set at one’s disposal to train the normal for feature
selection. Furthermore, this would be justifiable only if there is a significant gain in the classification
performance or general system performance (e.g., speed, computing resource consumption, etc.)
because of the cost incurred due to the retraining of the classifiers. Thus we explore the effectiveness of
this method in the scenarios where one might be constrained to train on a subset of the training set.

More precisely, we use the feature weighting defined by the model trained over a subset of data to
choose which features to discard. After the removal of a large number of features both the time and the
memory requirements for processing the entire training set are smaller and thus make that task feasible.
Of course, having used only a subset of data to obtain the weighting and selection of features may
mean that this approach performs worse as a feature selection method than others which take into
account the whole data set. In our experiments we will also explore the relationship between the size of
the subset used to train a normal and the performance of the feature weighting based on that normal.

4 Experiment Description

4.1 Experimental strategy – Rationale
Since our main consideration is the classification performance under the constraint of limited computer
resources we experiment with methods that vary the size of the training data and the sparsity level of
the data representation. We compare the approach of using a smaller number of documents with a
richer feature set and the alternative that involves applying a feature selection method to increase data
sparsity so that a larger number of training data can be used within the fixed feature set. Recall that the
sparsity is here defined as the average number of non-zero components in the vector representation of
documents in the given document set, in this case the data used for training.

Our first set of experiments thus explores the relationship between feature reduction and sparsity
achieved. The second set investigates the robustness of the classification method under the fixed
feature set constraint: what is the impact on the classification performance if the classifiers are trained
over a various data sets and the feature set is kept constant.

4.2 Data Processing and Analysis

4.2.1 Training and test data
For experimentation we used the Reuters-2000 collection [Reu00], which includes a total of 806,791
documents, with news stories covering the period from 20 Aug 1996 through 19 Aug 1997. We divided
this time interval into a training period, which includes all the 504,468 documents dated 14 April 1997
or earlier, and the test period, consisting of the remaining 302,323 documents.

We used the documents from the entire test period as test data but for training we constructed a subset
of data, here referred to as Train-1600, in the following way: for each Reuters category that contains
1600 or more documents in the training period (i.e., positive training examples), we randomly selected
exactly 1600 documents. For categories with fewer than 1600 positive examples in the training period
we took all such documents.

The rationale behind this decision was to select a set of training data that can be used for multiple
purposes, including the experiments in which the number of positive examples per category could be
fixed across categories in order to understand the effect that parameter has on the classification
performance. Although the current experiments do not control that variable, the future experiments
along these lines will be comparable with ones presented in this study.

Fortunately, the training set constructed in this way turns out to be also a good representative sample of
the whole data set, as can be seen from Figure 1, which shows the comparison of category distributions
in the Train-1600 sample and the whole corpus.

Indeed, during sampling we treated categories as independent from each other, thus ignoring the
hierarchical nature of the Reuters classification scheme and the fact that a document may be labeled by
a number of distinct categories. As a result, the union of documents contains more than 1,600 positive
examples for those categories whose labels typically co-occur with other categories. As can be seen
from Figure 1, the achieved category distribution generally follows the trends of the full data set with
only a slight modification: categories with very high distributions in the whole corpus get a slightly
smaller relative representation while categories with fewer positive examples get a larger
representation in the sample in comparison to the full corpus. It is interesting to note from the graph
that, in fact, for two large categories (ecat and gcat), the proportion has increased because of the wide
spread use of the categories.

In our experiments we use the ‘natural’ distribution of labeled documents in the Train-1600 set. In
other words, we did not restrict training to the 1600 positive examples originally selected for a given
category. We used all the documents that carry the category label, thus including all those that were
contributed to the sample by other categories.

For the experimentation purposes we further selected sub-samples of the Train-1600 set (of 118,924
documents) of size one half, referred to as Train-1/2, one quarter (Train-1/4), one eighth (Train-1/8), and
one sixteenth (Train-1/16) of the full training set, respectively. Random selection2 of these subsets was
strictly based on the target sample size, rather than the distribution of positive examples of individual
categories. However, as Figure 1 shows, the natural distribution is followed for most of the categories
and the desired distribution effects for small and large categories are achieved.

2 Subsets of the Train-1600 are prepared as follows: in the list of 1600 representatives for each category, each
example is given a random number between 0 and 1, and is kept in the subset if this number is less than some
threshold T. Thus, a document proposed as a representative of several categories also has a greater chance of being
kept in the subset. The threshold T was chosen so as to yield the desired number of documents in the new sample.
For example, a threshold of approximately 0.45 was used to obtain the 59,462 documents for the sample Train-1/2
containing half the documents of Train-1600. Note that, as a consequence, small categories may be poorly
represented in the smaller subsets. For example, e312, with 32 documents in the training period, has all these
documents included in Train-1600, but only one has made it into Train-1/16 (however, we did not include any such
extremely small categories in our experiments, and it is therefore unclear how these sampling anomalies would
affect the performance).

Category distribution in different sets of documents

0.001%

0.010%

0.100%

1.000%

10.000%

100.000%
0.001% 0.010% 0.100% 1.000% 10.000% 100.000%

Percentage of documents belonging to this category
in the full Reuters 2000 collection

Pe
rc

en
ta

ge
 o

f d
oc

um
en

ts
 b

el
on

gi
ng

 to
 th

is
 c

at
eg

or
y

in
 o

th
er

 s
et

s
of

 d
oc

um
en

ts

Train-1/16 Train-1/4 Entire training set Full Reuters-2000
Figure 1

4.2.2 Data Representation
We represent documents using the bag-of-words approach, applying a stop-word filter (from a standard
set of 523 stop-words) and ignoring the case of the word surface form. Features that occur less than 4
times in Train-1600 are removed and the remaining features are weighted using the TF-IDF score and
normalized so that each vector representing a document has unit length.

In order to experiment with the sparsity of document representations, we set an appropriate threshold
on the number of features retained in order to obtain document vectors with a desired average number
of nonzero components, i.e., desired sparsity. For each combination of the target category and the
number of features to be kept, temporary copies of document vectors are made with the unwanted
features removed; these copies are used for training. Finally, the models obtained during the training
are used to classify the test documents. The test documents are represented using only the features kept
after feature selection.

We used the SvmLight program (version 3.50) by Thorsten Joachims for SVM training and
classification [Joa99]. The program is particularly appropriate for our experiments because of its
optimizations for working with linear kernels. It computes the normal vector w explicitly rather than
working entirely with the dual representation Σi αi yixi as is necessary for other kernels.

4.2.3 Category selection
Training classifiers for all 103 Reuters categories over relatively large sets would be a time consuming
and process intensive task. Therefore we restricted our study to a sample of 16 categories. These
categories were selected based on the results of a preliminary experiment that involved training the
SVM over a smaller training set Train-200 for the complete set of Reuters categories.

