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1 Introduction

In many practical applications one seeks to model a conditional probability
P (yjx); y 2 Y ; x 2 X . A common situation is that in which we identify a
set of features deemed relevant for building the model; the features are non-
negative functions | usually indicator functions f(x; y) : X � Y ! f0; 1g. Let
F = ffk; k = 1 : : : Fg be the set of features chosen for building a particular
model P (yjx).

The conditional log-linear model one wishes to estimate is of the form:

P (yjx) = Z(x)
�1

FY
i=1

�i
fi(x;y) (1)

Z(x)
�1

=
X
z2Y

FY
i=1

�i
fi(x;z)

2 Conditional Maximum Likelihood Estimation

of Log-Linear Models

As noted in [1] and [2], one can assume that
P

i fi(x; y) = M;8(x; y) 2 X �
Y without restricting the generality of the family of log-linear models under
consideration.

Under these conditions the feature weights �i can be normalized such that
they become a probability distribution over indices i = 1 : : : F :

� �i >= 0;8i 2 1 : : : F

�
PF

i=1 �i = 1

It is desirable to estimate the feature weights (probabilities) �i such that the

conditional likelihood H(T ;�) =
QT

j=1 P (yj jxj) assigned by the model to a set
of training samples T = f(x1; y1) : : : (xT ; yT )g is maximized:

�� = argmax
�

H(T ;�) (2)

It is easy to note that H(T ;�) is a ratio of two polynomials with real coeÆ-
cients, each de�ned over a domain D of probability distributions � over indices
i = 1 : : : F :

D = f� : �i >= 0;8i 2 1 : : : F;

FX
i=1

�i = 1g

Following the development in [3] one can iteratively estimate the feature weights
using a growth transform for rational functions on the domain D. The reesti-
mation equations take the form:

b�i = N�1�i(
@ logH(T ;�)

@�i
+ C�) (3)
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N =

FX
i=1

�i(
@ logH(T ;�)

@�i
+ C�)

where C� is chosen such that

@ logH(T ;�)

@�i
+ C� > 0;8i

Calculating the partial derivatives in Eq.(3) we obtain:

b�i = N�1
�
�i � C� + T

�
Ef(X)f(Y jX)[fi(X;Y )]�Ef(X)p(Y jX;�)[fi(X;Y )]

�	
(4)

N =

FX
i=1

�i � C� + T
�
Ef(X)f(Y jX)[fi(X;Y )]�Ef(X)p(Y jX;�)[fi(X;Y )]

�
with C� chosen at each iteration such that

T

�i

�
Ef(X)f(Y jX)[fi(X;Y )]�Ef(X)p(Y jX;�)[fi(X;Y )]

�
+ C� > 0;8i

2.1 Comments on Convergence

The �xed points of the growth transform reestimation procedure are the same
as the stationary points of the Lagrangian resulting from the maximization of
the log-likelihood L(�; �) = logH(T ;�) + �(

PF

i=1 �i � 1).

Indeed, at a �xed point of the growth transform we have b�i = �i;8i = 1 : : : F
which is equivalent to

@ logH(T ;�)

@�i
= const;8i = 1 : : : F (5)

Also, the stationary points of the Lagrangian are at:

@L(�; �)

@�i
= 0;8i = 1 : : : F

which is equivalent to:

@ logH(T ;�)

@�i
= ��;8i = 1 : : : F (6)

It can be easily seen that conditions (5) and (6) are equivalent and thus the
�xed points of the growth transform reestimation procedure are the same as the
stationary points of the log-likelihood.

Moreover, at �xed points of the growth transform reestimation procedure,
the value of const in Eq. (5) is 0.

By summing:

@ logH(T ;�)

@�i
=

T

�i

�
Ef(X)f(Y jX)[fi(X;Y )]�Ef(X)p(Y jX;�)[fi(X;Y )]

�
;8i = 1 : : : F
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over all indices i and using the linearity of the expectation operator one obtains:

const �
FX
i=1

�i = T

 
Ef(X)f(Y jX)[

FX
i=1

fi(X;Y )]�Ef(X)p(Y jX;�)[
FX
i=1

fi(X;Y )]

!

which becomes

const = T �
�
Ef(X)f(Y jX)[M ]�Ef(X)p(Y jX;�)[M ]

�
= 0

after using
P

i fi(x; y) =M;8(x; y) 2 X � Y and
PF

i=1 �i = 1.
It follows that the �xed points of the growth transform reestimation proce-

dure are in the intersection of the familiy of log-linear probability distributions

P = ff(X)p(Y jX ;�) : �i >= 0;8i 2 1 : : : F;

FX
i=1

�i = 1g (7)

(where p(Y jX ;�) is given by Eqn. (1)) with the linear family

Q = fq(X;Y ) : Ef(X)f(Y jX)[fi(X;Y )] = Eq(X;Y )[fi(X;Y )];8i 2 1 : : : Fg (8)

It is a well-known fact (see [2]) that the intersection between the two fam-
ilies is unique and represents the maximum-likelihood estimate for probability
distributions in P .

We have thus shown that the growth transform reestimation procedure em-
ploying the reestimation Eqns. (4) has as a unique �xed point the maximum
likelihood distribution in the class of log-linear models P .

3 Conclusions

We have presented an alternative to the familiar Generalized Iterative Scaling
[1] algorithm used for conditional maximum likelihood estimation of log-linear
models that uses a growth transform for rational functions as derived in [3].

With minor modi�cations, the reestimation procedure presented can be ap-
plied for the estimation of models

P (yjx) = Z(x)�1
Q(yjx)

FY
i=1

�i
fi(x;y) (9)

Z(x)
�1

=
X
z2Y

Q(zjx)

FY
i=1

�i
fi(x;z)

that arise in minimum I-divergence estimation.
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