
Discrete Localization
and Correlation Inequalities for Set Functions
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1 Introduction

1.1 Discrete and continuous localization inequalities

By a set function over a setS we mean a function whose domain is the set2S of all subsets
of S. A 4-tuple(α, β, γ, δ) of nonnegative real valued set functions over the finite setS is
said to satisfy theAhlswede-Daykincondition,AD(α, β, γ, δ), if:

For allA, B ⊆ S, α(A)β(B) ≤ γ(A ∪B)δ(A ∩B).

In the case thatα = β = γ = δ, this condition says thatα is log-supermodular. The
4-function theorem (4FT) of Ahlswede and Daykin says that the collectionAD(α, β, γ, δ)
of local conditions yields a global conclusion:

Theorem 1. [AD1] If α, β, γ, δ are nonnegative real valued set functions over the finite set
S satisfyingAD(α, β, γ, δ) then:

(1) α(2S)β(2S) ≤ γ(2S)δ(2S).

(Here, forH ⊆ 2S , we use the notationf(H) =
∑

E∈H f(E).) This well-known re-
sult generalizes a number of important inequalities in combinatorics, probability theory and
statistical mechanics including the FKG inequality, and related results due to Holley ([Ho]),
Harris([Ha]), and Kleitman ([Kl]). Ahlswede and Daykin ([AD2]) and Daykin ([Day2]) de-
veloped a framework for inequalities on set functions based on a general product theorem
which abstracts the induction step of the proof of the 4-function theorem. An extension to
sequences of2k functions withk ≥ 2 was obtained independently by Rinott and Saks [RS]
and Aharoni and Keich [AK].

The contrapositive form of Theorem 1 is:

Corollary 2. If α, β, γ, δ are nonnegative real valued set functions over the finite setS
satisfying

(2) α(2S)β(2S) > γ(2S)δ(2S).

Then there are setsA,B ⊆ S satisfyingα(A)β(B) > γ(A ∪B)δ(A ∩B).

In its contrapositive form, the 4FT resembles a geometric ”Localization Inequality” of
Kannan, Lov́asz and Simonovits [KLS] (which we will not state in its strongest form). A
needle with an exponential weight function, or briefly anexponential needlein Rn is a triple
N = (a, b, γ), wherea, b ∈ Rn andγ ∈ R. We define the integral of a functionf on this
needle as ∫

N

f =
∫ 1

0

eγtf(a + t(b− a)) dt.

Theorem 3. Let α, β, γ, δ be nonnegative continuous functions onRn, and letc, d > 0.
Suppose that

(∫

Rn

α(x) dx

)c (∫

Rn

β(x) dx

)d

>

(∫

Rn

γ(x) dx

)c (∫

Rn

δ(x) dx

)d
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Then there is an exponential needleN such that

(∫

N

α

)c (∫

N

β

)d

>

(∫

N

γ

)c (∫

N

δ

)d

.

This was derived from the following ”Localization Lemma” of Lovász and Simonovits
[LS] (again, stated in a simplified form):

Theorem 4. Letf andg be two continuous integrable functions onRn so that
∫

Rn

f(x) dx ≥ 0, and
∫

Rn

g(x) dx ≥ 0.

Then there is an exponential needleN such that
∫

N

f ≥ 0, and
∫

N

g ≥ 0.

In this paper we prove a result that is related to the Four Function Theorem as Theorem
4 is related to Theorem 3. If we have a real valued functionf whose domain is a finite set
U (not 2U ) so thatf(U) ≥ 0, then there is an elementu ∈ U so thatf(u) ≥ 0. This trivial
localization is an important step in many proofs, in particular in most applications of the
Probabilistic Method.

Now suppose we have two functionsf1, f2 defined on a finite setU , having the property
that f1(U) andf2(U) are both nonnegative. The geometric result suggests that it might
always be possible to find a “small” subsetT of U such thatf1(T ) andf2(U) are both
nonnegative. However for anyU , it is easy to construct an example with the property that
for any proper subsetT of U , f1(T ) < 0 or f2(T ) < 0.

As in the geometric case, we can try to use weights. In other words, we can try to find
a “small” subsetT of U and “natural” weightswi (i ∈ T ) such that

∑
i∈T wif1(i) and∑

i∈T wif2(i) are both nonnegative. There are now various ways to specify “small” and
“natural” and get a valid assertion. The simplest one is stated in the following proposition
(whose easy proof is omitted):

Proposition 5. LetU be a finite set andf1, f2 : U → R such thatf1(U) ≥ 0 andf2(U) ≥
0. Then there exists aT ⊆ U with |T | ≤ 2 and weightswi > 0 (i ∈ T ) such that∑

i∈T wif1(i) ≥ 0 and
∑

i∈T wif2(i) ≥ 0.