The set Train-200 (19,213 documents) was constructed in exactly the same way as the Train-1600
except that we used only 200 documents per category. The test set was also constructed in the same
way, except that documents from the test period were used, and that only 100 random representatives
of each category taken; this resulted in a sample of 9,596 test documents, referred to as Test-100.

The selection process was based on two characteristics of the categories: the distribution of positive
examples in the whole corpus and the break-even point (BEP) achieved for the category by SVM, with
Train-200 and Test-100. In order to obtain a sample representative of the whole set of categories, we
created a 2-D histogram (with the log scale for the document distribution and 0.2 interval partition of
the BEP range) and selected a subset that follows approximately the statistical distribution of the 103
category set. The 16 categories chosen include: godd, c313, gpol, ghea, c15, e121, gobit, m14, m143,
gspo, e132, e13, c183, e21, e142, and c13 (see Figure 2 and Appendix B for more details).

Size and Difficulty of the Reuters-2000 Categories

0

0.1

0.2

0.3

0.4

0.5
0.6

0.7

0.8

0.9

1

1 10 100 1000 10000 100000 1000000

Number of documents

B
re

ak
ev

en
 p

oi
nt

 in

pr
el

im
in

ar
y

ex
pe

rim
en

ts

All Categories Categories selected for further experiments

Figure 2

4.2.4 Comparison of Two Classifiers
We have partitioned the test data set into ten disjoint subsets and recorded performance measures of the
classifiers, such as F1, separately for each subset. Thus, to compare two classifiers, we can perform a
paired t-test on the corresponding two groups of ten F1 values. This is done both for micro- or macro-
averaged F1 values.

Alternately, one may perform a separate t-test for each category and then count how many times one
classifier has been found to be significantly better than the other, or vice versa. These values can be
quite informative, but the downside is that the comparison of two methods is now described by two
numbers, rather than a single confidence value as would be obtained from a single t-test. In principle,
one could reach a single confidence value by applying a sort of sign test (along the lines of the “macro
sign test” from [YL99]).

Still another option is to compute, for each category, the average F1 over the entire test set, resulting in
a sequence of as many values as there are categories; then one can compare two methods by taking a
paired t-test over the corresponding two sequences. This approach (referred to as a “macro T-test” in
[YL99]) has been often used, although it has also been criticized because it treats performance values
on different categories as random samples from a normal distribution [Lew92].

In our experience, all types of tests tend to give similar results; however, the category-paired t-test is
slightly more conservative (i.e., less likely to declare differences to be significant) than the t-test on
macroaveraged F1-values, and the t-test on microaveraged F1-values is much more liberal in
considering differences to be significant. For the remainder of this paper, we will report significance
results from the t-tests based on macroaveraged F1 values.

5 Experiment Results

5.1 Sparsity and the number of features
Most of the existing research has focused on the reduction of the number of features (i.e., reduction of
feature space dimensionality) rather than sparsity of the resulting vectors (i.e., reduction of memory
requirements for vector storage). It is interesting to explore the relationship between these two data
representation aspects.

It is expected that by reducing the number of features to a certain percentage of the initial set one will
increase the sparsity of vectors. However, for a fixed percentage of features to be retained, various
feature scoring methods yield significantly different levels of vector sparsity.

Figures 3 and 4 show a comparison of the levels of sparsity achieved by the odds ratio (OR),
information gain (IG) and normal-based feature selection on the positive and negative documents in
our training data, respectively. For each of these methods we create a ranked list of features, according
to the score associated by the method, and plot the curve that shows the sparsity (i.e., the average
density) of the vector representation of documents in a given document set as various numbers of top
ranked features are used in the vector representation of documents. In principle, for any given list of

ranked features and a set of documents that contain these features we can calculate the corresponding
sparsity cruve.

Appendix C contains a table of statistics showing the relationship between the number of features
retained and the level of sparsity for the three methods we consider here. In the following charts, as
well as in later sections, we will discuss several variants of the normal-based feature weighting,
depending on how large a set of documents the normal in question has been trained on. If the full
Train-1600 training set is used to obtain the normal for feature selection, we call the resulting
weighting normal-1; if Train-1/k is used, the resulting weighting is denoted by normal-1/k. For each of
these weightings we study the corresponding sparsity curve.

Of course, each category has its own feature weightings and the actual level of sparsity attained if a
fixed number of features is kept will vary from one category to another. The values shown in these
charts and discussed below are averages across all categories.

Sparsity and number of features
(Full training set, positive documents only)

0

10

20

30

40

50

60

70

80

90

1 10 100 1000 10000 100000
Number of features kept

Av
g.

 n
o.

 o
f n

on
ze

ro
 c

om
po

ne
nt

s
pe

r t
ra

in
in

g
ve

ct
or

 (a
cr

os
s

al
l

ca
te

go
rie

s)

odds ratio information gain nomal-1/16 normal-1/4 normal-1

Sparsity and number of features
(Full training set, negative documents only)

0

10

20

30

40

50

60

70

80

90

1 10 100 1000 10000 100000
Number of features kept

Av
g.

 n
o.

 o
f n

on
ze

ro
 c

om
po

ne
nt

s
pe

r t
ra

in
in

g
ve

ct
or

 (a
cr

os
s

al
l

ca
te

go
rie

s)

odds ratio information gain normal-1/16 normal-1/4 normal-1
 Figure 3 Figure 4

5.1.1 Odds ratio sparsity curves
As can be seen from the two charts, OR has the greatest preference for features that are not commonly
present in the documents of the collection. In fact, our analysis of the Train-1600 shows that OR needs
to retain almost 1300 features to reach an average of one nonzero component per training vector. On
the other hand, IG requires only 20 features to achieve the same.

Comparing OR curves from the two charts we see that the preference for ‘rare’ features is particularly
pronounced for features typical of positive documents as the OR curve in Figure 3 ascends much
sooner and more rapidly. For large numbers of features kept, the curve levels off since at that point the
number of nonzero components in positive documents hardly increases, as the features added then are
present almost exclusively in negative documents. Indeed, OR assigns lowest scores to features present
in negative documents only. This results in the ascent that begins in the OR curve of Figure 4 after
approximately 60,000 features are added. Indeed, by inspection of the feature set, we find that the
remaining features practically always have ten or more occurrences in negative documents but none in
the positive ones.

5.1.2 Information gain sparsity curves
IG seems to be the most inclined to rank highly features that are common in the document set. It is,
however, interesting to note the fast ascents at the right end of the curves in Figures 3 and 4. They
essentially show that adding features from the very bottom of the scored feature list increases the
average density of vectors rapidly, indicating that these are rather common features but with low IG
scores. As expected based on the IG formula, manual inspection shows that these are features that are
equally common in positive and negative documents, thus with P(t|pos) ≈ P(t|neg).

5.1.3 Normal-based sparsity curves
We observe that the normal-based feature selectors have sparsity curves that fall between these two
methods. While the curves for different training sets are very close to each other, a closer look reveals
that normals trained on smaller subsets of training data have a stronger preference for common features
than those trained on larger subsets. That is, it seems that as larger subsets of training data are used,
more features, including relatively uncommon ones, receive a score that is high enough to promote the
ranking of the feature and thus include it in the truncated normal.

