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1 Introduction

1.1 Discrete and continuous localization inequalities

By a set function over a sét we mean a function whose domain is the Z&0f all subsets
of S. A 4-tuple(a, 8,7, ¢) of nonnegative real valued set functions over the finiteSsist
said to satisfy théhlswede-Daykigondition,AD(«, 3, ~, §), if:

Forall A, B C S, a(A)B(B) < v(AU B)§(AN B).

In the case thatv = 8 = ~ = 4, this condition says that is log-supermodular The
4-function theorem (4FT) of Ahlswede and Daykin says that the collectibta, 3, v, 0)
of local conditions yields a global conclusion:

Theorem 1. [AD1] If «, 3,~, 0 are nonnegative real valued set functions over the finite set
S satisfyingA D(«, 3,7, ¢) then:

@) a(2%)B(2%) < 7(2%)8(2%).

(Here, forH C 29, we use the notatioff(H) = Y .y, f(E).) This well-known re-
sult generalizes a number of important inequalities in combinatorics, probability theory and
statistical mechanics including the FKG inequality, and related results due to Holley ([H0]),
Harris([Ha]), and Kleitman ([KI]). Ahlswede and Daykin (JAD2]) and Daykin ([Day2]) de-
veloped a framework for inequalities on set functions based on a general product theorem
which abstracts the induction step of the proof of the 4-function theorem. An extension to
sequences dfk functions withk > 2 was obtained independently by Rinott and Saks [RS]
and Aharoni and Keich [AK].

The contrapositive form of Theorem 1 is:

Corollary 2. If «,3,v,d are nonnegative real valued set functions over the finiteSset
satisfying

(2) o(2%)5(2°%) > 7(2%)8(2°),
Then there are setd, B C S satisfyinga(A)3(B) > v(AU B)§(AN B).

In its contrapositive form, the 4FT resembles a geometric "Localization Inequality” of
Kannan, Lowasz and Simonovits [KLS] (which we will not state in its strongest form). A
needle with an exponential weight functiam briefly anexponential needlim R" is a triple
N = (a,b,7), wherea,b € R™ andy € R. We define the integral of a functighon this

needle as .
[ 1= [ ottt to-
N 0

Theorem 3. Let «, 8,7+, be nonnegative continuous functions &f, and lete,d > 0.
Suppose that

(/na(x) d:c)c< [ ) da:)d > (/n'y(a?) daz)( [ d(a) dm)

d



Then there is an exponential needesuch that

(L) (L) = (L) (o)

This was derived from the following "Localization Lemma” of Lasz and Simonovits
[LS] (again, stated in a simplified form):

Theorem 4. Let f andg be two continuous integrable functions Bfi so that

fx)de >0, and /[ g(x)dz>0.
R'ﬂr R'Vl

Then there is an exponential needesuch that

/fzo, and/gzo.
N N

In this paper we prove a result that is related to the Four Function Theorem as Theorem
4 is related to Theorem 3. If we have a real valued funcfiomhose domain is a finite set
U (not2Y) so thatf(U) > 0, then there is an elementc U so thatf(u) > 0. This trivial
localization is an important step in many proofs, in particular in most applications of the
Probabilistic Method.

Now suppose we have two functiolfig f» defined on a finite séf, having the property
that f1(U) and f»(U) are both nonnegative. The geometric result suggests that it might
always be possible to find a “small” subsEtof U such thatf,(7T") and f2(U) are both
nonnegative. However for arly, it is easy to construct an example with the property that
for any proper subsét of U, f1(T') < 0 or fo(T) < 0.

As in the geometric case, we can try to use weights. In other words, we can try to find
a “small” subsetl" of U and “natural” weightsw; (i € T) such that) ", ., w; fi(i) and
> icr wif2(i) are both nonnegative. There are now various ways to specify “small” and
“natural” and get a valid assertion. The simplest one is stated in the following proposition
(whose easy proof is omitted):

Proposition 5. LetU be a finite set angy, f> : U — R such thatf,(U) > 0 and fo(U) >
0. Then there exists & C U with || < 2 and weightsw; > 0 (¢ € T) such that

ZiET wzfl(z) > 0 andZieT w,fg(z) > 0.