If instead of two functions on an unstructured setU , we have two set functions
f1, f2 : 2S → R, then we have the following more difficult and more useful localiza-
tion result. To define a “natural” weighting, let us call a set functionµ multiplicativeif for
any subsetA, µ(A) =

∏
a∈A µ({a}) (where the empty product is taken to be 1). Also, for a

set functionf on2S andA,B ⊆ S, define:

σ(f ; A,B) = f(A) + f(B) + f(A ∪B) + f(A ∩B).

We prove:
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Theorem 6. Let f1, f2 be two set functions on a finite setS such thatf1(2S) ≥ 0 and
f2(2S) ≥ 0. Then there is a strictly positive multiplicative set functionµ and (not necessarily
distinct) setsA,B such that fori ∈ {1, 2},
(3) σ(µfi; A,B) ≥ 0.

(Hereµfi is the function defined on2S by µfi(X) = µ(X)fi(X).)
We prove this theorem in section 2. We then use it to prove three new inequalities for set

functions, each extending the 4FT in a different way. The formal analogue of Theorem 3 is
not the 4FT, but rather the following result.

Corollary 7. Let α, β, γ, δ be four nonnegative set functions overS andc, d > 0. Suppose
that

α(2S)cβ(2S)d > γ(2S)cδ(2S)d.

Then there exists a positive multiplicative set functionµ and two setsA,B ⊆ S such that

σ(µα;A, B)cσ(µβ; A,B)d > σ(µγ;A,B)cσ(µδ; A,B)d.

We prove this theorem in Section 3. We remark that the conclusion is not necessarily
true if µ is the identically 1 function, that is,µ can not be eliminated. As a consequence of
this theorem we will deduce the following Hölder-type generalization of the 4FT. For a real
valued functionf on2S and0 < p, write‖f‖p for (

∑
X⊆S |f(X)|p)1/p (so‖f‖1 = f(2S)).

Theorem 8. If α, β, γ, δ are nonnegative real valued set functions over the finite setS sat-
isfyingAD(α, β, γ, δ) andp, q, r, s > 0 satisfymin{p, q} ≤ min{r, s} and1/p + 1/q ≤
1/r + 1/s then:

(4) ‖α‖p‖β‖q ≤ ‖γ‖r‖δ‖s.

We now describe our second refinement of the 4FT. One way to refine an inequality of
the formS ≤ T is to decompose it as a sum of inequalities, i.e., find equationsS =

∑
i∈I Si

andT =
∑

i∈I Ti so thatSi ≤ Ti for all i ∈ I. For a pair(C, D) of sets withC ⊆ D let
P (C, D) denote the set of pairsA,B such thatA ∩ B = C andA ∪ B = D. In section 5,
we prove:

Theorem 9. Under the hypothesis of Theorem 1 the following holds for each pair of sets
(C, D) with C ⊆ D ⊆ [n]:

(5)
∑

(A,B)∈P (C,D)

α(A)β(B) ≤
∑

(A,B)∈P (C,D)

γ(A)δ(B)

The conclusion of the 4FT is obtained by summing (5) over all pairs(C,D).
Our final theorem concerns the closure of the Ahlswede-Daykin condition under convo-

lution. There are (at least) two reasonable notions of convolution for set functions. The first
is an algebraic notion of convolution arising from discrete fourier analysis with respect to
the groupZn

2 :

(6) f ∗ g(A) =
∑

X,Y :X⊕Y =A

f(X)g(Y ),
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whereX ⊕Y = (X −Y )∪ (Y −X) denotes the symmetric difference. The second notion,
which we calldisjoint convolutionand denote bẏ∗, is set theoretic rather than algebraic:

(7) f ∗̇g(A) =
∑

X,Y : X∪Y =A
X∩Y =∅

f(X)g(Y ).

Here we prove that the Ahlswede-Daykin condition is closed under disjoint convolution:

Theorem 10. Let α1, β1, γ1, δ1, α2, β2, γ2, δ2 be nonnegative functions on2S and letα =
α1∗̇α2, β = β1∗̇β2, γ = γ1∗̇γ2 andδ = δ1∗̇δ2. If AD(αi, βi, γi, δi) holds fori ∈ {1, 2}
thenAD(α, β, γ, δ).

We prove this theorem in section 6. The theorem includes the 4FT: Takeα2 = β2 =
γ2 = δ2 to be the function that is identically 1. The conclusion of Theorem 10 includes
the inequalityα(S)β(S) ≤ γ(S)δ(S) which is equivalent to the conclusion of the 4FT for
α1, β1, γ1, δ1. Takingα1 = β1 = γ1 = δ1 andα2 = β2 = γ2 = δ2 in Theorem 10 we
obtain:

Corollary 11. The disjoint convolution of two log-supermodular functions is log-super-
modular.