In order to understand this phenomenon better we made a simple exploration of density curves
associated with the feature weightings normal-1 and normal-1/16. Since normal-1/16 was obtained by
training over a subset of Train-1600 (called Train-1/16), and normal-1 was obtained by training on the
whole Train-1600, the features present in normal-1/16 are also present in normal-1, although they may
have different weights and different rank among the scored features. If we simply truncate the normal-
1 so that it excludes features which are not present in the normal-1/16 (e.g., by setting their weights to 0),
thus obtaining the normal-1', the sparsity curve for the resulting feature weighting (denoted in the
following paragraphs) is steeper and comes closer to the curve of normal-1/16 (see Figure 5). This shows
that newly introduced features, some uncommon but highly ranked, account for a part of the curve
‘slowdown’.

However, the difference between the sparsity curves of normal-1' and normal-1/16 is still significant. As
the feature set is the same for both this is purely due to the difference in relative ranking of features.
The question is what influences the difference in ranking: the volume of training data (e.g., the
statistical characteristics of the data set, regardless of the number of features used in the data
representation) or the feature set used in the training phrase.

To explore this question we fix the feature set to the one obtained from normal-1/16 (i.e., the features
from Train-1/16) and train a linear classifier over the full training set Train-1600. Thus, the system uses
the full Train-1600 set of documents (the same that was used in training normal-1) but represented by
only those features that were seen when training normal-1/16 . The resulting weighting, called normal-
1", can be compared with both normal-1/16 and normal-1', which contain the same set of features but
with possibly different weights: normal-1/16 was trained over a smaller subset, Train-1/16 , while normal-
1' is essentially normal-l truncated (after training) to include only those features that are present in
Train-1/16 (see Table 1).

Feature weighting normal-1 normal-1' normal-1" normal-1/16
Training set Train-1600 Train-1600 Train-1600 Train-1/16

Feature set used in training Train-1600 Train-1600 Train-1/16 Train-1/16
Final feature set Train-1600 Train-1/16 Train-1/16 Train-1/16

Table 1

Comparison of the corresponding sparsity curves for normal-1' and normal-1" shows almost no
difference. Thus it is the amount of training data rather than the feature set that influences the
difference in sparsity between these two normals.

Sparsity and number of features
(Train-1600, negative documents only)

0

10

20

30

40

50

60

70

80

90

1 10 100 1000 10000 100000
Number of features kept

Av
g.

 n
o.

 o
f n

on
ze

ro
 c

om
po

ne
nt

s
pe

r
tra

in
in

g
ve

ct
or

 (a
cr

os
s

al
l c

at
eg

or
ie

s)

normal-1
normal-1"
normal-1'
normal-1/16

Figure 5

In summary, there are two factors that account for the differences in sparsity between normals trained
over different size training sets. First, as more examples are considered, the pool of features becomes
larger and many relatively uncommon but nonetheless helpful features get the opportunity to obtain a
moderately high position in the ranking. (Hence the difference between normal-1 and normal-1'.)
Second, the statistical properties of the considered feature set change with the volume of training data
used and that seems to play a significant role. Many of the less common features, even if they do
appear in a smaller training set, might be largely ignored in the ranking trained on that training set only,
while they achieve a much higher position in a ranking trained on a larger training set. (Hence the
difference between normal-1'' and normal-1/16.)

5.2 Dimensionality reduction and classification performance
It is also interesting to relate the reduction in dimensionality to the reduction in classification
performance.

Macroaveraged F1, Full Training Set

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

10 100 1000 10000 100000

Number of features kept

A
ve

ra
ge

 F
1

ov
er

 th
e

te
st

 s
et

odds ratio information gain normal-1/16 normal-1/8
normal-1/4 normal-1/2 normal-1

Figure 6

From Figure 6 we see that OR needs to retain one or two orders of magnitude more features to achieve
a performance that is comparable to the other FS methods when used with the linear SVM classifier.
This is not surprising in view of the observations we made in the previous section. Indeed, OR scores
highly features that are characteristic of positive documents, among those also the ones that are ‘rare’
and thus do not necessarily make an impact on the document representations and the SVM training
process.

In many practical situations the management of computing resources is important and thus the sparsity
seems to be of high practical importance. In the remainder of the study we will focus on sparsity and
use dimensionality reduction to meet the sparsity requirements.

5.3 Experiments with the fixed memory constraint
Part of the motivation for using feature selection is to describe documents with sparser vectors and thus
process larger sets of documents with a given amount of memory. However, we need to establish
evidence that such an approach is plausible and that it is possible to achieve an effective tradeoff
between selecting a subset of features (to make vectors sparser) and selecting a subset of documents (to
have fewer vectors). For example, if we have only a quarter of the amount of memory required for
storing full vectors of the complete set of training data we could: (i) keep full vectors but only for 1/4
of the training documents; or (ii) keep 1/2 of the documents, and use feature selection to make the
vectors twice as sparse; or (iii) keep all the documents, and use feature selection to make the vectors
four times sparser; etc.

In order to explore these possibilities we evaluate the classification performance for the following type
of scenarios. Let us assume that storing all N documents from Train-1600 at sparsity3 S=80 would
require M units of memory (S ·N=M), and that we only have M/2K units available for some integer K.
We are seeking the values S' and N' such that S' ·N'=M/2K and for which the classification performance
is not significantly degraded. Thus, we experiment with values S'=S/2k and N'=N/2K–k, for k=0,. . . ,K.
Note that ideally we would vary the values of S and N on a finer scale but the current approach is
already quite informative as the experiment results show (see Figure 7 and Table 1).

For a given K, we first need to obtain a ranking of features, to be used as the basis of feature selection.
Since the SVM model on which this ranking will be based will have to be trained over full vectors, it
can use at most N/2K documents to respect the memory constraint. Then, for a given higher sparsity
level S/2k , k=0,. . . ,K, we select as many top features from the ranking as are necessary to achieve this
sparsity level, and then train a new model over the largest training set that can fit into the available

3 In fact, the full vectors of the training set Train-1600 have approximately 88.3 nonzero components on average.

memory given the fact that vectors are now sparser (this is the set containing N/2K–k documents). Thus,
for a given K, the result at sparsity 80 is based on a training set that is only half as large as the set used
for the experiment with sparsity 40, only one-quarter the size of the training set used for sparsity 20,
and so on.

Performance at fixed memory usage and different choices
regarding the sparsity vs. training set size tradeoff

0.55

0.57

0.59

0.61

0.63

0.65

0.67

0.69

0.71

0 10 20 30 40 50 60 70 80 90

Average number of nonzero components per training vector

M
ac

ro
av

er
ag

ed
 F

1

M/16 (K = 4) M/8 (K = 3) M/4 (K = 2) M/2 (K = 1) M (K = 0)

Figure 7.