If instead of two functions on an unstructured €&t we have two set functions
fi,f2 : 29 — R, then we have the following more difficult and more useful localiza-
tion result. To define a “natural” weighting, let us call a set funcfiomultiplicativeif for
any subsetl, u(A) = [[,c4 #({a}) (where the empty product is taken to be 1). Also, for a
set functionf on2° andA, B C S, define:

o(f;A,B) = f(A) + f(B) + f(AUB) + f(AN B).

We prove:



Theorem 6. Let f, f» be two set functions on a finite sétsuch thatf;(2°) > 0 and
f2(2%) > 0. Then there is a strictly positive multiplicative set functioand (not necessarily
distinct) sets4, B such that fori € {1, 2},

®3) o(ufi; A, B) > 0.

(Herep.f; is the function defined 02 by juf;(X) = u(X) f;(X).)

We prove this theorem in section 2. We then use it to prove three new inequalities for set
functions, each extending the 4FT in a different way. The formal analogue of Theorem 3 is
not the 4FT, but rather the following result.

Corollary 7. Leta, 3,7, 6 be four nonnegative set functions oveandec, d > 0. Suppose
that
a(2)°8(2%)" > 7(2%)°6(2%)".
Then there exists a positive multiplicative set functicemd two setsA, B C S such that
o(pe; A, B)°o(uf; A, B)* > o(uv; A, B)°o(ud; A, B).

We prove this theorem in Section 3. We remark that the conclusion is not necessarily
true if i1 is the identically 1 function, that ig; can not be eliminated. As a consequence of
this theorem we will deduce the followingdttler-type generalization of the 4FT. For a real
valued functionf on25 and0 < p, write || f||, for (3" s | £(X)|P)Y/P (so| f|l1 = f(2%)).

Theorem 8. If «, 3, ~, d are honnegative real valued set functions over the finiteS'sst-
isfying AD(«, 8,7,6) andp, q,r,s > 0 satisfymin{p, ¢} < min{r,s} and1/p+ 1/q <
1/r+1/s then:

4) lellpllBllg < lIvI-llolls-

We now describe our second refinement of the 4FT. One way to refine an inequality of
the formS < T'is to decompose it as a sum of inequalities, i.e., find equations) _,; S;
andT = ),.; T; so thatS; < T; for all i € I. For a pair(C, D) of sets withC' C D let
P(C, D) denote the set of paitd, B such thatA N B = C andA U B = D. In section 5,
we prove:

Theorem 9. Under the hypothesis of Theorem 1 the following holds for each pair of sets
(C,D)withC C D C [n]:

(5) Yo a@BB)< Y A(A)iB)

(A,B)EP(C,D) (A,B)EP(C,D)

The conclusion of the 4FT is obtained by summing (5) over all g&itsD).

Our final theorem concerns the closure of the Ahlswede-Daykin condition under convo-
lution. There are (at least) two reasonable notions of convolution for set functions. The first
is an algebraic notion of convolution arising from discrete fourier analysis with respect to
the groupZy:

(6) FrgAy= > f(X)g(Y),

X,Y:XpY=A



whereX @Y = (X —Y) U (Y — X) denotes the symmetric difference. The second notion,
which we calldisjoint convolutiorand denote by, is set theoretic rather than algebraic:

©) frglA)y = > f(X)g(v).

L XUY=A
XY xav—o

Here we prove that the Ahlswede-Daykin condition is closed under disjoint convolution:

Theorem 10. Letay, 51,71, 01, a2, B2, 72, 02 be nonnegative functions @Y and leta, =
a1k, ﬁ = 514‘621 v = ’yli’yg andé = 01%09. If AD(ai,ﬁi,'yiﬁi) holds fori e {1,2}
thenAD(a, 8,7, 9).