We remark that for algebraic convolution, even the corollary does not hold. For the
log-supermodular set functionsf, g over {1, 2} defined byf(∅) = g(∅) = 1, f({1}) =
g({2}) = 0, f({2} = g({1}) = 2 andf({1, 2}) = g({1, 2}) = 1, we havef ∗ g(∅) = 2,
f ∗ g({1}) = f ∗ g({2}) = 4, andf ∗ g({1, 2}) = 6, sof ∗ g is not log-supermodular.

This corollary was also motivated by a continuous-discrete analogy. Submodular set
functions are analogous to convex functions (see e.g. [L]), and so log-supermodular set
functions are analogous to logconcave functions. Two important and nontrivial properties
of logconcave functions are that their class is closed under integrating out some variables,
and also under convolution [Din, P]. A discrete analogue of the first property was proved for
log-supermodular set functions by Rinott and Saks [RS]. In the continuous case, closedness
under convolution is implied by closedness under integration, but in the discrete case this
does not seem to be the case, and we need a more elaborate argument.

2 Proof of Theorem 6

Supposef : 2S −→ R2 and letf1, f2 denote the set functions with rangeR obtained by
projectingf onto, respectively, its first and second coordinates. A triple(A, B, µ), where
A, B ⊆ S andµ, is a strictly positive multiplicative set function onS satisfying the con-
clusion (3) of the theorem is called asolution for f . We prove by induction on|S| that
f(2S) ≥ (0, 0) implies thatf has a solution. For convenience we assume thatS = [n] for
some positive integern, where[n] denotes the set{1, . . . , n}. For n = 1, (∅, {1},1) is a
solution and forn = 2, ({1}, {2},1) is a solution where1 denotes the function that maps
all sets to 1. The main part of the proof is the casen = 3; the case of generaln will then
follow from an easy induction.

We assume thatf : 2[3] −→ R2 satisfiesf(2S) ≥ (0, 0) and, for contradiction, we
further assume thatf has no solution. Without loss of generality we may assume that
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f(2[3]) = (0, 0); if not, we replacef by the functiong with g(∅) = f(∅) − f(2[3]) and
g(A) = f(A) for A 6= ∅ and observe that a solution forg is also a solution forf .

It is useful to use the standard picture of2[3] as the set of vertices of a cube where each
adjacent pair of vertices corresponds to a pairs of sets that differ by exactly one element and
antipodal vertices correspond to complementary sets. We refer to a subset of2[3] as anedge
or faceif it corresponds to an edge or face of the cube. Thus an edge is a pair of sets of the
form {A,A ∪ {i}} with i 6∈ A, and a face has the form{A, A ∪ {i}, A ∪ {j}, A ∪ {i, j}
wherei 6= j andA = ∅ or A = [3]− {i, j}. An edge is anouter edgeif it contains∅ or [3]
and is amiddle edgeotherwise. In the edgeE = {A,A∪{i}}, A is thebottom setof E . Two
edges{A,A ∪ {i}} and{A′, A′ ∪ {i′}} areparallel if i = i′.

Every faceF consists of one outer edge and one middle edge. IfF is a face, then its
complementF is also a face.

A diamondis a set of four vertices of the form{A,B,A∩B,A∪B} whereA andB are
incomparable sets. Every face is a diamond, but not vice versa, since{∅, {i}, {i}, [3]} is a
diamond for eachi. The following three conditions on a pair of distinct edgesE1 andE2 are
equivalent: (D1)E1∪E2 is a diamond, (D2)E1 andE2 are parallel and at least one is an outer
edge, (D3)E1 andE2 are parallel and their bottom sets are comparable under containment.

We define thequadrantof a pointx ∈ R2 to be the setQ(x) of indicest ∈ {1, 2} such
that xt ≥ 0. We say that a subsetB of 2[3] belongs to quadrantT if Q(f(B)) = T . By
hypothesis,2[3] belongs to quadrant{1, 2}.
Claim 1. 1. No vertex, edge or diamond belongs to quadrant{1, 2}.

2. For any pair of complementary faces, one belongs to quadrant{1} and the other to
quadrant{2}.

3. If E , E ′ are edges whose union is faceF then at least one ofE andE ′ belong to the
same quadrant asF .

Proof. If X is a vertex that belongs to quadrant{1, 2} then (X, X,1) is a solution. If
{X, X ∪ {i}} is an edge belonging to quadrant{1, 2} then(X, X ∪ {i},1) is a solution.
If A1, A2 are incomparable sets and the diamond{A1, A2, A1 ∩ A2, A1 ∪ A2} belongs to
quadrant{1, 2} then(A1, A2,1) is a solution.