Sparsity vs. Training Set Size Tradeoff
K=1, Memory: M/2 K=2, Memory: M/4 K=3, Memory: M/8 K=4, Memory: M/16 Sparsity Training Set F1 Training Set F1 Training Set F1 Training Set F1

S = 80 N/2 67.3 N/4 65.2 N/8 62.7 N/16 56.4
40 N 68.4 N/2 66.5 N/4 64.9 N/8 63.1
20 N 67.0 N/2 64.6 N/4 62.9
10 N 64.2 N/2 62.2
5 N 60.1

Table 2.

Figure 7 and Table 2 show the classification performance measured by the macroaverage of the F1
measure. The error bars on the graph show standard errors of F1 macro-averages over the 10 subsets of
the test set. For comparison, if the memory constraint is removed (i.e. K=0) the classifier based on
S=80 and the full training set achieves a macroaveraged F1 of 69.0%.

The results confirm that for a fixed memory constraint (fixed K) one can achieve a better performance
by applying feature selection and using a larger set of training documents than by using the full set of
features but a smaller training set. For example, it is beneficial to reduce the number of nonzero
components by 50% and double the number of training documents if one is working under the memory
constraint (this always brought a statistically significant improvement in performance in the above
experiments). That is, in some sense, expected, based on the evidence from related research that
reducing the feature space typically does not dramatically affects the classification performance.

More radical reduction of the feature space (i.e., using k>1) generally does not bring additional
improvements in performance, and eventually, when the size of the training set requires vectors to be
very sparse to fit in the available memory, performance may deteriorate. This is not surprising since in
this case the original set of documents used to generate the initial normal may be too small to provide
useful terminology and statistics for effective feature ranking. The fixed feature set is simply not rich
enough to allow generalization of the classifier to the test data.

Finally, the performance at different values of K confirms that having twice as much memory
practically always allows one to achieve better performance, either by increasing the number of
training vectors or by keeping more features and making the vectors less sparse.

5.4 Experiments at fixed sparsity levels
In these experiments we use Train-1600 as the training set and different feature scoring methods to
achieve a desired level of sparsity, i.e., a desired average number of nonzero components per training
vector. In particular we look at sparsity of 2, 2.5, 5, 10, 20, 40, and 80 features per document as well as
the full document vectors which have about 88.3 nonzero components per document on average.

For feature scoring methods we use Odds Ratio (OR), Information Gain (IG), and ranking based on
SVM normals: normal-1, normal-1/2, normal-1/4, normal-1/8, and normal-1/16. The methods normal-1/k
use SVM normals obtained from the set Train-1/k, containing 1/k of the documents in the full training set
(Train-1600); after feature selection, the final linear SVM model is trained on the full training set but
with the reduced set of features. This allows us to see how robust SVM classifier is with respect to the
fixed feature sets obtained from smaller amounts of training data.

Figure 8 contains graphs that show the SVM classification performance based on four measures:
macro-averages of F1, break-even-point (BEP), precision, and recall. The test set has been divided into
ten folds, and the macroaveraged value (i.e., average over all categories) of each performance measure
has been calculated separately for each fold. The average of this over all ten folds is then shown in the
charts. (Thus, references to “average precision” in the charts should not be confused with average 11-
point precision, another popular performance measure, which however we have not employed in these
experiments.)

Macroaveraged F1, full training set

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

1 10 100

Average number of nonzero components per vector over the training set

A
ve

ra
ge

 F
1

ov
er

 th
e

te
st

 s
et

odds ratio information gain normal-1/16 normal-1/8
normal-1/4 normal-1/2 normal-1

Macroaveraged break-even point, full training set

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

1 10 100

Axis Title

A
ve

ra
ge

 b
re

ak
-e

ve
n

po
in

t o
ve

r t
he

 te
st

 s
et

odds ratio information gain normal-1/16 normal-1/8
normal-1/4 normal-1/2 normal-1

Macroaveraged precision, full training set

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

1 10 100

Axis Title

A
ve

ra
ge

 p
re

ci
si

on
 o

ve
r t

he
 te

st
 s

et

odds ratio information gain normal-1/16 normal-1/8
normal-1/4 normal-1/2 normal-1

Macroaveraged recall, full training set

0.48

0.53

0.58

0.63

0.68

1 10 100

Axis Title

A
ve

ra
ge

 re
ca

ll
ov

er
 th

e
te

st
 s

et

odds ratio information gain normal-1/16 normal-1/8
normal-1/4 normal-1/2 normal-1

Figure 8.

5.4.1 Comparison of the normal-1 ranking with Odds Ratio and Information Gain
From the perspective of F1 and BEP measures, SVM-based ranking of features is most effective for the
purpose of feature selection. The performance is dominated by this method for all levels of sparsity,
except when only a couple of features per document are used. OR seems to perform better in that
scenario according to the F1 measure for S =2. Similarly, OR provides better recall for S≤2.5.

This is not surprising since OR retains a much larger set of features than the normal to achieve the
same sparsity level (see Figure 3). Furthermore, it focuses on features that are characteristic of positive
examples, which in turn enables SVM to capture the positive examples more easily. However, for the

same reason, the precision of classification based on OR selection suffers, as can be seen from the
precision graph. Information gain, on the other hand, ensures a consistently better precision than
normal-1 for all sparsity levels S >5 (these differences are statistically significant at S =20 and 80).

5.4.2 Comparison of normal-1/k, k=1,2 ,4 ,8 ,16
SVM normals obtained from larger data sets have a clear advantage on all performance measures
except for precision. Indeed they all seem to perform similarly according to that measure. Thus, if one
is concerned with precision only one need not hesitate to fix the feature set to the one obtained from a
smaller set of data and then retrain. Using more data in the initial phase introduces features that
definitely help recall but do not affect precision. Normal-based selection seems to pick the features
important for precision even from smaller sets of data.

5.4.3 Comparison of Odds Ratio and Information Gain
Similar to our earlier observations, the tendency of OR feature selection to prefer rare features present
in positive documents causes OR to perform better than IG on recall but consistently worse according
to the precision for all levels of sparsity. The trade-off between recall and precision for both methods,
as seen from F1 and BEP measures, is such that IG outperform OR for sparsity levels above 20 features
per document on both of these measures.

5.5 Effectiveness
Although the above results show that feature selection generally does not improve performance of the
linear SVM classifier, we can see that the normal-based feature selection with sparsity S=80 does
produce a statistically significant improvement over the performance of vectors with the complete
feature set which corresponds to S=88.3.