We prove this theorem in section 6. The theorem includes the 4FT: dake (5, =
~v2 = 0o to be the function that is identically 1. The conclusion of Theorem 10 includes
the inequalitya(S)5(S) < v(S)d(S) which is equivalent to the conclusion of the 4FT for
Oél,ﬂl,"}/l,(gl. Takingal = 51 = = 01 anday = 62 = Y2 = d2 in Theorem 10 we
obtain:

Corollary 11. The disjoint convolution of two log-supermodular functions is log-super-
modular.

We remark that for algebraic convolution, even the corollary does not hold. For the
log-supermodular set functionfs g over {1, 2} defined byf(0) = g(0) = 1, f({1}) =
9({2) = 0, f({2} = g({1}) = 2and f({1,2}) = g({1,2}) = 1, we havef + ¢(0) = 2,
fxg({1}) = fxg({2}) =4, andf x g({1,2}) = 6, so f * g is not log-supermodular.

This corollary was also motivated by a continuous-discrete analogy. Submodular set
functions are analogous to convex functions (see e.g. [L]), and so log-supermodular set
functions are analogous to logconcave functions. Two important and nontrivial properties
of logconcave functions are that their class is closed under integrating out some variables,
and also under convolution [Din, P]. A discrete analogue of the first property was proved for
log-supermodular set functions by Rinott and Saks [RS]. In the continuous case, closedness
under convolution is implied by closedness under integration, but in the discrete case this
does not seem to be the case, and we need a more elaborate argument.

2 Proof of Theorem 6

Supposef : 25 — R? and letf;, f, denote the set functions with rangeobtained by
projecting f onto, respectively, its first and second coordinates. A tripgleB, 1), where
A, B C S andy, is a strictly positive multiplicative set function of satisfying the con-
clusion (3) of the theorem is calledsmlutionfor f. We prove by induction onS| that
f(2%) > (0,0) implies thatf has a solution. For convenience we assume $hat [n] for
some positive integet, where[n] denotes the sefl,...,n}. Forn =1, (0,{1},1) is a
solution and fom = 2, ({1}, {2},1) is a solution wherd denotes the function that maps
all sets to 1. The main part of the proof is the case 3; the case of general will then
follow from an easy induction.

We assume thaf : 2]l — R? satisfiesf(2°) > (0,0) and, for contradiction, we
further assume thaf has no solution. Without loss of generality we may assume that



f(2B) = (0,0); if not, we replacef by the functiong with g(#) = f(#) — £(26]) and
g(A) = f(A) for A # () and observe that a solution fgiis also a solution foyf.

It is useful to use the standard picturebf as the set of vertices of a cube where each
adjacent pair of vertices corresponds to a pairs of sets that differ by exactly one element and
antipodal vertices correspond to complementary sets. We refer to a sub§éesfanedge
or faceif it corresponds to an edge or face of the cube. Thus an edge is a pair of sets of the
form {4, AU {i}} with i ¢ A, and a face has the forfd, A U {i}, AU {j}, AU {i,j}
wherei # jandA = @ or A = [3] — {4,j}. An edge is amuter edgef it contains( or [3]
and is amiddle edgetherwise. Inthe edg€ = {4, AU{i}}, A is thebottom sebf £. Two
edges{A, AU {i}} and{A’, A’ U {'}} areparallel if i =7’

Every faceF consists of one outer edge and one middle edge” i§ a face, then its
complementF is also a face.

A diamondis a set of four vertices of the forfd, B, AN B, AU B} whereA andB are
incomparable sets. Every face is a diamond, but not vice versa, gin¢g, {i},[3]} is a
diamond for each. The following three conditions on a pair of distinct edgegnd&; are
equivalent: (D1f; U&; is adiamond, (D2§; and&; are parallel and at least one is an outer
edge, (D3¥; andé&; are parallel and their bottom sets are comparable under containment.