If F andF ′ are complementary faces thenf(F) + f(F ′) = (0, 0), and as neither one
has both coordinates nonnegative, it follows thatf(F) is positive on one coordinate and
negative on the other, and the coordinates off(F̄) have signs opposite to those off(F). If
E , E ′ are edges whose union is faceF , assume without loss of generality thatQ(F) = {1}.
Sincef(E) + f(E ′) = f(F), one off(E) andf(E ′) have positive first coordinate and (by
the first part of the claim), negative second coordinate.

Claim 2. For any pair(E , E ′) of edges whose union is a diamond, the line segment joining
f(E) andf(E ′) contains no nonnegative point.

Proof. Suppose for contradiction thatE ∪E ′ is a diamond and the line segment joining them
contains a nonnegative point, which means that there is aλ ∈ (0, 1) such thatλf(E) + (1−
λ)f(E ′) is nonnegative. By (D3), we may writeE = {B, B ∪ {i}} andE ′ = (B′, B′ ∪ {i}}
and assume, without loss of generality, thatB ⊆ B′ ⊆ {i}. Let j ∈ B′ − B. Then
(B ∪ {i}, B′, µ) is a solution where the functionµ is given byµ(j) = (1 − λ)/λ and
µ(k) = 1 for k 6= j.
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For a faceF , L(F) denotes the line determined by(0, 0) and f(F). Note that
L(F) = L(F). L(F) has negative slope sincef(F) has exactly one positive coordinate
and one negative coordinate. We defineH+(F) to be the closed halfspace bounded by
L(F) and containing the quadrant{1, 2} andH−(F) to be the open halfspace complemen-
tary toH+(F). If E , E ′ are opposite edges of a faceF then, sincef(F) = f(E) + f(E ′),
we have eitherf(E), f(E ′) ∈ L(F) ⊆ H+(F) or one off(E) ∈ H−(F) and the other is in
H+(F).

Claim 3. LetF be a face andE an edge contained inF . If f(E) ∈ H+(F) thenE andF
belong to the same quadrant.

Proof. Without loss of generalityQ(F) = {1}. Suppose, to the contrary thatf(E) ∈
H+(F) and Q(E) 6= {1}. Q(E) 6= {1, 2} by claim 1 andQ(E) 6= {} sincef(E) ∈
H+(L(F)), soQ(E) = {2}. By claim 1,E ′ = F − E belongs to quadrant{1}. The line
segment fromf(E ′) to f(E) passes throughf(F). The segmentS from f(F) to f(E) must
go through a point(0, y) sinceQ(F) = {1} andQ(E) = {2}. Also, S lies entirely in
H+(F), which impliesy ≥ 0 and thus(0, y) is a nonnegative point on the segment from
f(E ′) to f(E), contradicting claim 2.

Claim 4. If F is a face andE is an outer edge ofF thenf(E) ∈ H−(F).

Proof. Let F be a face andE an outer edge and suppose for contradiction thatf(E) ∈
H+(F). Then by claim 3,E andF belong to the same quadrant. Now the complementary
faceF ′ has at least one edgeE ′ such thatf(E ′) ∈ H+(F ′) = H+(F). Again by claim 3,E ′
belongs to the same quadrant asF ′, which is the opposite quadrant to that containingf(E).
E ′ andE lie in opposite quadrants and aboveL(F) so the segement joining them contains
a nonnegative point. But sinceE is an outer edge, the union ofE ′ and E is a diamond
contradicting Claim 2.

Claim 5. If F is a face then each of its two middle edges belongs to the same quadrant as
F .

Proof. If E is a middle edge thenF − E is an outer edge andf(F − E) ∈ H−(F) by claim
4. Thusf(E) ∈ H+(F) and therefore, by claim 3, is in the same quadrant asF .

Claim 5 implies that two adjacent middle edges belong to the same quadrant, and hence
all middle edges and all faces belong to the same quadrant. This contradicts that comple-
mentary faces belong to different quadrants, which completes the proof of the casen = 3 of
the theorem.

For the induction step, letn ≥ 4. Define functiong : 2[n−1] −→ R2 by g(J) = f(J) +
f(J ∪ {n}). By induction, there is a solution(A,B, λ) for g with A,B ⊆ [n − 1]. Extend
λ to a multiplicative function on2[n] by settingλ(n) = 1. If A ⊆ B then(A ∪ [n], B, λ) is
a solution forf so assumeA andB are incomparable. We define sets{AJ : J ⊆ [3]} by:

A∅ = A ∩B,

A{1} = A,

A{2} = B,

A{3} = (A ∩B) ∪ [n]
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and forJ ⊆ [3] with |J | ≥ 2 defineAJ =
⋃

j∈J A{j}. It follows easily from the fact that
the sets in{A{i}−A∅ : i ∈ [3]} are pairwise disjoint that the mapJ −→ AJ respects union
and intersection.