Feature selection
method

Number and percentage of
features retained at S = 80

Macroaveraged
F1 at S=80

P-value from
t-test

Odds ratio 57,197 75.42 % 0.6857 ± 0.0053 0.881
Information gain 60,234 79.42 % 0.6843 ± 0.0047 0.685
Normal-1/16 20,316 26.79 % 0.6789 ± 0.0050 0.882
Normal-1/8 22,274 29.37 % 0.6859 ± 0.0048 0.901
Normal-1/4 24,338 32.09 % 0.6864 ± 0.0050 0.949
Normal-1/2 26,303 34.68 % 0.6894 ± 0.0050 0.998
Normal-1 28,638 37.76 % 0.6904 ± 0.0050 0.997
Full feature set 75,839 100.00 % 0.6837 ± 0.0049

Table 3. Linear SVM performance with different feature selection methods at S = 80

The test set has been split into ten folds and the macro-average of F1 computed for each fold. Averages
and standard errors across these ten folds are shown. The last column shows the p-value from the t-test
comparing the performance of the linear SVM classifier for each FS method at S=80 with the
performance for full document vectors (S=88.3). We observe that at S=80 the performance is never
significantly worse and for normal-1/2 and normal-1 it is significantly better than the performance with
full vectors. A more systematic analysis of this phenomenon, e.g., exploration of the effects of
sparsities S=85, 75, 70, etc., will be subject of future research.

Note that the number of features that needs to be retained to achieve a desired level of sparsity varies
from category to category since each classifier gives rise to a different feature ranking. Shown here are
averages across the 16 categories considered.

The statistics in Table 3 show that the normal-based feature selection discards as many as 60% to 75%
of features to achieve the sparsity of S=80. In some cases, even greater sparsities can be reached
without significantly decreasing the performance. This can be seen in Table 4, which shows that
normal-1 at sparsity 40 actually still performs significantly better than full vectors, while the
performance of normal-1/2 and normal-1/4 at sparsity 40, and that of normal-1 at sparsity 20, is not
significantly different from the performance of the full feature set.

Feature selection
method

Sparsity

Number and percentage of
features retained

Macroaveraged
F1

P-value
from t-test

Normal-1/4 40 4278 5.65 % 0.6831 ± 0.0056 0.591
Normal-1/2 40 4628 6.11 % 0.6842 ± 0.0042 0.564
Normal-1 20 1545 2.04 % 0.6786 ± 0.0037 0.876
Normal-1 40 5079 6.70 % 0.6905 ± 0.0045 0.970
Full feature set 88.3 75839 100.00 % 0.6837 ± 0.0049

Table 4. Linear SVM performance with different feature selection methods at S = 40 and 20.

5.6 Training on the full training period
In the experiments presented so far, the largest training set, and the one used most of the time, was
Train-1600, which consists of 118,924 documents, selected from the training period of documents
dated 14 April 1997. However, the entire training period contains 504,468 documents, i.e., almost four
times as many. Thus it is natural to ask how much we lose by limiting ourselves to training on the
approximately 24% of the training documents (i.e., those included in Train-1600). Because it would be
too time-consuming to conduct an exhaustive set of experiments on the full training period, we only
trained one model for each category, without any feature selection. We compare the results with the
performance of the linear SVM model trained on Train-1600, also without any feature selection
applied.

As can be seen from Table 5, training on Train-1600 tends to yield better performance for smaller
categories but poorer for larger categories, while the contrary is true when training on the entire
training period. The set of positive examples for small categories is in fact the same in both training
sets, implying that it is the relative representation of the category within the training set that causes the
difference in performance. Recall that the sampling procedure by which Train-1600 was obtained tends
to make sure that smaller categories are well represented at the expense of the larger ones which may
cover a relatively smaller proportion of documents than they do in the full training period. This also
explains why the results over Train-1600 have a higher macroaveraged F1 but a lower microaveraged
F1 than over the full training period.

However, part of the extremely poor F1 performance of classifiers for some of the smaller categories
(e.g., c313) when trained on the entire training period may also be due to a poorly chosen threshold b
(see Section 3.1.3). Indeed, the breakeven point measure (also shown in Table 5), which involves
calculating precision and recall of the document ranking based on scores that involve only the normal
w, does not suffer such an extreme decrease when the full training period is involved.

 Train-1600 (118,924 docs.) Entire training period (504,468 docs.)
Category name Size F1 BEP Size F1 BEP

c13 9,895 (8.32%) 0.4891 0.5504 24,332 (4.82%) 0.5186 0.5873
c15 9,272 (7.80%) 0.8956 0.9024 89,373 (17.72%) 0.9167 0.9169
c183 2,240 (1.88%) 0.7469 0.7457 4,715 (0.93%) 0.7283 0.7572
c313 741 (0.62%) 0.3467 0.3603 741 (0.15%) 0.0804 0.2935
e121 1,444 (1.21%) 0.7442 0.7602 1,444 (0.29%) 0.7720 0.7585
e13 3,053 (2.57%) 0.7917 0.9715 4,135 (0.82%) 0.8036 0.7961
e132 602 (0.51%) 0.8109 0.8267 602 (0.12%) 0.8360 0.8453
e142 135 (0.11%) 0.4632 0.5280 135 (0.03%) 0.3582 0.4920
e21 8,484 (7.13%) 0.8129 0.8154 27,031 (5.36%) 0.8254 0.8315
ghea 2,616 (2.20%) 0.6442 0.6497 3,963 (0.79%) 0.6269 0.6532
gobit 551 (0.46%) 0.3838 0.4360 551 (0.11%) 0.1722 0.5157
godd 1,642 (1.38%) 0.2687 0.3701 1,798 (0.36%) 0.0829 0.3807
gpol 9,867 (8.30%) 0.7146 0.7260 36,650 (7.27%) 0.7437 0.7562
gspo 1,931 (1.62%) 0.9653 0.9761 22,876 (4.53%) 0.9792 0.9802
m14 9,812 (8.25%) 0.9398 0.9413 50,543 (10.02%) 0.9470 0.9478

m143 2,649 (2.23%) 0.9224 0.9257 13,121 (2.60%) 0.9264 0.9285
Macroaverage 0.6837 0.7178 0.6448 0.7150
Microaverage 0.8461 0.8635

Table 5. Comparison of the performance of classifiers trained on
Train-1600 and those trained on the full training period. No feature

selection was performed in either case.

The time needed to train all 16 models (one for each category) was 2,435 s when working with Train-
1600 and 15,769 s when working with the entire training period (these timings were obtained on a
computer with a 700 MHz PIII processor and 1 GB main memory).

5.7 Combining feature weightings from several training data
subsets

In comparing the sparsity behaviour of the normal-1/16 weighting, obtained from a smaller set of
documents (Train-1/16), with that of normal-1, obtained from the full Train-1600 set, we have seen that
part of the difference stems from the unability of normal-1/16 to consider more documents at the same
time, but part of it also stems from the simple fact that many features from Train-1600 simply never
occur in Train-1/16, hence normal-1/16 has no good alternative but to assign them a weight of 0 (see
section 5.1.3). This in turn affects the classification performance of models based on the resulting
feature ranking (see Figure 8).

