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Self-Balanced P2P Expressway: When Marxism Meets Confucian
Abstract—The potential of a P2P system to become an ultra-scalable and yet manageable infrastructure lies in its self-organizing nature. Being composed by increasingly powerful commodity devices, these systems must also endeavor into being not merely self-organizing, but self-adaptation as well.
On this regard, aligning the hierarchy required for efficient operation with the one represented by heterogeneity nature of the nodes – an inherent attribute of any large system, in a self-adaptive fashion, thus becomes an interesting problem. 
We designed a set of algorithms that, collectively, can balance the routing traffic in the inherent hierarchy of an O(log N) structured P2P overlay with node capacities, by promoting more capable nodes to higher levels. Our mechanism is simple and efficient, and is completely distributed and resilient to failures.  Interestingly, we found that this is only possible when all nodes are liable to contribute globally, but priorities must be given to regional interests first.
I. INTRODUCTION

There have been tremendous interests in the field of peer-to-peer research recently: progresses are made not only in the fundamental utilities like routing and storage, but also on many applications such as DNS, media streaming, collaborative Web server and caching, even firewall. The recognition is that by harnessing the power of many commodity devices in a self-organizing manner, a distributed and fault-tolerant platform can be infinitely more scalable than the traditional client-server architecture. 

It is a common misconception to equalize peer-to-peer with a flat, neighbor-only architecture. Like the human society where power-law takes hold at many places, hierarchy is necessary for the efficiency of operations. In the so-called unstructured P2P overlays like Gnutella, research has pointed out the utility of using power-law to mine out more capable nodes to act as search-hubs ‎[1]

 REF _Ref13633497 \r \h 
‎[6]

 REF _Ref13634959 \r \h 
‎[14]. On the other hand, diversity of nodes in the overlay, be it resource supply (CPU, memory etc.) or location advantages (or lack of) such as sitting near a gateway, is also inherent in any large systems. Heterogeneity is a fact, not an assumption. Past works have simulated overlay of the size towards million of nodes, but many have ignored the heterogeneity nature of the system.

Self-organizing is just the starting point; we believe one of the most interesting future directions of P2P research is self-adaptation and evolution of the system. On this, let the system align the hierarchy required by the efficiency of operation with the hierarchy represented by node heterogeneity becomes immensely interesting. Promising results are given by recent works ‎[6] that focus on search in unstructured P2P overlay.

Structured P2P systems ‎[3]

 REF _Ref13633874 \w \h 
‎[4]

 REF _Ref13634443 \w \h 
‎[5]

 REF _Ref13633877 \w \h 
‎[10]

 REF _Ref13636142 \w \h 
‎[7]also embed an implicit hierarchy inside. These systems are capable of bounded routing performance of O(log N) hops, and this is invariably achieved by recursively dividing a logical space so that reaching a target can be done by zooming in quickly. These logical spaces can be reasoned as hierarchies themselves, what differs with traditional school of thought is that, except at the end point where a logical space is merely one node, spaces in this hierarchy are shared by many possible nodes and thus the loads do not concentrate the same way a client-server system does.

In this paper, we investigate the problem of balancing the routing traffic in a structured P2P overlay with node capacity. We choose an optimized version of CAN where expressways are constructed to boost the routing performance to O(log N) with simple extensions. However, the algorithms are applicable to a number of O(log N) systems as well. By abiding to a few simple design principles throughout, we demonstrate that a completely distributed and fault-tolerant mechanism can be devised which balances the load in O(log N) time. This is done by promoting more capable nodes to handle routing traffics at higher level. To our knowledge, this has not been achieved before. Our single most important insight is that this is achieved by not only asking every node to contribute globally (Marxism), but also giving priorities to regional interests (Confucian).

The rest of the paper is organized as follows. The optimized CAN is introduced in Section ‎II; analysis on how load balance can be achieved is offered in Section ‎III. Detailed algorithms are described in Section ‎V. Section ‎A reports our experiment data. Related work is in Section ‎VII and we conclude in Section ‎VIII.
II. Expressway construction, routing and maintenance in CAN
This section starts with a short description of CAN ‎[10]. Among existing proposals, CAN has several unique features: capable of scaling to unlimited number of node with a very simple routing algorithm, self-configured, and low maintenance cost; the last is particularly important in a dynamic environment. We propose simple extensions, called expressways, to make it achieve O(log N) routing performance. The resulting system is what we call e/CAN. We will give an overview of e/CAN, followed by the algorithms for constructing, routing and maintaining the expressways. More details can be found in ‎[13].

A.  CAN
Like many other proposals, CAN (content-addressable network) abstracts the problem of data placement and retrieval over large scale storage systems as hashing that maps "keys" onto "values" [4]. CAN organizes the logical space as a d-dimensional Cartesian space (a d-torus). The Cartesian space is partitioned into zones, with one or more nodes serve as owner(s) of the zone. An object key is a point in the space, and the node owns the zone that contains the point owns the object. Routing from a source node to a destination node boils down to routing from one zone to another in the Cartesian space. Node join corresponds to picking a random point in the Cartesian space, routing to the zone that contains the point, and split the zone with its current owner(s). Node departure amounts to having the owner(s) of one of the neighboring zone take over the zone owned by the departing node. In CAN, two zones are neighbors if they overlap in all but one dimension along which they abut each other. Routing performance in CAN is (d/4)(N1/d).
B. Overview of Expressway

Like the real-world expressway, e/CAN augments CAN's routing capacity with routing tables of increasing span. To build expressways, the entire Cartesian space is partitioned into zones of different spans with the smallest zones correspond to the CAN zones, and any other zones are called expressway zones. Consequently, each node owns a CAN zone and is also a resident of the expressway zones that enclose its CAN zone. 

