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1 Introduction

In many practical applications one seeks to model a conditional probability
P(y|z),y € Y, € X. A common situation is that in which we identify a
set of features deemed relevant for building the model; the features are non-
negative functions — usually indicator functions f(z,y) : X x Y — {0,1}. Let
F = {fr,k = 1...F} be the set of features chosen for building a particular
model P(y|x).

The conditional log-linear model one wishes to estimate is of the form:

F
P(yle) = 2(x) " [T Ao W
i=1
F
Z(x)_l = Z HAsz(z’Z)
zeyi=1

2 Conditional Maximum Likelihood Estimation
of Log-Linear Models

As noted in [1] and [2], one can assume that ), fi(z,y) = M,V(z,y) € X x
Y without restricting the generality of the family of log-linear models under
consideration.

Under these conditions the feature weights \; can be normalized such that
they become a probability distribution over indices ¢ =1...F":

e \;>=0,YViel...F
° 25;1 Ai =1
It is desirable to estimate the feature weights (probabilities) \; such that the

conditional likelihood H(T;\) = H;‘.le P(y;|z;) assigned by the model to a set
of training samples 7 = {(z1,y1) - .. (zr,yr)} is maximized:

A" = argmax H(T;A) (2)

It is easy to note that H(7;A) is a ratio of two polynomials with real coeffi-
cients, each defined over a domain D of probability distributions A over indices
1=1...F":

F
D={A:\>=0Viel...F,Y \=1}
i=1

Following the development in [3] one can iteratively estimate the feature weights
using a growth transform for rational functions on the domain D. The reesti-
mation equations take the form:

dlog H(T; )

A =Nty
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+Ch) (3)
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Olog H(T; A
N = E )\i(goga/\—(v ) +CA)
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where C) is chosen such that

dlog H(T; A)

N, +Cy > 0,Vi

Calculating the partial derivatives in Eq.(3) we obtain:
Xi=N1 {Ai- Ca + T (Epx)p(v1x)lfi(X, V)] = Epx)pyvixsn (X)) (4)

F
N = Z Xi - Ox + T (Epx) v 10 [Fi(X, V)] = By xon [fi(X,Y)])

i=1
with C) chosen at each iteration such that

T

x (Eroxyror1olfi(X )] = Epcxopiy 1xin [fi(X,Y)]) + Cx > 0, Vi

2.1 Comments on Convergence

The fixed points of the growth transform reestimation procedure are the same
as the stationary points of the Lagrangian resulting from the maximization of
the log-likelihood L(\, ) =log H(T; A) + a(Zf:l A —1).

Indeed, at a fixed point of the growth transform we have )/\; =\, Vi=1...F
which is equivalent to

log H(T;
aOgi(T’A):const,Vi:l...F (5)
o\
Also, the stationary points of the Lagrangian are at:
OL(A, @) .
A o _ F
o, 0,ve
which is equivalent to:
log H(T;
M:_%Wzlmp (6)
o\

It can be easily seen that conditions (5) and (6) are equivalent and thus the
fixed points of the growth transform reestimation procedure are the same as the
stationary points of the log-likelihood.

Moreover, at fixed points of the growth transform reestimation procedure,
the value of const in Eq. (5) is 0.

By summing;:

OlogH(T;A) T

=+ (Brx)roxo (X V)] = Epxporixon [fi(XY)])  Vi= 1.
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over all indices ¢ and using the linearity of the expectation operator one obtains:

F F F
const-y A =T (Ef(X)f(YX)[Z FilX, V)] = By [ fil X, Y)]>

i=1 i=1 i=1

which becomes
const =T - (Efx)s(v1x)[M] = Epx)pvx0[M]) =0

after using ), fi(x,y) = M,Y(z,y) € X x Y and Zf;l Ai =1,
It follows that the fixed points of the growth transform reestimation proce-
dure are in the intersection of the familiy of log-linear probability distributions

F
P={f(X)p(Y|X;)): \i>=0Viel...F,Y \; =1} (7)

(where p(Y'|X; A) is given by Eqn. (1)) with the linear family
Q={9(X,Y) : Eyxypovix)[filX,Y)] = By x v [fi(X,Y)|,Viel...F}  (8)

It is a well-known fact (see [2]) that the intersection between the two fam-
ilies is unique and represents the maximum-likelihood estimate for probability
distributions in P.

We have thus shown that the growth transform reestimation procedure em-
ploying the reestimation Eqns. (4) has as a unique fixed point the maximum
likelihood distribution in the class of log-linear models P.

3 Conclusions

We have presented an alternative to the familiar Generalized Iterative Scaling
[1] algorithm used for conditional maximum likelihood estimation of log-linear
models that uses a growth transform for rational functions as derived in [3].

With minor modifications, the reestimation procedure presented can be ap-
plied for the estimation of models

F

P(yle) = Z(z) ™' Q(y|=) H A=) (9)
z;‘l
2(@)" =3 QGlw) [TAS
2€Y =1

that arise in minimum I-divergence estimation.
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