Since our objective is to maximize the effectiveness of feature selection from smaller subsets of data,
we explore the ways to increase the pool of features from which the final selection is made. (This will
address the second of the two above-mentioned reasons of the poorer performance of weightings based
on smaller subsets.) We consider the following extension of the feature weighting procedure: (1) obtain
several subsets of the basic training set (i.e., subsets of Train-1600); (2) train a linear SVM model on
each of the subsets; (3) from each model, assign a weight to each feature, equal to the absolute value of
the corresponding component of the normal; (4) obtain the final weight of a feature by combining the
weights obtained from models trained on individual subsets. In our preliminary experiments we used
the average and the maximum as combining functions in step (4), and observed no significant
differences between the two. Thus we decided to use the maximum in the following experiments.

The rationale behind this approach is that it allows us to work within the same memory limits as by
limiting ourselves to a single small subset of the training set, while it also permits us to process all the
documents and give all the features a chance to obtain a weight. It also helps reduce bias that would be
introduced by the choice of a single subset.

To test this idea, we divided the Train-1600 into 16 random disjoint subsets, without any particular
regard for the distribution of categories within each of the 16 subsets. Thus, since the combined
weightings approach needs to consider only one of the subsets at the same time, and because the
subsets are approximately 1/16 the size of the full training set, its memory requirements should be
similar to those for normal-1/16.

Macroaveraged F1, full training set

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

1 10 100

Average number of nonzero components per vector over the training set

A
ve

ra
ge

 F
1

ov
er

 th
e

te
st

 s
et

normal-1/16 normal-1/4 normal-1 Combined weightings
Figure 9.

The chart on Figure 9 shows a performance comparison of the combined feature weighting approach as
described above and the normal-1/16, normal-1/4, and normal-1 weightings. As can be seen from the
chart, the performance of the combined weightings approach is roughly halfway between those for
normal-1/16 and normal-1, and is indeed comparable to the performance of normal-1/4. In addition, the
combined weightings approach performs particularly well at lower sparsity levels, which suggests that
combining several weightings is a comparably robust feature weighting method.

Concerning the time requirements of the combined weighting approach, note that it actually takes less
time to train n models on subsets 1/n the size of the full training set than to train one model on the full
training set, because the training of an SVM model is not a linear-time algorithm. In order to obtain
feature weightings for all 16 categories used in our experiments, the combined weighting approach

requires 1,214 s, while normal-1 required 3,934 s; however, normal-1/4, which is comparable in
performance to the combined weighting approach, only requires 546 s. Incidentally, these figures
suggest that, for the version of SvmLight we were using, the running time of SVM training (for N
training documents) is on the order of O(N 1.43).

6 Summary and future work
In this study we emphasized the concept of sparsity as a more appropriate characteristic of the data
representation than the number of features used, particularly when a variety of feature selection
procedures are considered.

We also proposed a feature ranking and feature selection method based on the linear SVM that is then
used in conjunction with the SVM classifier. However, this method can be combined with other
classification algorithms as well. An interesting question then arises: is it still good to use feature
selection based on SVM, or is it better to devise a feature selection method based on the training
algorithm itself? In other words, can we say anything about the compatibility of the feature selection
method with the final classification algorithm when applying the proposed iterative training strategy?

Furthermore, other linear classifiers could be similarly used to weight and select features, including
Perceptron [Ros58], Winnow [Litt88], Bayes Point Machine [HGC01], LLSF [YC92], Widrow-Hoff
[LSCP96], exponentiated gradient [KW94, LSCP96], and so on. (Naive Bayes is also essentially a
linear classifier if we work with logarithms of probabilities. This has been exploited by e.g. [GF01].)
While these methods are known to be more or less successful in classifying documents, it would be
interesting to see how they compare with the SVM-based feature selection method in reducing the
feature space.

Finally, it would be interesting to evaluate our approach on other data sets, perhaps on domains outside
text categorization.

Appendix A: About the Reuters-2000 Corpus
The Reuters-2000 corpus, released on 3 November 2000 as “Reuters Corpus, Volume 1”, contains
806,791 Reuters news articles from the period 20 August 1996 through 19 August 1997. They are
distributed by Reuters in compressed form (ZIP files), occupying approximately 984 MB of space. Each
document is a small XML file and when uncompressed these files have a total size of approximately
2,369 MB.

We only consider the body of each document, i.e., the contents of the 〈text〉 element in the XML file
containing that document. The body of each document contains an average of 1,180.13 non-whitespace
characters (median: 883), thus the total for the corpus is approximately 950 million characters (908
MB). Most of the difference between this and the 2,369 MB quoted above is due to the meta-data
present in each file.

There are on average approx. 206.8 words in the body of a document (median: 150), or 118.8 (median:
88) if multiple occurrences of the same word in a document are treated as one. However, if we ignore
stopwords (from a list of 523 stopwords, of which 519 actually appeared in the corpus), the average
number of words in the body of a document is 118.47 (median: 88), or 88.4388 (median: 65) if multiple
occurrences are treated as one. On the average, a term appears in 136.4 documents, or 96.42 if
stopwords are ignored; the median is 2 in both cases (329,226 terms occur in only one document and
100,404 terms occur in only two documents).

There are 103 categories, organized hierarchically. For example, ccat is the common supercategory of
all categories with names beginning in c; likewise there are ecat, gcat, and mcat. In addition, if one
category name is the prefix of another, the latter category is a subcategory of the former. However, we
did not take the hierarchical structure of the categories into account. The sizes of categories vary
widely as can be seen in Table B1 in Appendix B. Further statistics of interest: a document belongs to
3.20 categories on average (the median value is 3); 2,364 documents belong to no categories at all;
70% of the documents belong to 2 or 3 categories; one document belongs to 17 categories, none belong
to more than 17.

Statistics such as these given here will of course depend somewhat on the procedure used to break
documents into words. Our procedure is as follows: (1) convert the document into lowercase; (2)
extract, from each paragraph, maximal contiguous subsequences of non-whitespace characters; (3) for
each such subsequence: (3a) if it contains no alphabetic characters, discard it; (3b) otherwise, strip

leading and trailing non-alphanumeric characters, and report the remainder as a term occurring in the
current document. — This approach has the potentially welcome characteristic of treating compounds
consisting of two words connected with a hyphen as single units but it would do the same for two
words connected by a sequence of dots, which sometimes occurs when such punctuation is used to
simulate tables in the documents. However, such occurrences are relatively rare.

Appendix B: Classification of 103 categories over Train-200
This section presents the results of preliminary experiments on which our choice of 16 categories for
further work was based.

For these preliminary experiments, a smaller training set, called Train-200, was prepared in the same
way as the Train-1600 used elsewhere in this paper (see Section 4.2.1). Similarly, a test set, called
Test-100, was prepared from the test period data (analogously to the way Train-200 and Train-1600
were prepared from the training period) to evaluate the performance of the classifiers. Train-200
consists of 19213 documents, and Test-100 consists of 9596 documents.