These expressway zones and the CAN zones are recorded in each node in a data structure we call the total routing table, RT = <R0, R1, …, RL>. For a given node x, RL corresponds to x's default routing table and is what CAN already builds. Each Ri (i=0 to L-1) is called an expressway routing table with larger span than the default. The smaller the i, the larger the span, and routing with smaller i is said to occur at higher level of expressway. Each Ri contains the node's i-th largest enclosing zone, denoted by x.Ri.Z, and the set of neighbor zones (expressway zones) of the similar span, x.Ri.Nd on each of the d dimensions. For each neighbor, the expressway routing table keeps the addresses of one or more nodes in that zone.

Figure 1 illustrates the expressways with an example. The CAN zones are at level 3, and each of the CAN zone is 1/64 of the entire Cartesian space. In this example, four neighboring CAN zones make one level-2 expressway zone and four level-2 zones make a level-1 zone. For example, node 1 owns a CAN zone (smallest square), and it is also a resident in the level-2 and level-1 expressway zones that enclose the CAN zone. The total routing table of node 1 consists of the default routing table of CAN (represented by the plain arcs) that link only to node 1's immediate CAN neighbors and the expressway routing tables (represented by the thick arcs) that link to one node in each of node 1's neighboring expressway zones at level 2 and level 1. Figure 1 also shows how node 1 can reach node 9 using expressway routing.


[image: image1]
Figure 1: Expressway in CAN

It should be pointed out that, among the total routing table, only the default routing table needs to be maintained, which is guaranteed by the basic CAN infrastructure. For the rest, what really matters are the topologies of the zones recorded in the total routing tables. The topologies are stable; whereas the node responsible for these zones can change on the fly.

C. Building Expressway

The preceding section serves to introduce the concept of expressway and the intuition behind it. The challenge is how to construct the expressways at various levels dynamically as the nodes join and leave. There exist a number of choices. The algorithm we will describe below is called evolving snapshot.

The idea behind the evolving-snapshot algorithm is quite simple. At regular intervals of system growth, snapshots are taken. A snapshot is simply a "frozen" copy of a current routing table. Formally, the routing table of a node x, x.R, includes the nodes' current zone, denoted by x.R.Z, and the set of neighboring zones, x.R.Nd on each of the d dimensions, and the addresses of one or more residents for each neighboring expressway zone. This frozen routing table is then pushed onto x's total routing table, x.RT.

"Snapshots" seem to imply some global coordination. However, this is not the case: by the very nature of CAN, the total Cartesian space is uniformly populated. Thus, each node takes snapshot independently by observing its zone size, with which it may infer as to what stage the system has grown. When x's current zone, x.RL.Z, shrinks to a target size, x.RL-1.Z/K, it takes a new snapshot by incrementing L and cloning RL out of RL-1. We call K the span of expressway (K can vary from level to level in practice). See Table 1 for a summary of notations used.

Table 1: Notation list

	RT
	Total routing table: RT =  <R0, R1, …, RL>

	Ri.Z
	The zone the node is responsible for when Ri is taken

	Ri.Nd
	The set of neighbors of the node when Ri is taken

	L
	Total level of expressways that this node is aware of

	K
	The coverage of the expressway


Initially, there is only one node in the system. Its total routing table is RT=<R0>, and R0.Z is the entire Cartesian space. When a node y splits with x, it inherits all entries of x's total routing table other than x's current routing table (x.RL), and makes its default routing table, y.RL according to the CAN algorithm. As the system evolves, a node takes snapshots at regular interval, accumulating those "frozen" routing tables in the past, each with decreasing span, in its total routing table.

Figure 2 explains the concept of snapshots and total routing table, with K=4. Independent of d, the evolution of a CAN system can be thought as building a binary tree since each new node will split with a random existing node. At any given point of time, the leaves are the existing nodes in the system. The oval attached to each link in the figure represents the original CAN routing tables of the node since the node's inception. Ovals framed by a box correspond to routing tables that have undergone snapshots. The total routing table of a node can be found by walking down the tree from the root towards the node, picking up the snapshot routing tables along the path.
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Figure 2: Snapshots (framed boxes) and total routing table
Table 2 shows the actions that need to be taken when a node joins, in addition to what CAN already does. The new node inherits total routing table from the node being split, and then both nodes test to see if its current zone has shrunken to 1/K-th of its last snapshot and, if so, a new snapshot is taken. The change to CAN's existing algorithm is minimal.

Table 2: Node join procedure

	Procedure for a node y joins node x
y.RT = <x.R0,…x.RL-1, y.RL>

Repeat procedure for testing for new snapshot

	Procedure for testing for new snapshot

// executed by both x and y

If (RL.Z ( RL-1.Z/K) {

     RL+1 = RL
     RT = <R0, R1, …., RL,RL+1 >

     L = L+1

} 


D. Routing

The routing protocol is very simple: if the destination is within the node’s current zone (RL.Z), we have already reached the destination. Otherwise, it iterates through the total routing table, starting from the oldest snapshot, until it finds a routing table whose reach does not cover the destination point. Figure 3 illustrates this. Ri is the first snapshot whose space does not cover the destination, and the message will be routed according to Ri, to one of Ri’s neighbors. Snapshots at level i collectively form the expressway at that level, using the CAN routing mechanism among them.
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Figure 3: Routing mechanism in expressways

Table 3 shows the pseudo-code for the basic algorithm, where d is the dimension of the Cartesian space and pt is the destination point in the Cartesian space we want to route to. Ri.Z.Lj and Ri.Z.Uj denote the lower and upper bounds of Ri.Z along the j-th dimension.