Define the functionh : 2[3] −→ R2 by h(J) = λ(AJ)f(AJ) for J ⊆ [3]. The fact that
(A1, A2, λ) is a solution forg implies h(2[3]) ≥ (0, 0). Applying the casen = 3 of the
theorem toh gives a solution(J1, J2, µ) for h.

Now choosea1 ∈ A1−A2 anda2 ∈ A2−A1 and leta3 = [n]. Define the multiplicative
functionµ′ on2[n] by definingµ′(ai) = µ({i}) andµ′(a) = 1 for a ∈ [n]−{a1, a2, a3}. It
follows immediately from the fact that(J1, J2, µ) is a solution forh, that(AJ1 , AJ2 , λµ′) is
a solution forf , completing the proof of the induction step of Theorem 6.

We conclude this section by recording a minor variant of theorem 6 for later reference.
We say that a solution(A,B, µ) for the set functionf : 2S −→ R2 is strict if the inequality
(3) is strict in each coordinate.

Corollary 12. Letf be a set function on finite setS with rangeR2 such that each coordinate
of f(2S) is positive. Thenf has a strict solution(A,B, µ).

Proof. Givenf satisfying the hypotheses of the corollary, let(m1,m2) = 2−n
∑

X f(X)
and define the set functiong by g(X) = f(X) − (m1, m2). Apply Theorem 6 tog and let
(A1, A2, µ) be a solution. Then(A1, A2, µ) is a strict solution forf .

3 The proofs of Corollary 7

It follows from the hypothesis that there exists a real numberA > 0 such that

α(2S)c

γ(2S)c
< A <

β(2S)d

δ(2S)d
.

Then
A1/cγ(2S)− α(2S) > 0, and β(2S)−A1/dδ(2S) > 0.

So we can apply Theorem 6 to the set functionsf1(X) = A1/cγ(X)− α(X) andf2(X) =
β(X) − A1/dδ(X), to get that there exists a positive multiplicative set functionµ and two
setsA, B ⊆ S such that

σ(µf1;A,B) = A1/cσ(µγ;A, B)− σ(µα; A,B) > 0,

and
σ(µf2; A,B) = σ(µβ; A,B)−A1/dσ(µδ; A,B) > 0.

But this means that
σ(µα; A,B)c

σ(µγ; A,B)c
< A <

σ(µβ; A,B)d

σ(µδ; A,B)d
,

which proves the corollary.
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4 Proof of Theorem 8

We first prove the theorem for the casep = r andq = s. Suppose we haveα, β, γ, δ on 2S

satisfyingAD(α, β, γ, δ) andp, q > 0. Suppose for contradiction that:

(8) ‖α‖p‖β‖q > ‖γ‖p‖δ‖q.

Let T = S ∪ {a1, a2}, wherea1, a2 are new elements. Define set functionsα′, β′, γ′, δ′ on
2T by defining forA ⊆ T :

α′(A) =

{
α(A− {a1}) if a1 ∈ A anda2 6∈ A

0 otherwise.

β′(A) =

{
β(A− {a2}) if a1 6∈ A anda2 ∈ A

0 otherwise.

γ′(A) =

{
γ(A− {a1, a2}) if a1 ∈ A anda2 ∈ A

0 otherwise.

δ′(A) =

{
δ(A) if a1 6∈ A anda2 6∈ A

0 otherwise.

Let c = 1/p andd = 1/q. Then (8) is equivalent to the hypothesis of Corollary 7 for
α′, β′, γ′, δ′ and so there is a positive multiplicative set functionµ andA,B ⊆ S such that:

(9) σ(µα′; A,B)cσ(µβ′; A,B)d > σ(µγ′; A,B)cσ(µδ′; A,B)d.

Sinceα′ is nonzero only on sets containinga1 and nota2 andβ′ is nonzero only on sets
containinga2 and nota1, one ofA andB, sayA, containsa1 and nota2, and the other, say
B containsa2 and nota1. Then (9) reduces to:

µ(A)α(A)µ(B)β(B) > µ(A ∪B)γ(A ∪B)µ(A ∩B)δ(A ∩B).

Since multiplicativity implies µ(A)µ(B) = µ(A ∪ B)µ(A ∩ B), this contradicts
AD(α, β, γ, δ), and the contradiction proves the theorem in the casep = r and q = s.
A virtually identical proof gives the casep = s andq = r.

For the the general case, we will need two standard facts about‖ · ‖p, both of which are
easy consequences of Hölder’s inequality:

Fact 1. ‖φ‖x is a decreasing function ofx.