We define theguadrantof a pointz € R? to be the se€(x) of indicest € {1,2} such
thatz; > 0. We say that a subsé of 2% belongs to quadrant” if Q(f(B)) = T. By
hypothesis2[®! belongs to quadrartl, 2}.

Claim1l. 1. No vertex, edge or diamond belongs to quadfant}.

2. For any pair of complementary faces, one belongs to quadraptind the other to
quadrant{2}.

3. If £,&' are edges whose union is fagethen at least one of and £’ belong to the
same quadrant a§".

Proof. If X is a vertex that belongs to quadrafit, 2} then (X, X, 1) is a solution. If
{X, X U {i}} is an edge belonging to quadrafit, 2} then (X, X U {i},1) is a solution.
If A;, A5 are incomparable sets and the diamdad, A3, A; N Az, A; U Ao} belongs to
quadrant{1,2} then(A4;, A, 1) is a solution.

If 7 andF’ are complementary faces th¢qF) + f(F') = (0,0), and as neither one
has both coordinates nonnegative, it follows tfiaf) is positive on one coordinate and
negative on the other, and the coordinateg @F) have signs opposite to those pfF). If
£, & are edges whose union is fagg assume without loss of generality th@tF) = {1}.
Sincef(€) + f(E') = f(F), one of f(£) and f(E’) have positive first coordinate and (by
the first part of the claim), negative second coordinate. O

Claim 2. For any pair(&, £’) of edges whose union is a diamond, the line segment joining
f(&) and f(&’) contains no nonnegative point.

Proof. Suppose for contradiction thdtJ £’ is a diamond and the line segment joining them
contains a nonnegative point, which means that ther@\is 40, 1) such that\ f (&) + (1 —
M) f(€') is nonnegative. By (D3), we may writt= {B, BU{i}} and&’ = (B, B’ U {i}}
and assume, without loss of generality, tfatC B’ C {i}. Letj € B’ — B. Then
(B Ui}, B’, ) is a solution where the functiop is given byu(j) = (1 — A)/A and
wu(k) = 1for k # j. O



For a faceF, L(F) denotes the line determined K,0) and f(F). Note that
L(F) = L(F). L(F) has negative slope singdF) has exactly one positive coordinate
and one negative coordinate. We defiie" (F) to be the closed halfspace bounded by
L(F) and containing the quadrafit, 2} and H ~ (F) to be the open halfspace complemen-
tary to Ht(F). If £,& are opposite edges of a fagethen, sincef (F) = f(€) + f(£),
we have eitherf (£), f(E') € L(F) C H*(F) orone off(£) € H~ (F) and the other is in
HY(F).

Claim 3. LetF be a face and an edge contained iff. If f(£) € H*(F) then& and F
belong to the same quadrant.

Proof. Without loss of generalityQ(F) = {1}. Suppose, to the contrary th#t) €
HY(F)andQ(€) # {1}. Q(&) # {1,2} by claim 1 andQ(€) # {} since f(€) €
HY(L(F)), soQ(€) = {2}. By claim 1,&’ = F — £ belongs to quadraritl }. The line
segment frony (£') to f(&) passes througfi(F). The segmens$ from f(F) to f(£) must
go through a poinf0,y) since@Q(F) = {1} andQ(€) = {2}. Also, S lies entirely in
HT(F), which impliesy > 0 and thus(0, y) is a nonnegative point on the segment from
f(&) to f(€), contradicting claim 2. O

Claim 4. If Fis aface ancf is an outer edge of thenf (&) € H~ (F).

Proof. Let F be a face and an outer edge and suppose for contradiction &) €
HT(F). Then by claim 3¢ and.F belong to the same quadrant. Now the complementary
faceF’ has atleast one edgé such thatf (') € H*(F') = H*(F). Again by claim 3¢’
belongs to the same quadrant/&s which is the opposite quadrant to that containjiig).

&’ and¢ lie in opposite quadrants and abali€F) so the segement joining them contains
a nonnegative point. But sincg is an outer edge, the union éf and £ is a diamond
contradicting Claim 2. O

Claim 5. If F is a face then each of its two middle edges belongs to the same quadrant as
F.