Table 3: Routing with e/CAN

	Procedure for Routing with Expressway

If (pt(RL.Z) return;

  For (i=0; i(L; i++)

    If (pt ( Ri.Z ) Route using Ri; break;

	Procedure for Routing with Ri

For (j=0; j<d; j++)
  If (pt<Ri.Z.Lj || pt>Ri.Z.Uj) {

    Route to x(Ri.Nj that is closest to pt; break;

  }  


Routing in expressways is thus an iterative matter, and at each step greedily seeks out the greatest span possible to reach a zone that encloses the destination. Assuming uniform distribution of nodes, the total number of hops will be bound by (logkN)(d/3)k1/d, a product of maximum number of levels to traverse and average number of hops to travel at each level (CAN with different d only makes difference in the second factor). The optimal value of k is ed which results the O(elnN /3) performance. For more details, please refer to ‎[13]. Figure 4 shows e/CAN with d=1 easily outperforms CAN with various d.
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Figure 4: Routing with e/CAN vs. CAN
E. Expressway maintenance
We now discuss how the expressways are maintained. For node join, nothing extra needs to be done as the evolving snapshot algorithm relies on the system growth only. 

Handling node departure is slightly more complicated but is still straightforward. Let x be the node that leaves. The default CAN elects, among x’s neighbor, a node u whose responsible volume is the lightest to take over x’s zone. To keep the topology intact for expressway, we modify the algorithm such that u must be among the ones that share x’s immediately upper level expressway zone. These nodes have exactly the same routing capability as x because they share x’s common ancestors.  Now, when another node y later attempts to route to node x that has departed, the request will time-out and y's routing algorithm may retract and use an expressway of smaller reach. Note y's routing without using any expressway will always work, reflecting our overarching guideline that the expressway is only an auxiliary system. Next, y picks up a point in the space of x recorded in the failed routing table, and route to it. This will always succeed at node u whose zone contains that point. u is now the replacement of x in y's total routing table.
III. Loads, capacities and load-balance
Expressways in real life have the attribute that they are of high bandwidth (usually). Assuming a uniform distribution of traffic, it can be shown that expressway at level i needs to handle K times more traffic on average than at level i-1. K is the expressway span introduced in Table 1. Our default algorithm is seniority-based, in that nodes join the system earlier are situated at higher levels and handling more loads.  

What is desirable is that the expressway systems be completely capability-based, with more capable nodes being pushed to appropriate higher levels of expressways. Borrowing the concept of ‎[17], this is to realize “From Each According to His Abilities, To Each According to His Needs” (the Marxism doctrine). The challenge is to do this in a completely distributed fashion, all the while when loads on existing nodes fluctuate and new nodes join and old ones retire.

In this section, we describe the k-nary structure which is an easier way to reason about the expressway systems. We then formally define the problem.

F. Understanding the expressway system


[image: image5]
Figure 5: k-nary tree and expressway zone naming
As described in ‎C of last section and illustrated in Figure 2, the evolution history of CAN can be recorded in a binary tree. If we remove all the internal nodes except those undertook snapshots, the result is a k-nary tree as shown in Figure 5. The k-nary tree represents all the states in the expressway systems, with leaves being existing nodes and the default CAN states, and all other nodes are internal states (topology info to be accurate
) corresponding to expressway routing. We can perform a breadth-first walk of this tree and name all the expressway zones, as shown in Figure 5. All the zones have a subscription τ which is a k-nary string. The length of the string |τ| determines the level of the zone, for instance Z1k is at the level 2. For convenience, the total Cartesian space is named as Z. Figure 5 also demonstrates how to visualize routing in e/CAN.
G. Load, capacities and load-balance

With the k-nary tree defined, we can now define more accurately the concepts of load, capacities and subsequently the problem of load-balance.

The total capacities of nodes in Zτ is represented by C(Zτ). By capacities we mean the power of the machine dedicated to expressway routing.

A unit of routing load is the action of a forwarding (transmit following a reception). The end points of a routing trip, meaning the originating and terminating of an overlay routing, are not counted into load – they are part of the application behavior at run time. Total routing loads in a zone Zτ is denoted as L(Zτ), which is the sum of all loads on nodes enclosed by Zτ. For both the load and capacities, the following equations hold:
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We let λ(Zτ) be the load-per-capacity of the zone Zτ, i.e., λ(Zτ)= L(Zτ)/C(Zτ). λ(Z) is thus the load-per-capacity for the complete system, recall Z is the total Cartesian space. Thus, the system reaches load balance globally, if and only if for any Zτ in the system, λ(Zτ) equals λ(Z). Any one node x can be considered as a one-node zone as well, that means λ(x)=λ(Z).
The conclusion of the above is that nodes of higher capacities would need to take higher loads – and the natural way to realize this is by letting them shouldering routing at higher levels.

H. Achieving load balance
To understand how load balance can be achieved, we must first decompose the total loads in a zone. 