Fact 2. ‖φ‖1/x is a log-convex function ofx. In particular, for any positivex, y andε ∈
[0, 1]:

(10) (‖φ‖1/x)ε(‖φ1/y‖)1−ε ≥ ‖φ‖1/(εx+(1−ε)y).

Since‖φ‖x is a decreasing function ofx, we may assume that the inquality1/p + 1/q ≤
1/r + 1/s holds with equality since if not we may increaser and/ors, while still maintain-
ing min{p, q} ≤ min{r, s}. Thus since1/p + 1/q = 1/r + 1/s andmax{1/r, 1/s} ≥
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max{1/p, 1/q} we can selectε ∈ [0, 1] such that1/p = ε/r + (1 − ε)/s and 1/q =
(1− ε)/r + ε/s.

From the above two special cases we have:

‖γ‖r‖δ‖s = (‖γ‖r‖δ‖s)ε(‖γ‖r‖δ‖s)1−ε

≥ (‖α‖r‖β‖s)ε(‖α‖s‖β‖r)1−ε

= (‖α‖r)ε(‖α‖s)1−ε(‖β‖s|)ε(‖β‖r)1−ε

≥ ‖α‖p‖δ‖q,

where the final inequality comes from (10).

5 Proof of Theorem 9

We have a 4-tuple of nonnegative functions satisfyingAD(α, β, γ, δ), and a pair(C,D) of
sets satisfyingC ⊆ D ⊆ [n]. Assume for contradiction that the conclusion (5) does not hold
for (C,D).

Let S = D − C and define functionsα1, α2 for X ∈ 2S by:

α1(X) = α(X ∪ C)
α2(X) = α((S −X) ∪ C)

Defineβ1, β2, γ1, γ2, δ1, δ2 analogously.
AD(α1, β1, γ1, δ1) andAD(α2, β2, δ2, γ2) both hold, where in the second condition, the

roles ofδ andγ have been (intentionally and necessarily) reversed.
Let T = S ∪ {a1, a2}, wherea1, a2 are new elements. We will apply corollary 12 to the

functionf : 2T −→ R2 defined as follows. ForA ⊆ S,

f1(A) = 0
f1(A ∪ {a1}) = α1(A)β2(A)
f1(A ∪ {a2}) = 0

f1(A ∪ {a1, a2}) = −γ1(A)δ2(A)

and

f2(A) = −γ2(A)δ1(A)
f2(A ∪ {a1}) = 0
f2(A ∪ {a2}) = α2(A)β1(A)

f2(A ∪ {a1, a2}) = 0

The assumption thatα, β, γ, δ, C,D does not satisfy (5) impliesf(2T ) > (0, 0). There-
fore corollary 12 gives a strictly positive multiplicative functionµ on 2T and a pair of sets
A1, A2 ⊆ T such that forj ∈ {1, 2}:
(11) σ(µfj ; A1, A2) > 0.
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If A1 ∩ {a1, a2} 6= {a1} andA2 ∩ {a1, a2} 6= {a1} then forj = 1 none of the terms in
the previous sum are positive. Thus, without loss of generalityA1 = B1 ∪ {a1} for some
B1 ⊆ S. By a similar argument forj = 2, A2 = B2 ∪ {a2} for someB2 ⊆ S. Inequality
(11) for j = 1 reduces to

(12) µ(A1)α1(B1)β2(B1) > µ(A1 ∪A2)γ1(B1 ∪B2)δ2(B1 ∪B2))

and forj = 2,

(13) µ(A2)β1(B2)α2(B2) > µ(A1 ∩A2)δ1(B1 ∩B2)γ2(B1 ∩B2))

Multiplying these two inequalities, and using the multiplicativity ofµ to cancel
µ(A)µ(B) with µ(A ∪B)µ(A ∩B) yields:

α1(B1)β1(B2)α2(B2)β2(B1) > γ1(B1 ∪B2)δ1(B1 ∩B2)γ2(B1 ∩B2)δ2(B1 ∪B2),

which contradicts the assumption that bothAD(α1, β1, γ1, δ1) andAD(α2, β2, δ2, γ2) hold.
This completes the proof of Theorem 9.

The special case of Theorem 9 whereC = ∅ will be useful in the next section and we
note it as a corollary:

Corollary 13. Under the hypothesis of Theorem 1 the following holds for each setD ⊆ [n]:

(14)
∑

J⊆D

α(J)β(D − J) ≤
∑

J⊆D

γ(J)δ(D − J)

6 The AD condition is preserved under disjoint convolu-
tion

In this section we prove Theorem 10. Fori ∈ {1, 2}, αi, βi, γi, δi are nonnegative set
functions satisfyingAD(αi, βi, γi, δi). We defineα = α1∗̇α2 andβ, γ, δ analogously. We
want to proveAD(α, β, γ, δ), which says that for eachA,B ⊆ S,

∑
W⊆A
X⊆B

α1(W )α2(A−W )β1(X)β2(B −X)(15)

≤
∑

Y⊆A∪B
Z⊆A∩B

γ1(Y )γ2((A ∪B)− Y )δ1(Z)δ2((A ∩B)− Z).