Proof. If £ is a middle edge theft — £ is an outer edge anf{F — £) € H— (F) by claim
4. Thusf(€) € H*(F) and therefore, by claim 3, is in the same quadrarfas O

Claim 5 implies that two adjacent middle edges belong to the same quadrant, and hence
all middle edges and all faces belong to the same quadrant. This contradicts that comple-
mentary faces belong to different quadrants, which completes the proof of the ea8ef
the theorem.

For the induction step, let > 4. Define functiory : 2"~ — R2 by g(J) = f(J) +
f(J U {n}). By induction, there is a solutiofy, B, ) for g with A, B C [n — 1]. Extend
) to a multiplicative function o2l by setting\(n) = 1. If A C Bthen(AU [n], B, \) is
a solution forf so assumel and B are incomparable. We define sét$; : J C [3]} by:

Ay = ANB,
Agy = 4

Apy = B,

A{3} = (ANnB)U|[n|



and forJ C [3] with [J| > 2 defined; = (J,.; A(;;- It follows easily from the fact that
the sets i A;; — Ay : i € [3]} are pairwise disjoint that the map— A ; respects union
and intersection.

Define the functiorh : 2181 — R? by h(J) = \(A;)f(A,) for J C [3]. The fact that
(A1, As, \) is a solution forg implies h(2[%1) > (0,0). Applying the case: = 3 of the
theorem td gives a solutior(Jy, Ja, ) for h.

Now chooser; € A; — A andas € As — A; and letas = [n]. Define the multiplicative
functiony’ on 2"l by definingy/(a;) = p({i}) andy’(a) = 1fora € [n] — {a1,as,as}. It
follows immediately from the fact thdt/, J», 1) is a solution forh, that(A,, As,, Ap') is
a solution forf, completing the proof of the induction step of Theorem 6.

We conclude this section by recording a minor variant of theorem 6 for later reference.
We say that a solutiofA, B, ) for the set functiory : 25 — R2 is strict if the inequality
(3) is strict in each coordinate.

Corollary 12. Let f be a set function on finite sétwith rangeR? such that each coordinate
of £(2%) is positive. Therf has a strict solutior{ A, B, 11).

Proof. Given f satisfying the hypotheses of the corollary, (et;,m2) = 27" > ¢ f(X)
and define the set functignby ¢g(X) = f(X) — (m1, m2). Apply Theorem 6 tg; and let
(A1, Ao, ) be a solution. Thef4,, As, 1) is a strict solution forf. O
3 The proofs of Corollary 7

It follows from the hypothesis that there exists a real number 0 such that

a(QS)(:
@) <A 5

Then
Aley(29) —a(2%) >0, and B(2°%) — AY5(25%) > 0.

So we can apply Theorem 6 to the set functigpsX ) = A'/°v(X) — a(X) andfo(X) =
B(X) — A/45(X), to get that there exists a positive multiplicative set funcfiomnd two
setsA, B C S such that

o(ufi; A, B) = AY°o(uvy; A, B) — o(ue; A, B) > 0,
and
o(uf; A, B) = o(uB; A, B) — AV (us; A, B) > 0.

But this means that 4
O’(/J,O[,A,B)‘ A< o(us; A, B) ’
o(uy; A, B)e o(ud; A, B)d

which proves the corollary.



4 Proof of Theorem 8

We first prove the theorem for the cgse- » andg = s. Suppose we hawe, 3,v, 6 on2°
satisfyingAD(«, 3,7, d) andp, ¢ > 0. Suppose for contradiction that:

(8) lallp[lBllg > [7lpl101lq-

LetT = SU{a,as}, wherea,, as are new elements. Define set functiarisg’,~’, §’ on
27 by defining forA C T

a'(A) _ a(A—{a1}) ifag € Aanday ¢ A
-~ )o otherwise.
B(A) = B(A—{az}) ifa; &€ Aanday € A
~)o otherwise.
’(A) _ ’Y(A - {a1;a2}) if ay € A anda2 c A
! o otherwise.
B 0 otherwise.