 Define the expressway routing loads of a zone to be Lx(Zτ). These are the loads the nodes in this zone are handling at level |τ|. We call the sum of routing loads enclosed by Zτ from level |τ| and below to be the internal routing loads of Zτ, or Li(Zτ). These concepts are explained in Figure 6.


[image: image7]
Figure 6: Expressway routing loads Lx(Zτ) and internal routing loads Li(Zτ)
The concept of internal load is important: these are loads that have to be handled by nodes inside this zone and nobody else can help. The total loads of a zone minus the internal loads, or L(Zτ)-Li(Zτ) are those routing traffics that nodes in this zone are undertaking currently, but can potentially be offloaded to other neighbor zones. These loads are external loads of Zτ, noted by Le(Zτ).

 Note at the highest expressway (level 1), all loads are internal, thus:
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Internal loads of Zτ can be decomposed into two portions, the first is the expressway routing at level |τ| that falls in Zτ, and second are internal loads of its children (see Figure 6). In other words:
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A node can contribute routing capacities to all its enclosing zones: from the bottom CAN zones all the way up to the top expressway at level 1. Similar to the way that loads gets divided, we use, Ci(Zτ) and Ce(Zτ) to represent the subsets of C(Zτ) that handle the internal loads Li(Zτ) and external loads Le(Zτ), respectively. The job of load balancing is chiefly to decide 1) this division and 2) the capacities/nodes that make up the division. Within Ci(Zτ), we let Cx(Zτ) to be the capacity that handles Lx(Zτ). 

Table 4: Load and capacity invariants

	Capacity:


[image: image10.wmf]å

å

å

=

=

=

-

=

+

=

+

=

=

]

..

1

[

]

..

1

[

]

..

1

[

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

k

i

x

i

e

e

k

i

i

i

x

i

e

i

k

i

i

Z

C

Z

C

Z

C

Z

C

Z

C

Z

C

Z

C

Z

C

Z

C

Z

C

Z

C

t

t

t

t

t

t

t

t

t

t

t



	Load:
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	Load and capacity:
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The above analysis of both loads and capacities yields a set of invariants, as shown in Table 1. The attributes of load and capacity are symmetric. The first two invariants are two ways to divide load and capacity. The third means that the load and capacity a zone reserves for itself internally, are partitioned into those corresponding to the expressway traffic at this level, and others for all the sub-zones. The last indicates that what a zone contributes externally is the sum of what its sub-zones contribute to their externals collectively, minus what this zone reserves for its own expressway routing. Finally, the breakdown of capacities can also be derived from the breakdown of loads, and vice versa.

Let’s suppose that zone Zτ has already done its load balance externally, i.e., we have decided the division of Ci(Zτ) and Ce(Zτ) in C(Zτ).  Now let’s examine how load balance is to be performed for Zτ’s immediate children zones. In the following discussion, we let z to note a child of Zτ. What we need to decide is Ce(z) (since C(z) is known and Ci(z)=C(z)-Ce(z)) as well as Cx(Zτ).

Let λ be the load-per capacity of Zτ, for z to approach the load balance of its parent, we should have:
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Since Le(z)=L(z)-Li(z), we can solve for Le(z):


[image: image14.wmf])

(

)

(

)

(

z

L

z

C

z

L

i

e

-

×

=

l

                                      (1)
Having solved Le(z), we can derive Ce(z) and Ci(z), not surprisingly, they are:
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          (2)

This essentially says that in order for z to be load balanced in par with its parent, z needs first to reserve for itself the capacity to handle its internal traffics, in proportion to the overall load-per-capacity ratio. 

Applying the above equations to all sub-zones, we can decide, for each of them the breakdown Ce(z), Ci(z), the task we set out to do at the first place. Since every z achieves the same load balance as Zτ, we have reached load balance within Zτ.
There is an important catch, however. Observe equation (1), Le(z) must be a positive value. That is to say, we must have:


[image: image16.wmf]l

<

)

(

/

)

(

z

C

z

L

i
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 Any zone failing the above equation is facing difficulties of is own: all its capacity can barely handle its internal loads. These zones should be excused from the duty of contributing to external traffic handling (i.e., not taking part of handling Lx(Zτ) and Le(Zτ)). 

We can now describe the core algorithm to perform the load balance, as shown in Table 5.

It can be proved that, at the termination of the algorithm, all unqualified sub-zones still have load-per-capacity greater than the rest of the zone, and it does not matter the order in which they fail the qualification. Also, note in level one we always have Le be zero, thus the algorithm can execute from top down, trickling down and set the value of Le and Cx at each level. 

A plausible alternative would be to distribute Le(Zτ) and Lx(Zτ) to all its children, in proportion to their capacities, and in one top-down sweep derive the Le(z) and therefore Ce(z), and thus also Cx(Zτ). This approach is to adhere to the “from each according to his ability” principle, but is wrong because the internal conditions of children are ignored. 