A natural approach to proving this is to fixA andB and define functionŝα on2A, β̂ on
2B , γ̂ on2A∪B andδ̂ on2A∩B by α̂(W ) = α1(W )α2(A−W ), β̂(X) = β1(X)β2(B−X),
γ̂(Y ) = γ1(Y )γ2(A ∪ B − Y ) andδ̂(Z) = δ1(Z)δ2(A ∩ B − Z). If AD(α̂, β̂, γ̂, δ̂) holds
then the 4FT gives what we need. Unfortunately,AD(α̂, β̂, γ̂, δ̂) need not hold. Taken = 3
and takeα1 = β1 = γ1 = δ1 to be the constant 1 function. Takeα2 = β2 = γ2 = δ2 to be

10



the function that is 1 except on{1, 2} and{1, 2, 3} where they are 2, TakeA = {2, 3} and
B = {1, 2}. Thenα̂({2})β̂(∅) = 2 > 1 = γ̂({2})δ̂(∅).

Instead we will prove (15) by decomposing it as a sum of a family of inequalities and
show that each inequality in the family is true by reducing it to Corollary 13.

Proof. AssumeAD(αi, βi, γi, δi) for i ∈ {1, 2}. To verify AD(α, β, γ, δ), we fix A,B ⊆
S and prove (15). As stated above, we will decompose (15) into a sum of a family of
inequalities. The family is indexed by quadruples(A1, B1, C0, C1) of sets whereA1 ⊆
A − B, B1 ⊆ B − A andC0, C1 are disjoint subsets ofA ∩ B. We call such a quadruple
relevant. For a relevant quadruple we defineL(A1, B1, C0, C1) to be the set of pairs{(A1 ∪
C1 ∪ V,B1 ∪ C1 ∪ (C0 − V )) : V ⊆ C0}. Each pair(W,X) with W ⊆ A andX ⊆ B
belongs toL(A1, B1, C0, C1) for exactly one relevant quadruple(A1, B1, C0, C1), namely
the quadruple withA1 = W − B, B1 = X − A, C1 = W ∩ X andC0 = ((W − X) ∪
(X − W )) ∩ A ∩ B. Thus the collection of setsL(A1, B1, C0, C1) partitions the set of
pairs{(W,X) : W ⊆ A,X ⊆ B}. Similarly, defineR(A1, B1, C0, C1) to be the set of
pairs {(A1 ∪ B1 ∪ C1 ∪ U,C1 ∪ (C0 − U)) : U ⊆ C0}. Again the collection of sets
R(A1, B1, C0, C1) partitions the set of pairs{(Y,Z) : Y ⊆ A ∪ B,Z ⊆ A ∩ B}. We will
prove that for each relevant quadruple(A1, B1, C0, C1):

∑
(W,X)∈

L(A1,B1,C0,C1)

α1(W )α2(A−W )β1(X)β2(B −X)(16)

≤
∑

(Y,Z)∈
R(A1,B1,C0,C1)

γ1(Y )γ2((A ∪B)− Y )δ1(Z)δ2((A ∩B)− Z).

By summing (16) over all relevant quadruples we obtain (15), which proves the theorem.
To prove (16) fix a relevant quadruple, and defineA2 = A−B−A1, B2 = B−A−B1

andC2 = (A ∩B)− (C0 ∪ C1). We rewrite (16) as:

(17)∑

V⊆C0

α1(A1∪C1∪V )α2(A2∪C2∪(C0−V ))β1(B1∪C1∪(C0−V ))β2(B2∪C2∪V )

≤
∑

U⊆C0

γ1(A1∪B1∪C1∪U)γ2((A2∪B2∪C2∪(C0−U))δ1(C1∪(C0−U))δ2(C2∪U).