After discarding features occurring in less than 4 documents from Train-200, each document was
represented by a normalized TF-IDF vector. Each category was treated as a two-class problem, and a
linear SVM model was trained for it using the documents from Train-200. This model was then tested
on Test-100, and the resulting precision-recall break-even point (BEP in the table below) was used as
an indicator of how difficult or easy that individual category is. Table B1 below reports the break-even
points for all categories as well as the size of each category, i.e., the number of the documents (from
the full Reuters-2000 corpus) that belong to the category.

Note that the full corpus contains 806,791 documents. The names of the 16 categories chosen for
further experiments are displayed in italics.

 Category BEP Size Category BEP Size Category BEP Size
 c11 0.3552 24 , 325 e12 0.6671 27,078 g159 0.0000 40
 c12 0.6299 11,944 e121 0.8051 2,182 gcat 0.8845 234,873
 c13 0.5227 37,410 e13 0.8353 6,345 gcrim 0.7612 32,219
 c14 0.6645 7,410 e131 0.7751 5,659 gdef 0.7169 8,842
 c15 0.7412 150,164 e132 0.9083 939 gdip 0.6732 37,739
 c151 0.7833 81,875 e14 0.8119 2,086 gdis 0.8106 8,657
 c1511 0.7673 23,212 e141 0.7155 376 gent 0.7119 3,801
 c152 0.5480 73,092 e142 0.8000 200 genv 0.6988 6,261
 c16 0.7257 1,920 e143 0.8684 1,206 gfas 0.8350 313
 c17 0.7557 41,829 e21 0.7243 43,128 ghea 0.6522 6,030
 c171 0.6966 18,313 e211 0.6368 15,768 gjob 0.8101 17,241
 c172 0.7600 11,487 e212 0.7596 27,405 gmil 0.0000 5
 c173 0.6441 2,636 e31 0.8300 2,342 gobit 0.7752 844
 c174 0.9262 5,871 e311 0.8101 1,701 godd 0.4394 2,802
 c18 0.7585 51,480 e312 0.6500 52 gpol 0.6518 56,878
 c181 0.6741 43,374 e313 0.9111 111 gpro 0.6740 5,498
 c182 0.6154 4,671 e41 0.8030 16,900 grel 0.7778 2,849
 c183 0.7484 7,406 e411 0.7246 2,136 gsci 0.7879 2,410
 c21 0.4357 25,403 e51 0.6612 20,722 gspo 0.9302 35,317
 c22 0.4306 6,119 e511 0.6798 2,933 gtour 0.8319 680
 c23 0.5821 2,625 e512 0.6261 12,634 gvio 0.7003 32,615
 c24 0.5396 32,153 e513 0.6522 2,290 gvote 0.7037 11,532
 c31 0.5935 40,506 e61 0.9100 391 gwea 0.7847 3,878
 c311 0.6911 4,299 e71 0.8818 5,270 gwelf 0.6967 1,869
 c312 0.5902 6,648 ecat 0.8503 117,539 m11 0.7549 48,700
 c313 0.4808 1,115 g15 0.8541 19,152 m12 0.7041 26,036
 c32 0.7308 2,084 g151 0.5317 3,307 m13 0.7610 52,972
 c33 0.6006 15,331 g152 0.4663 2,107 m131 0.7411 28,185
 c331 0.8319 1,210 g153 0.7534 2,360 m132 0.6885 26,752
 c34 0.7528 4,835 g154 0.8312 8,404 m14 0.8813 85,100
 c41 0.7756 11,354 g155 0.3922 2,124 m141 0.8522 47,708
 c411 0.7792 10,272 g156 0.6515 260 m142 0.8779 12,136
 c42 0.6855 11,878 g157 0.7865 2,036 m143 0.8895 21,957
 ccat 0.8711 374,316 g158 0.5767 4,300 mcat 0.8317 200,190
 e11 0.5650 8,568

Table B1: Category size and break-even-point performance statistics of the linear SVM model for 103
Reuters categories over Train-200 data set

The selected 16 categories are used in experiments that involve various sets of training and test data.
The following table shows the names of the selected categories and the number (and percentage) of

positive examples for each of these categories within several data sets. The document sets shown are:
Train-1600 (the largest of the sets actually used for training); Train-1/4 and Train-1/16 (subsets of Train-
1600; see section 4.2.1 for details); the full training period (all documents dated 14 April 1997 or
earlier); the full test period (all documents dated after 14 April 1997); and the entire Reuters-2000
corpus.

Train-1/16

Train-1/4

Train-1600

Full training period

Full test period

Full Reuters-2000

 (7432 docs.) (29731 docs.) (118924 docs.) (504468 docs.) (302323 docs.) (806971 docs.)

c13 702 (9.45%) 2,645 (8.90%) 9,895 (8.32%) 24,332 (4.82%) 13,078 (4.33%) 37,410 (4.64%)
c15 515 (6.93%) 2,199 (7.40%) 9,272 (7.80%) 89,373 (17.72%) 60,791 (20.11%) 150,164 (18.61%)
c183 128 (1.72%) 561 (1.89%) 2,240 (1.88%) 4,715 (0.93%) 2,691 (0.89%) 7,406 (0.92%)
c313 50 (0.67%) 197 (0.66%) 741 (0.62%) 741 (0.15%) 374 (0.12%) 1,115 (0.14%)
e121 101 (1.36%) 380 (1.28%) 1,444 (1.21%) 1,444 (0.29%) 738 (0.24%) 2,182 (0.27%)
e13 217 (2.92%) 883 (2.97%) 3,053 (2.57%) 4,135 (0.82%) 2,210 (0.73%) 6,345 (0.79%)
e132 47 (0.63%) 199 (0.67%) 602 (0.51%) 602 (0.12%) 337 (0.11%) 939 (0.12%)
e142 16 (0.22%) 67 (0.23%) 135 (0.11%) 135 (0.03%) 65 (0.02%) 200 (0.02%)
e21 510 (6.86%) 2,158 (7.26%) 8,484 (7.13%) 27,031 (5.36%) 16,097 (5.32%) 43,128 (5.35%)
ghea 205 (2.76%) 733 (2.47%) 2,616 (2.20%) 3,963 (0.79%) 2,067 (0.68%) 6,030 (0.75%)
gobit 44 (0.59%) 148 (0.50%) 551 (0.46%) 551 (0.11%) 293 (0.10%) 844 (0.10%)
godd 120 (1.61%) 430 (1.45%) 1,642 (1.38%) 1,798 (0.36%) 1,004 (0.33%) 2,802 (0.35%)
gpol 590 (7.94%) 2,385 (8.02%) 9,867 (8.30%) 36,650 (7.27%) 20,228 (6.69%) 56,878 (7.05%)
gspo 100 (1.35%) 449 (1.51%) 1,931 (1.62%) 22,876 (4.53%) 12,441 (4.12%) 35,317 (4.38%)
m14 557 (7.49%) 2,325 (7.82%) 9,812 (8.25%) 50,543 (10.02%) 34,557 (11.43%) 85,100 (10.55%)
m143 133 (1.79%) 608 (2.05%) 2,649 (2.23%) 13,121 (2.60%) 8,836 (2.92%) 21,957 (2.72%)

Table B2: Distribution of positive examples for the 16 selected Reuters categories
in various data sets used in the experiments.