Table 5: Load balance procedure

	Input:

Le(Zτ), Lx(Zτ), Li(z) for all children z;

C(z) for all children z; Ce(Zτ);
Output:

Cx(Zτ); Le(z) and Ce(z) for all children z;
Initialization:
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Procedure:

// eliminate unqualified zones

for (all children z) {

  if ((Li(z)/C(z)>L0/C0) {

    mark z unqualified;

    Le(z) = Ce(z) = 0;
    L0 = L0-Li(z);

    C0 = C0-C(z);

  }

}

// calculate Ce and Ci for all qualified z

for (all children z) {

  if (z is qualified) {

    Ci(z) = Li(z)[C0/L0]; 

    Ce(z) = C(z)-Ci(z);

    Le(z) = Ce(z)[L0/C0];
  }
}

for (all children z)

  Cx(Zτ) += Ce(z);
Cx(Zτ) = Cx(Zτ)-Ce(Zτ);


IV. Algorithms and Implementation
I. Design Goals
Section ‎III lays the theoretical foundation for our implementation. The goals our implementation must achieve are the followings:

Completely distributed. The responsibilities should be shared by as many entities and as evenly as possible; tight coupling is to be avoided.

Self-repair and fault-tolerant. Any entities involved in the algorithm can leave without halting the process.

Continuously responsive. Changes in either load or capacities must result in corresponding system adjustment. 

While the last goal is somewhat tied with the problem of load balance specifically, the first two are generic ones for any distributed system. The goal of self-repair and fault-tolerance is particularly important to a P2P system where there is no centralized control of membership and nodes join and leave dynamically. 

We attain our design targets by abiding to several simple but powerful design decisions throughout:

1. All states the algorithms depend on are periodically updated and can be efficiently reconstructed in the event of system change. 

2. When executing, algorithms are only bound to the states they require as inputs, never to any pre-designated nodes that they must run on. Since states can be refreshed and reconstructed, that means algorithms can also be ran whenever and wherever inputs states are available. 

J. Algorithms overview

Our implementation consists of four algorithms: 
Statistic collection algorithm. Aggregate loads and capacity statistics in a bottom-up sweep.

Load balance algorithm. Top-down sweep to determine the capacities (Ce) to be drawn from each sub-zones, as well as Cx to be reserved at this level. 
Capacity selection algorithm. Select the right portion of capacities, as recommended by the previous step, from candidate nodes. Also bottom-up sweep.

Entries dissemination algorithm. Notify other nodes to use the new expressway entries so that load distribution can take effect. 

A number of these algorithms are either bottom-up or top-down sweeps, the direction here indicates where the outputs of an algorithm are sent to. These sweeps are executed independently at each zone, instead of lock-stepped and are done periodically. The speed with which the load redistribution is done can be set as part of system policy. Adjust too soon may produce fluctuation instead of stability, if too slow then the system can be less responsive. 

There are only two new data structures we use in order for the algorithms to function. The first is a file we call ZSF (for Zone Statistics File), which collects load and capacity statistics of a zone. It is stored at a pre-determined point in that zone (for instance the center). The fields in ZSF are described in Table 6.

Table 6: Zone Statistics File

	Fields
	Structure and Meaning

	Ld
	A table of logk N level, the i-th entry represents the loads nodes in this zone are taking at level i.

Filled by: statistic collection algorithm.

	C
	Total capacities of nodes in this zone

Filled by: statistic collection algorithm.

	Le
	External loads this zone is assigned to

Filled by: load balance algorithm running at Zτ’s parent.

	Cx
	Capacities in this zone reserved for routing at this level (i.e., |τ|)

Filled by: load balance algorithm running at Zτ

	Ce
	Capacities in this zone assigned to take external loads Le
Filled by: load balance algorithm running at Zτ’s parent.



The second file, also associated with each zone and stored in a pre-determined location within it, is the Lead Indicate File (LIF). LIF contains a set of nodes, each with the amount of capacities they can contribute. The LIF is effectively the expressway entries our algorithms recommend for expressway routing in this zone. LIF also has an associated time stamp, LIF.T.

We now describe each of the algorithms in details.

K. Statistics Collecting Algorithm

Collecting load information is quite straight forward. A node can distinguish what forwarding falls at what level by the entry of the total routing table used. These statistics enter into ZSF(a).Ld, where a is an arbitrary node. a also fills  ZSF(a).C, the capacity field. Note the node now has the control to tell the system how much total capacity it is willing to contribute.

[image: image18]
Figure 7: Load and capacity aggregation

Periodically at an interval T, ZSF(z) is submitted to z’s parent zone Zτ for aggregation. The node that is responsible for ZSF(Zτ) also keeps a copy of ZSF(z) of each children z, and periodically (also at time interval T) aggregates ZSF(z).Ld and ZSF(z).C to update the corresponding fields in ZSF(Zτ). And when its turn comes, will submit ZSF(Zτ) to Zτ’s parent zone.  This is depicted in Figure 7. Note each zone has its own ZSF as well as copies of its children’s.

The statistics collection algorithm is run completely distributed, and since it is done periodically, a node’s departure only exhibits a temporary slack. In the very worst case, if all statistics that ZSF(Zτ) depends on are lost, it can be reconstructed completely in |logKN-τ|∙T delay.

L. Load Balancing Algorithm

To run the load distribution algorithm, each zone independently executes the algorithm in Table 5 periodically at an interval. For an arbitrary zone Zτ, the input parameters are gathered as follows: 
Le(Zτ) and Ce(Zτ): both are zero for level-one zones. All other zones take the value as recorded in ZSF.Le and ZSF.Ce. 

C(z) for all children z: recorded in z’s ZSF copy stored at Zτ
Lx(Zτ): the |τ|-th entry of ZSF(Zτ).Ld
Li(z) for all children z: the sum of ZSF(z).Ld from |τ+1|-th level onwards.
Note that summarizing Li(z) can only take values from the z’s copy of ZSF stored at Zτ.