Now, with A,B, A1, B1, C0, C1 still fixed, define functionsα′1, β
′
1, γ

′
1, δ

′
1, α′2, β

′
2, γ

′
2, δ

′
2,

α′, β′, γ′, δ′ for J ⊆ C0 by:

α′1(J) = α1(A1 ∪ C1 ∪ J), α′2(J) = α2(A2 ∪ C2 ∪ (C0 − J)),
α′(J) = α′1(J)α′2(J),
β′1(J) = β1(B1 ∪ C1 ∪ J), β′2(J) = β2(B2 ∪ C2 ∪ (C0 − J)),
β′(J) = β′1(J)β′2(J),
γ′1(J) = γ1(A1 ∪B1 ∪ C1 ∪ J), γ′2(J) = γ2(A2 ∪B2 ∪ C2 ∪ (C0 − J)),
γ′(J) = γ′1(J)γ′2(J),
δ′1(J) = δ1(C1 ∪ J), δ′2(J) = δ2(C2 ∪ (C0 − J)),
δ′(J) = δ′1(J)δ′2(J).
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Then (17) becomes:

(18)
∑

V⊆C0

α′(V )β′(C0 − V ) ≤
∑

U⊆C0

γ′(U)δ′(C0 − U)

It is easy to see thatAD(α1, β1, γ1, δ1) implies AD(α′1, β
′
1, γ

′
1, δ

′
1) and that

AD(α2, β2, γ2, δ2) implies AD(α′2, β
′
2, δ

′
2, γ

′
2) (here δ′2 and γ′2 are intentionally inter-

changed). Together these implyAD(α′, β′, γ′, δ′). Now Corollary 13 withD = C0 implies
(18) to complete the proof of the theorem.

7 Some final remarks

Theorems 8, 9 and 10 all include the 4FT. Is there a natural theorem that unifies all three of
them, or some two of them?

The fact that (16) holds for all choices ofA,B ⊆ S and all relevant quadruples
(A1, B1, C0, C1) with respect toA,B refines Theorem 10 and also includes Theorem 9
by takingA = B = S, A1 = B1 = ∅, C1 = C andC0 = D−C. However, the statement of
such a theorem would be rather cumbersome and it would be nice to find a cleaner unifying
statement.

It is natural to look for generalizations of Theorem 6 to set functions whose range isRk

for k ≥ 2. It is not clear how to generalize the conclusion to higherk. One can restate the
conclusion of Theorem 6 to say that fork = 2 there is a sublattice generated by two sets
on which the sum ofµ · f is nonnegative. One might conjecture that there is a sublattice
generated byk sets on which the sum ofµ · f is nonnegative. Unfortunately it would limit
applicability of this statement that such a sublattice grows very fast withk: the rank of the
largest sublattice that can be generated byk sets is`(k) =

(
k

bk/2c
)
, and its size is2`(k).

We certainly cannot sharpen this assertion and put, say a stricter limit on the size of the
lattice, because if eachfi is positive only on a single setAi, then the sublattice taken for the
conclusion must include all of theAi.

Another interesting direction may be to consider other models of discrete localization.
For example, suppose that we have a connected graphG = (V, E) and a functionf : V →
R2 such that

∑
v∈V f(v) > 0; we would like to conclude that there is a pathv0v1 . . . vr and

a numberλ > 0 such that
∑r

k=0 λkf(vk) > (0, 0). This is certainly not true in general. An
easy example is a star with2k + 1 nodes. Letf1 be 1 on half of the leaves, 0 on he other
half, and−(k−1) in the center. Letf2 be obtained by interchanging the values 0 and 1. It is
easy to check that this is a counterexample. Perhaps this form of discrete localization holds
if the underlying graph has a node-transitive automorphism group.

We mention the following result of Beck and Krogdahl [BK2] that is of this flavor: Let
(cij) be a positive logsupermodular matrix, i.e.,cij · ci+1,j+1 ≥ ci+1,j · ci,j+1. Then there
exists a path fromc1,1 to cn,m whose average dominates that of all the entries of the whole
matrix.
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[Din] A. Dinghas: Über eine Klasse superadditiver Mengenfunktionale von Brunn–
Minkowski–Lusternik-schem Typus,Math. Zeitschr.68 (1957), 111–125.

[FKG] C. M. Fortuin, P. W. Kasteleyn, and J. Ginibre,Correlation inequalities on some
partially ordered sets, Comm. Math. Phys. 22 (1971), 89–103.

[Ha] T. E. Harris,A lower bound for the critical probability in a certain percolation
process, Proc. Camb. Phil. Soc. 56 (1960), 13–20.

[Ho] R. Holley,Remarks on the FKG inequalities, Comm. Math. Phys. 36 (1974), 227–
231.

[KLS] R. Kannan, L. Lov́asz and M. Simonovits: Isoperimetric problems for convex
bodies and a localization lemma,J. Discr. Comput. Geom.13 (1995), 541–559.

[KR] S. Karlin and Y. Rinott,Classes of orderings of measures and related correlation
inequalities. I. Multivariate totally positive distributions, J. Multivariate Anal. 10
(1980), 467–498.

[Kl] D. J. Kleitman,Families of non disjoint subsets, J. Combinatorial Theory 1 (1966),
153–155.
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