Letc = 1/p andd = 1/q. Then (8) is equivalent to the hypothesis of Corollary 7 for
o, 3 ,+',8 and so there is a positive multiplicative set functioand A, B C S such that:

©) o(ua'; A, B)o(uf'; A, B)? > o(uy'; A, B) o (ud'; A, B).

Sincecd’ is nonzero only on sets containimg and nota, and 3’ is nonzero only on sets
containinga, and nota;, one ofA and B, say A, containsz; and notas, and the other, say
B containsay and nota;. Then (9) reduces to:

w(A)a(A)u(B)B(B) > u(AU B)y(AU B)u(AN B)§(AN B).

Since multiplicativity implies u(A)u(B) = p(A U B)u(A N B), this contradicts
AD(«, ,7,9), and the contradiction proves the theorem in the gase r andg = s.
A virtually identical proof gives the cage= s andq = r.

For the the general case, we will need two standard facts dbdjyt, both of which are
easy consequences oblder’s inequality:

Fact 1. ||¢||.. is a decreasing function of.

Fact 2. ||¢[,,, is a log-convex function of. In particular, for any positive:,y ande
[0,1]:

(10) Ul /) D15 1) = 110111/ (cat-(1—eyy)-

Since||¢||. is a decreasing function af, we may assume that the inqualityp + 1/q <
1/r + 1/s holds with equality since if not we may increasand/ors, while still maintain-
ing min{p, ¢} < min{r,s}. Thus sincel/p + 1/q = 1/r + 1/s andmax{1/r,1/s} >



max{1/p,1/q} we can select € [0,1] such thatl/p =
(I—e€)/r+e¢/s.
From the above two special cases we have:
I8l = A ll-l8ls) v ll-llols)
(el 18ls) UedlsllBl)
(el el =Bl hedBl)
lelpliollq,

where the final inequality comes from (10).

e/r+ (1 —¢€)/sandl/q =

v

v

5 Proof of Theorem 9

We have a 4-tuple of nonnegative functions satisfydig(«, 3, ~, d), and a pai(C, D) of
sets satisfying’ C D C [n]. Assume for contradiction that the conclusion (5) does not hold
for (C, D).

Let S = D — C and define functiona, o for X € 29 by:

a1 (X) = a(Xu0O)
(X)) = a((S-X)uQ)

Definefy, 82,71, v2, 01, 62 analogously.

AD(aq,B1,71,01) andAD(as, B2, §2,v2) both hold, where in the second condition, the
roles ofy and~y have been (intentionally and necessarily) reversed.

LetT = SU{a1,as}, wherea,, as are new elements. We will apply corollary 12 to the
function f : 27 — R2 defined as follows. Fod C S,

fi(4) 0
fi(Au{ai}) a1(A)B2(4)
fi(AU{az}) 0
fi(AU{a1,a2}) —71(A4)d2(A)
and
f2(A) —2(A)d1(A)
f2(AU{ar}) 0
f2(AU{a2}) az(A)B1(A)
fa(AU{a1,a2}) 0

The assumption that, 3,~, §, C, D does not satisfy (5) implieg(27) > (0,

0). There-

fore corollary 12 gives a strictly positive multiplicative functipnon 27" and a pair of sets

Ay, Ay C T such that forj € {1,2}:

(11) o(pfj; A1, Az)

> 0.