At the end of running the algorithm, Zτ has decided Cx and fills ZSF(Zτ).Cx with this value. It also propagates its decision of Le and Ce to each child, who in turn fills the fields in ZSF(z).Le and ZSF(z).Ce.

M. Capacity Selection Algorithm

While the total capacities a zone reserved for its expressway routing load L(Zτ) is recorded in ZSF(Zτ).Cx, what makes up these capacities are contributed from individual nodes enclosed by Zτ. The record is stored in the Leader Indicator File (or LIF in short). The LIF file contains a list of candidates and their contributing capacities.

The selection is done in a bottom-up fashion, starting from the lowest zone – the CAN node. When a node a got its assignment Ce(a), it submits its surplus to its parent zone. The parent zone performs a merge sort over the submissions from all its children, reserves a portion for its Cx and recorded them in LIF, time stamps LIF.T, and submits the rest to its parent. The process repeats then at its parent.

What to reserve and what to submit is a policy issue. Since the upper-levels are usually having higher loads, we submit, from the sorted capacity list, capacities of the nodes with higher power. Naturally, therefore, more capable nodes are elected to higher level. Figure 8 demonstrates how this is done, note the two high-capacity nodes, a and e are elected towards higher level.
As with the previous stages of the algorithm, this step is performed periodically at the same frequency as the Load Balance Algorithm.


[image: image19]
Figure 8: An example of LIF and surplus computation

N. Entry Dissemination Algorithm

What stored in LIF(Zτ) are candidates selected to handle the level |τ| routing (i.e. Lx(Zτ)) in Zτ.  LIF(Zτ) can have different shapes: it can contain only a few entries and is thus thin and tall, or it can contain many entries, making it fat and flat. The first case happens when the distribution of node capacities within Zτ is diverse, and the second when the distribution is uniform. These two cases are depicted in Figure 9.


[image: image20]
Figure 9: (a) tall and thin LIF; (b) fat and flat LIF

Let Sto(Zτ) be the collection of nodes whose total routing table has an entry such that Zτ is one of the neighbor zone. Routing through Zτ at level |τ| must be through Sto(Zτ). There can be many different shapes of how Lx(Zτ) distributes within  Sto(Zτ), and the extreme cases are 1) there is only one node contributing to Lx(Zτ) and 2) all Sto(Zτ) nodes contribute equally.

The goal of the Entry Dissemination Algorithm is to take into account both the LIF(Zτ) distribution and the Lx(Zτ) distribution among  Sto(Zτ), so that when nodes in Sto(Zτ) routes next, the routing loads will fall on the LIF(Zτ) candidates appropriately.

The easy case is when LIF(Zτ) is tall and thin: it is practical for nodes in Sto(Zτ) to simply retrieve LIF(Zτ) in wholesome and record it in its total routing table at the entry where Zτ is a neighbor zone. When a node routes to Zτ, it simply draws a candidate with probability proportional to that candidate’s capacity.

If LIF(Zτ) is very big, we must adopt a different strategy. A large LIF(Zτ), is divided it into units (see Figure 9) each with a equal total capacity, and node a in Sto(Zτ) uses one unit at a time when prefetching the next. If the LIF(Zτ) is refreshed every Trefresh, then the interval that a will try to rotate LIF(Zτ) units in Trefresh/Nunits interval, where Nunits is total number of units in LIF(Zτ).
One difficulty we have not dealt with is that many nodes will be interested in a zone at higher level, generating lots of requests to LIF(Zτ) when |τ| is small. We discuss our strategy below to illustrate the case when LIF(Zτ) is retrieved. Fetching unit of LIF(Zτ) is similar.
Each routing table entry in the total routing table of a node has an associated timer. When the timer expires, the node will try to retrieve an updated LIF(Zτ). Suppose a is the first to do so. It routes towards the node that keeps LIF(Zτ), and on the return trip makes a replica LIF(Zτ) on each node it routes through. If another node b later does the same but discovered a LIF(Zτ) on the way, it tries to determine if the delta between now and LIF(Zτ).T is shorter than the refresh cycle Trefresh and, if so, the copy will be used instead of getting the original LIF(Zτ). The pseudo-code is shown in Table 7.

Table 7: On-demand replication of LIF(Zτ)
	If (t > Texpire(Zτ)) {

  Route towards the node keeping LIF(Zτ);

  On each hop:

    If there is a copy of LIF(Zτ) s.t.  t-LIF(Zτ).T < Trefresh
      Go to return;

}

return:

deposit LIF(Zτ) on each return hop


O. Robustness and scalability of the algorithm

The robustness of our mechanism stems from the fact that none of the input for any of the algorithms are hard-states. Instead, all data are refreshed and updated periodically, and can be efficiently rebuilt upon any failures in the system. Algorithms are bound only to the data and consequently are resilient to failure as well.

Number of statistic files and algorithm instances are proportional to total number of zones in the system, including the CAN zones. For a given k-nary tree, this is O(N∙k/(k-1)). Both statistics and algorithms are evenly distributed. Each algorithm takes inputs from and generates outputs to no more than k end points, independent of which level the algorithms are run. Therefore, our mechanism is scalable as well.
V. Evaluation
P. Experiment setup

We modify an earlier e/CAN simulator by incorporating all the algorithms described in previous section. Similar to ‎[6], two capacity profiles are used: 
Zipf-like:  when sorted, the i-th node has capacity 10000∙i-β, we choose β be 1.2 by default.
Gnutella-like:  there are 5 levels of node, and the i-th level has capacity 10i-1, popularity in these levels are 20%, 45%, 30%, 4.9% and 0.1%, going from level 1 to level 5.