Appendix C: Number of features and sparsity statistics
The following table shows the relationship between the number of features retained in the feature set
and the sparsity, i.e., the average number of non-zero components in the corresponding vector
representations of documents in a given set. The statistics presented here are obtained over the Train-
1600 data set.

Number of
features Odds ratio Information

gain Normal-1/16 Normal-1/4 Normal-1

10 0.002 0.542 0.271 0.270 0.301
20 0.004 0.998 0.559 0.507 0.534
30 0.005 1.446 0.786 0.796 0.777
50 0.007 2.224 1.238 1.292 1.222
75 0.009 3.172 1.772 1.804 1.733

100 0.015 4.111 2.249 2.301 2.270
200 0.037 7.123 4.187 4.266 4.328
300 0.074 9.708 6.140 6.322 6.074
500 0.152 14.040 9.674 9.703 9.132
750 0.343 17.966 13.612 13.261 12.464

1000 0.634 21.339 17.044 16.453 15.333
2000 2.583 30.405 28.025 26.385 24.319
3000 6.152 35.989 36.253 33.477 30.769
5000 11.158 43.087 48.674 44.405 40.914
7500 17.900 48.364 58.597 53.896 49.829

10000 25.689 51.566 65.621 60.790 56.088
20000 56.612 57.138 79.338 75.700 71.944
30000 70.085 60.469 83.996 82.288 79.682
40000 73.803 62.900 85.622 85.210 83.959
50000 75.002 66.192 86.587 86.535 86.137
60000 76.221 70.803 87.389 87.377 87.261
70000 79.046 78.843 87.980 88.007 87.910
75839 88.266 88.266 88.266 88.266 88.266

Table C1: Sparsity levels achieved on the Train-1600 document set by retaining a given number of top
ranked features for each of the five feature scoring methods considered

Each feature scoring method implies a ranking of features. Limiting the document representation to the
highest scoring N features reduces the average number of terms that remain in a document and hence
the average number of non-zero components in the vectors representing the documents. It interesting to
see the difference in the achieved sparsity of the document representations for the same number of
features retained for each of the five considered feature ranking methods: odds ratio, information gain,
and three normal based feature selections.

References
[CV95] C. Cortes, V. Vapnik: Support-vector networks. Machine Learning, 20(3):273–297,

September 1995.

[DPHS98] S. Dumais, J. Platt, D. Heckerman, M. Sahami: Inductive learning algorithms and
representations for text categorization. Proceedings of the 1998 ACM 7th International
Conference on Information and knowledge management, November 3–7, 1998,
Bethesda, Maryland, USA, pp. 148–155.

[GF01] T. Gärtner, P. A. Flach: WBCSVM: Weighted Bayesian classification based on support
vector machines. Proceedings of the 18th International Conference on Machine Learning
(ICML 2001), June 28–July 1, 2001, Williamstown, Massachusetts, USA, pp. 154–161.

[HGC01] R. Herbrich, T. Graepel, C. Campbell: Bayes point machines. Journal of Machine
Learning Research, 1(Aug):245–279, August 2001.

[Joa98] T. Joachims: Text categorization with support vector machines: learning with many
relevant features. Proceedings of the 10th European Conference on Machine Learning
(ECML 1998), April 21–23, 1998, Chemnitz, Germany. LNCS vol. 1398, pp. 137–142.

[Joa99] T. Joachims: Making large-scale support vector machine learning practical. In: B.
Schölkopf, C. J. C. Burges, A. J. Smola (Eds.): Advances in kernel methods: Support
vector learning, The MIT Press, 1999, pp. 169–184

[KW94] J. Kivinen, M. K. Warmuth: Exponentiated gradient versus gradient descent for linear
predictors. Technical Report UCSC-CRL-94-16, Baskin Center for Computer
Engineering & Information Sciences, University of Califronia, Santa Cruz, CA, USA,
June 21, 1994 (revised December 7, 1995).

[Lew92] D. D. Lewis: An evaluation of phrasal and clustered representations on a text
categorization task. Proceedings of the 15th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR 1992), June
21–24, 1992, Copenhagen, Denmark, pp. 37–50.

[Lew98] D. D. Lewis: The Reuters-21578 Text Categorization Test Collection. Available on:
http://www.research.att.com/~lewis/reuters21578.html.

[Litt88] N. Littlestone: Learning quickly when irrelevant attributes abound: A new linear-
threshold algorithm. Machine Learning, 2:285–318, 1988

[LSCP96] D. D. Lewis, R. E. Schapire, J. P. Callan, R. Papka: Training algorithms for linear text
classifiers. Proceedings of the 19th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR 1996), August 18–22, 1996,
Zürich, Switzerland, pp. 298–306.

[MG99] D. Mladenić, M. Grobelnik: Feature selection for unbalanced class distribution and
Naive Bayes. Proceedings of the 16th International Conference on Machine Learning
(ICML 1999), June 27–30, 1999, Bled, Slovenia, pp. 258–267.

[Mla98a] D. Mladenić: Feature subset selection in text-learning. Proceedings of the 10th
European Conference on Machine Learning (ECML 1998), April 21–23, 1998,
Chemnitz, Germany. LNCS vol. 1398, pp. 95–100.

[Mla98b] D. Mladenić: Machine Learning on non-homogeneous, distributed text data. Ph. D.
thesis, University of Ljubljana, Slovenia, 1998.

[Reu00] Reuters Corpus, Volume 1, English Language, 1996-08-20 to 1997-08-19. Available
through http://about.reuters.com/researchandstandards/corpus/. Released in November
2000.

[Ros58] F. Rosenblatt: The perceptron: A probabilistic model for information storage and
organization in the brain. Psychological Review 65(6), 386-408. Reprinted in: J. A. D.
Anderson, E. Rosenfeld (Eds.), Neurocomputing: Foundations of Research, The MIT
Press, 1998, pp. 89–114.

[SB88] G. Salton and C. Buckley: Term-weighting approaches in automatic text retrieval.
Information Processing and Management, 24(5):513–523, 1988.

[YC92] Y. Yang, C. Chute: A linear least squares fit method for terminology mapping.
Proceedings of the 15th International Conference on Computational Linguistics
(COLING 1992), 23–28 July, 1992, Nantes, France, II:447–53.

[YP97] Y. Yang, J. O. Pedersen: A comparative study on feature selection in text categorization.
Proceedings of the 14th International Conference on Machine Learning, July 8–12,
Nashville, Tennessee, USA, pp. 412–420.

[YL99] Y. Yang, X. Liu: A re-examination of text categorization methods. Proceedings of the
22nd Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR 1999), August 15–19, 1999, Berkeley, CA, USA, pp. 42–
49.

[ZO01] T. Zhang, F. J. Oles: Text categorization based on regularized linear classification
methods. Information Retrieval, 4(1):5–31, April 2001.