If Ay N{a1,a2} # {a1} andAs N {a1,a2} # {a1} then forj = 1 none of the terms in
the previous sum are positive. Thus, without loss of generdlity= By U {a,} for some
B; C S. By a similar argument fof = 2, A, = By U {az} for someB; C S. Inequality
(11) forj = 1 reduces to

(12) 1(Ar)on (B1)B2(B1) > p(Ar U A2)yi(B1 U Bz)da(By U Bz))
and forj = 2,
(13) 1(A2)B1(B2)aa(B2) > (A N Az)d1(B1 N By)y2(B1 N Bs))

Multiplying these two inequalities, and using the multiplicativity of to cancel
p(A)u(B) with (A U B)u(A N B) yields:

041(31)51(32)042(32)52(31) > ’71(31 U 32)51(31 N BQ)’YQ(Bl N 32)52(31 U Bg),

which contradicts the assumption that batP («, 51,71, 01) andAD(aaz, f2, d2,v2) hold.
This completes the proof of Theorem 9.

The special case of Theorem 9 whére= () will be useful in the next section and we
note it as a corollary:

Corollary 13. Under the hypothesis of Theorem 1 the following holds for eachset[n|:

(14) S a(NBD—J)< Y A(N)D - J)

JCD JCD

6 The AD condition is preserved under disjoint convolu-
tion

In this section we prove Theorem 10. Fore {1,2}, «s, 5,7, 0; are nonnegative set
functions satisfyingd D(«;, 8;,7:, 9;). We define = ;%o andg, v, 6 analogously. We
want to proved D(«, 3,7, d), which says that for eacA, B C S,

(15) Z a1 (W)az(A —W)B:1(X)B:2(B — X)

< 3 n()((AUB) - V)& (2)6((ANB) - 2).

YCAUB
zZCANB

A natural approach to proving this is to fikand B and define functiona on 24, B on
2B 4 0n24YB ando on247B by &(W) = ay (W)ag(A—W), B(X) = B1(X)B2(B — X),
(V) =1 (Y)(AUB—Y) andd(Z) = 6,(2)d:(AN B — Z). If AD(é, 3,4,4) holds
then the 4FT gives what we need. Unfortunately)(é, 3, 4, §) need not hold. Take = 3
and taken; = 1 = 1 = §; to be the constant 1 function. Takg = S5 = 72 = d5 to be
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the function that is 1 except of1, 2} and{1, 2, 3} where they are 2, Takd = {2,3} and
B ={1,2}. Thena({2})3(0) =2 > 1 =4({2})4(0).

Instead we will prove (15) by decomposing it as a sum of a family of inequalities and
show that each inequality in the family is true by reducing it to Corollary 13.

Proof. AssumeAD(«;, 3;, i, 6;) for i € {1,2}. To verify AD(«, 3,7,0), we fix A, B C

S and prove (15). As stated above, we will decompose (15) into a sum of a family of
inequalities. The family is indexed by quadruples,, B;, Cy, C1) of sets whered; C
A — B, By C B— AandCy, C; are disjoint subsets o N B. We call such a quadruple
relevant For a relevant quadruple we defih€A,, B;, Cy, C1) to be the set of pair§(A; U
CyUV,BiUCLU(Cy—V)):V C Cy}. Each pairfW, X) with W C AandX C B
belongs toL(A1, By, Cy, Cy) for exactly one relevant quadrup(él,, B, Cy, Cy), namely
the quadruple wittd; =W — B, By = X — A, C; = WnX andCy = (W — X) U
(X = W))n An B. Thus the collection of set&(A;, By, Cp, C1) partitions the set of
pairs{(W,X) : W C A, X C B}. Similarly, defineR(A4,, B1,Cyp, C1) to be the set of
pairs{(4; UB, UC; UU,CL U (Cy —U)) : U C Cy}. Again the collection of sets
R(As, B1, Cy, C4) partitions the set of pair§(Y,Z) : Y C AUB,Z C An B}. We will
prove that for each relevant quadruplé;, By, Co, C1):

(16) E Oél(W)OQ(A - W)ﬂl(X)ﬁz(B - X)
(W, X)e
L(Ay,B1,Cp,C1)

< S M)n(AUB) - Y)a(2)5((ANB) - Z).
(v,z)e
R(A1,B1,C0,C1)

By summing (16) over all relevant quadruples we obtain (15), which proves the theorem.
To prove (16) fix a relevant quadruple, and defihe= A — B— A, Bo = B— A— B;
andCs = (AN B) — (Cy U C1). We rewrite (16) as:

17)
Z Oq(Al UCl UV)OZQ(AQ UOQ U (Co — V))ﬂl(Bl UCl U (Co —V))ﬁQ(BQ UCQ UV)
VCCy

< Z Y1 (Al UB; UClUU)’)/Q((AQ UBs UCQU(C()—U))51 (Cl U(Co _U))(SQ(CQUU)
UCCh

Now, with A, B, Ay, B, Cy, C; still fixed, define functionsy], 37,1, 97, b, 85,5, 65,
O/a 5/7 ')//, 6’ for J C Cy by

O/l(J) 061(A1U01UJ), QIQ(J):QQ(AQUCQU(C()*J)),

o/ (J) = o (J)ay(J),

ﬁi(J) ﬁl(BlUclUJ) ﬁé(J):/BQ(BQUCQU(CO_J)),
BI(J) = Bi(J)B3(J),

1) =1(A1UB1UCIUJ), 7(J) =72(A2UBUC2U (Co — J)),
V() =1 ()e(J),

8 (J) = 6,(Cy U ), 95(J) = d2(C2 U (Co — J)),
§'(J) = 01(J)d5(J)

11



Then (17) becomes:

(18) Y dV)F(Co-V)< Y AU (Co-U)

VCC UCCo

It is easy to see thatAD(ay,[31,71,d1) implies AD(o), 51,v1,01) and that
AD(ag, B2,72,82) implies AD (a4, 35,8%,~%) (here d, and ~4 are intentionally inter-
changed). Together these imphD (o, 5’,~',6"). Now Corollary 13 withD = Cj, implies
(18) to complete the proof of the theorem. O

7 Some final remarks

Theorems 8, 9 and 10 all include the 4FT. Is there a natural theorem that unifies all three of
them, or some two of them?

The fact that (16) holds for all choices of, B C S and all relevant quadruples
(A, By, Cy, Cq) with respect toA, B refines Theorem 10 and also includes Theorem 9
by takingA = B= S, A, = B; =0, C; = C andCy = D — C. However, the statement of
such a theorem would be rather cumbersome and it would be nice to find a cleaner unifying
statement.

It is natural to look for generalizations of Theorem 6 to set functions whose raiige is
for k > 2. Itis not clear how to generalize the conclusion to highe©ne can restate the
conclusion of Theorem 6 to say that for= 2 there is a sublattice generated by two sets
on which the sum of: - f is nonnegative. One might conjecture that there is a sublattice
generated by: sets on which the sum ¢f - f is nonnegative. Unfortunately it would limit
applicability of this statement that such a sublattice grows very fastivithe rank of the
largest sublattice that can be generatedktsets is/(k) = (Lk%J)' and its size ik,

We certainly cannot sharpen this assertion and put, say a stricter limit on the size of the
lattice, because if eacf is positive only on a single set;, then the sublattice taken for the
conclusion must include all of thé;.

Another interesting direction may be to consider other models of discrete localization.
For example, suppose that we have a connected graph'V, E') and a functionf : V —

R? such thafy", ., f(v) > 0; we would like to conclude that there is a patf, . .. v, and

a number\ > 0 such thafy~; _, A¥ f(vx) > (0,0). This is certainly not true in general. An
easy example is a star wittk + 1 nodes. Letf; be 1 on half of the leaves, 0 on he other
half, and—(k — 1) in the center. Lef> be obtained by interchanging the values 0 and 1. Itis
easy to check that this is a counterexample. Perhaps this form of discrete localization holds
if the underlying graph has a node-transitive automorphism group.

We mention the following result of Beck and Krogdahl [BK2] that is of this flavor: Let
(ci;j) be a positive logsupermodular matrix, i.€; - ¢i+1,j+1 > Cit+1,5 - Gij+1. Thenthere
exists a path froma; ; to ¢, ,,, whose average dominates that of all the entries of the whole
matrix.
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