The comparison of the two distributions for N=2K is shown in Figure 10.
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Figure 10: Capacity profile (N=2K)
We vary N (total number of nodes) from 256 to 8K, and choose two values of K (the expressway span): K=2 or K=8. For each configuration (capacity profile, N and K), an experiment of 5 cycles is run. Each cycle starts from a complete reshuffling of the node capacities, then route 100N times, during which load and capacity information are gathered. The Load Distribution Algorithm and the Capacity Selection Algorithm are then run, distributed in every zone. Next the Entry Dissemination Algorithm distributes LIFs accordingly. Finally another 100N routings are ran and various statistics are collected again. This somewhat primitive setup allows us to gain sufficient insight of the algorithms; a more sophisticated one would include node join and leave events and overlap capacity distribution with normal routing, which we plan to conduct in the future.
Q. Overall performance

We found that, in all configurations, load balance converges quickly in O(log N) time, and that after the full set of the algorithms are run, higher capacity nodes are taking more loads. Figure 11 and Figure 12 show a typical result for N=2K and K=2, of the Gnutella-like and Zipf-like capacity distributions, respectively. Average load of each level in Gnutella-like profile is also drawn. Note the sharp difference before and after the load redistribution.
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Figure 11: Results of N=2K, K=2, Gnutella-like
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Figure 12: Results of N=2K, K=2, Zipf-like
R. Sensitivity to parameters

Our algorithm is robust against capacity profiles. However, it can be sensitive to big K. This is especially true when capacity profile is skewed, resulting in fewer high power nodes to be distributed among expressway zones. Figure 13 demonstrates this effect with N=4K and K=2 and K=8 side-by-side with the Gnutella-like distribution.
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Figure 13: N=4K. Sensitivity to K
Note that in the case of K=8 how the load distribution at middle level changes: averages moves up, and number of low load nodes reduces, and some of the middle level nodes are taking high loads Overall, however, the system still reaches load balance. 
S. LIF size

As we discussed in previous section, the practicality of distribute the LIFs as wholesome depends on their sizes. Flatter capacity distribution will result in larger size in general, thus we adds another Zipf distribution with β being 0.5. Table 8 shows the maximum number of entries contained in any LIF with several configurations. The data indicated for a reasonably large size system, it is realistic to cache the LIF into node’s total routing tables.
Table 8: Max LIF size

	Number 

of nodes
	Zipf 

(β = 1.2)
	Zipf 

(β = 0.5)
	Gnutella 

	256
	7
	20
	6

	512
	8
	27
	7

	1024
	9
	31
	8

	2048
	10
	42
	12

	4096
	12
	67
	20

	8192
	14
	110
	30


VI. Discussion
A number of observations were made during the course of this research, and we discuss them in turn.
T. Applicability to other O(log N) overlay

All O(log N) P2P overlays including Tapestry‎[15], Pastry ‎[12], Chord ‎[9], e/CAN ‎[13] and Kademlia ‎[7], though started from different angle, end up using one principle: the total logical space is recursively divided, and routing zooms in quickly from larger space to an enclosed smaller one. In general, they can all be represented by the k-nary routing structure. The number of nodes capable of handling routing in a space is proportional to the size of the space. As long as heterogeneity exists in nodes’ capacity, selecting the right set of capacities to handle loads in each space so that load-balance is achieved can use the algorithms outlined in this paper with only slight modification. 

While mapping to Tapestry, Pastry and Kademlia are relatively straightforward, applying to Chord appears to be difficult. The total logical space in Chard is a circular ring. However, when routing the logical space is relative and is shifted clockwise. The finger table also records entries that point to lead nodes into the now shifted space. This is a somewhat rigid structure: all other systems point to some nodes in the target space instead. Since load-balance with heterogeneous nodes is an important issue, we believe there are works remain to be done for Chord.  
U. From loads to tasks, and capacities to capabilities

 “Load” and “capacity” are generic terms. In this paper, the two correspond to routing traffics and the associated resources. As such, there can be other interesting applications of our algorithms. For instance the following pairs are possible: computation and CPU power, storage requirement and storage availability, etc. One specific example is to select nodes close to the gateways (or are gateways themselves) to handle high-level, cross-continent routing. This can be realized by setting the capacities of these nodes to be 1, and all other nodes 0, and our algorithms will move these nodes up to the hierarchy.

The notion of super-nodes ‎[16] (or super-peer ‎[14]) has been proposed to denote the set of nodes with higher capacities, and super-nodes are generally considered more suitable at higher levels than others. The meaning of “level” can differ depending on the particular context: ability to answer queries, or to route traffic. This is what our algorithms have achieved, and with one single overlay throughout as opposed to with several ‎[16]. In fact, as we sorted the nodes into a pyramid, there can be arbitrary number of levels. Two level partitioning (super-nodes versus others) is merely a special case.

Routing capacity can be further decomposed into a vector; with each element corresponding to the ability to route in a geographical region. A location-aware overlay is desirable ‎[11], but what matters is location-aware routing, in that the aggregated total hops take the closest physical route while 1) abiding to the routing algorithm and 2) not destroying the properties in the virtual overlay such as uniform space distribution. This is the insight that starts our earlier work ‎[13], and one future direction of the algorithms developed in this paper. 

V. Applicability of individual algorithm

Individual algorithms developed in this paper are just as useful. The Statistic Collection Algorithm demonstrates that, even in a dynamic system as P2P, it’s possible to have a robust and efficient way (O(log N)) to monitor system status by exploring the combined power of soft-state, hierarchical reporting and self-archival of system metadata. The Load Balance Algorithm shows how to recursively balance loads by carefully decomposing what a local region is responsible for versus what it is contributing externally, and by pardoning local regions that are already in “disaster” condition. The Capacity Selection Algorithm is collaborative sorting where the cost is amortized over all participants, and can be particularly useful in performing fundamental tasks such as leader-election. Finally, the Entry Dissemination Algorithm demonstrates the usefulness of on-demand replication of system metadata when loose coherency bound is needed.
W. P2P as a mini-society

Heterogeneous and yet connected, autonomous and yet collaborating, going after individual interests and yet sharing the loads of global (or regional) infrastructure and duties, are attributes that can be equally said about human society and a well-designed P2P system. Thus, there are many parallels between the two.

Probably the most interesting experience we have had is with the order of contribution. As our algorithms have shown, the right way to ask a P2P citizen to share its power is to allow it minding its own household first before contributing externally. This principle is simultaneously intuitive and paradoxical. The other way round, as what Marxism doctrine has scripted (“From Each According to His Abilities, To Each According to His Needs”) would create scenarios where the have-nots are over-taxed and consequently the haves are contributing less than they should, resulting in unfairness contrary to the intention. Much ancient wisdom, in particular in the Oriental land, had wrestled with the ultimate question of what balance means and how to achieve it. The order of attending one’s own fair, then family, then country and finally the world, has been a doctrine in Chinese philosophy such as Confucian. This is what led to the title of this paper. If one must, the Marxism script should be “To Each According to His Needs, From Each According to His Abilities”, a subtle but important change.

Leaving capacities of nodes un-calibrated is a double-edged sword. On one hand, it gives each node enough flexibility so that they can have room to attend their own business should situation arise. On the other hand, it leaves backdoors for cheating: some nodes can claim to have fewer capacities or more loads than they really have. The reverse could be equally alarming: a low capacity node can declare that it has ample to dispose, attracting many undeserved assignments, here we see the seed of planting a denial of service attack. An audit mechanism is thus required. And then again, who is to audit the auditors? 
VII. Related Work
The fundamental thrust behind this work is the recognition of the utility of hierarchy in P2P and the heterogeneity nature inherent in large systems. Heterogeneous distribution of node capacities is reported in ‎[8]; utilizing hierarchy for efficient searching can be found in a number of proposals ‎[1]

 REF _Ref13634959 \w \h 
‎[14]. We are mostly inspired by ‎[6], where the whole system align the hierarchy required by the nature of the operation (searching) and the one formed by heterogeneous capacities in a self-adaptive way. Above works are in the domain of unstructured P2P network ‎[2] and focus on the searching aspect of the system.

 Although not explicitly stated so, structured P2P overlays and systems ‎[3]
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‎[4]
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‎[5]
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‎[7]
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‎[9]
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‎[10]

 REF _Ref13633880 \w \h 
‎[12]

 REF _Ref10627699 \w \h 
‎[13]

 REF _Ref10694845 \w \h 
‎[15] has an inherent hierarchy in routing – one does not get O(log N) performance by magic. Except for Chord ‎[9] based systems, our algorithms are immediately applicable for balancing routing loads. Exploring heterogeneity of these systems is proposed in ‎[16] by forming a separate overlay atop using gateway nodes. We suggest one single hierarchy where more capable nodes are adaptively promoted and believe this is a simpler design. 

Another popular method to obtain load balance is to let each physical node to impersonate as multiple nodes in the overlay, as proposed in ‎[3]. The problem here is that the failure of one physical node now brings down many nodes in the overlay simultaneously. The quantity of states is not a concern, the effort to maintain them is. So this idea, while useful, should only be applied carefully.

VIII. Conclusion and Future Work

P2P is not a completely new concept: Internet routing protocols are constructed this way, even all the O(log N) proposals can find roots in multistage interconnect network (MIN) research dated decades back. What P2P overlay brings to the scene is the self-organizing aspect of the complete system, which holds the potential of an ultra-scalable and yet manageable infrastructure. Being composed by increasingly powerful commodity devices, one exciting direction of overlay research is to advance into the area of self-adaptation and evolution. In this paper, we report how routing traffic can be balanced by aligning the hierarchy of routing with the one represented by heterogeneity of node capacities – an attribute inherent in any large system. Our algorithm is efficient, robust and completely distributed, and we verify our algorithms through detailed simulations.   

There are a number of future works along the line of self-adaptation. For instance, physical vicinity can be factored in as part of capacity and we believe this is one way to achieve location-aware routing. As another example, “disaster areas” can be relieved if high capacity nodes in other regions can split part of their power to lend helping hands.  We believe this is one active area of P2P research that will continue to yield interesting results.  
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� Strictly speaking, while x.Ri.Z is an expressway zone, its neighbor (x.Ri.Nd) may not be at the time of snapshot. x.Ri.Nd can be replaced by the largest zone that it encloses without impacting routing in any way. After this fix, all states are precisely those recorded in the k-nary tree.
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