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‘W shor that the perceptren algorithim along with petiocic recaling slves linear programs in polymomial
time. The algcrithm raquires no masiix inversions and na barrier fnctions

1 Introduction

Linsar programs arise naturall in many areas. The standard form is

max Fx

where b, axs in B, and A i an m  n matrix of rsels. Algorithms fo slving them efficisntly (is.,
in polynemial time) includs the Ellipscid mathod [10, 12, 19], interior poist mathods [1L, 15] and tha
sandom vl method 2], In practice, thoush, veriants o the simplex algerithn 1, 7] (perhape the mest
‘popular algoritha for the problem) are often very sficient, althanugh they lck wojstase guasantess.

Another classical algorithm which is quite prastical for problems arising in machine learning s the
‘perceptran slgorithan 13, 19| The algcrithn is & simpls srasdy method that is pusrantssd ta comvergs,
but could take an exponential number of itarations in the worst case. Hovever, 1 has many useful
propartiss incluing noiss tolerance [4,5|. The perceptron algorithm has also besh related o bocsting
in the PAC modl of aurning [16, 17 1t was xecently sharrn that the algorith is polrmomial with high
probabilty for randomly perturbad linea progtarms 3] It has besn an cpen quastien a to whether there
s & variant of the peresptzon algerithm that is polynomial in the worst case

In this paper, e consicr only the esibilty versicn of the insar progeam ming problem in standard form,
nsglacting the cbjactive function max %, Polynomial time raductions of the optimization problem %
the Fasibiliy version of the problem are well-known [L0]. A rpical appraach is & replace max <7 by
the constraint 7 > c for som valus of @ Binary saurch can ba used o determine a neasly optimal
valus f & A sclutian that is fasible or the problem with ¢ sufientl close 6 optimal can be rounded
0 an optimal vertex sluticn through bosi reduction [10]

‘Wo share that a parceptron-like algorithm along ith periodic resealing appliad to astrictl Basible insar
program will rsturn 2 fausible point in polynomial time. A3 in all variants of the pereaptren algorith,
it doss not use any matri inversions or barrier functions. Our main Theorem (Theorem 3.3)is that &
sericty feasible insar program with m constzsints in R s salved in tima (it logn log(L/p)) where
iz & parameter that soughly comseponds to the radius of & ball that fis in the fssible regin, and
Ioa(1/p) is guazantasd to be polynomial n the input dscription.

2 The Algorithm

In this sction we present an algerithm fr the linsar Gasibility problem
arzozia
consisting of m constraints i n dimensions, Lo, = € B” and A is m x n. [n Section 4 2 shor hore

el e methods can b used to seduce the standard form fasibilty problam o this homogenical
form,



[image: image3.png]‘The algerithm i iteative and such iteration consists of thise phasss, o perceptron phase, & perceptron
improvement phass, an a rescaling phase. The perceptzcn phase usss the clasial pareaptzon algorithn
The parceptzcn improvement; phase uss & modifiad version of the basic perceptren algcrithm. This
modifid version was st cescribed in [

‘The classical pareaptron algorthin fr the lineas Sasibilty problem is  find a violatad constraint, move
the tril sclution = one wnit in the dissction normal to the viclatad constraint, and sepsat if nacesary
(shis s step 2 in the algerithm)

In rest of the paper, e et 2 dancte the unit vecor in the direction of =

Algorizhin.

Imput: An m ¢ n matrix A
Outpus: A point = such that Az 2 0 and = £0.
L LeBE-TLo

2. (Perceptron)

(s) Let = bs the crign in B

(5) Repeat at mest 16n° times:
Ifthers sxists a xorr @ such that - x

/(e

31 4z 2 0, then cutput Bz as a fasible soluion and stop.
(Perceptron [mprovement)
(s) Let  bs o random unit vecter in B
(5) Repeat at mest Inn/o times:
Ifthere axist a 10 @ such that & % < —g, o2t x =
1£2 =0, g0 back o stap (a).
) I there il axists .10 such that &% < —o, restartat step (2]
5. If Az 2 0, then cutput Bz as a fasible soluion and stop.

(Rescalng)

St A- AU+

and B=B(4z

7. Go back tastep?,

Figure 1 dapicts the Rescalng step.

3 Analysis

Lot dy dente the iniia A iput o the e, an 16 A, cono the A that the lgerith hes
e it When e ot eminios, i oo o nse o < B hat
o BN 2 0 ) 20y m e

The pcopzcn impucs et phse ma b rexun . mmber of e, b i it il it i
prchebiliy. Tn [ 6 s shovn thas i pechabily 3, the vk = 2 the ond of sep 4(5) st
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e W recal this procf for conveniencs as Lomma 3.4(a) belor.

T the e uestin o, o sy i coe he s ke Tosnev i, e dfn he
Ellring o i o e oo of e Bl g
P e el

Wo call  he e cf 4 Thi quanty s selatad b5 he conditon murber of o s program in
5 il S s sppmae i bk o s g o5 . i
0 ebieniy b s o cnciin amtor 1y St 4. The st scor euiin the abive
it et centr s detad 5 oughl; ki, e e < 1 o bl n
e e v Lo 3405 s st s v o b o oF s ) s+ L
i ey o s 14

The clusical analysis of the percsptzon algorichn 13] (peated i lemma 3.5 shows thas the clasical
perespton alorith (our parcsptron phaze) spplisd t & lnear feui bl pecblem with radiue p vl
tarinata i ot et L 7 itecations. Out main e, shaves that i sy iegation ofous lgorthun whers
pis amal, it ill incrsao i sxpctation byl iphicative fctor. Cormbining ous main . with the
Clmical anayais will ield that i p is amal, i et bigger (guarantesd Uy the percaptzcn improvement
‘i calng phases), and £ 5 i, the ol s o el peint. (suaanbemd by the ercoption
phass)

Lemma 3.1 Suppose p < 1/4n. Let o < 1/32n. Let 4 be cbtained from A by one iterion of the
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Then

(o) 4 z0- e

(3) Wik ottt o lese } 42 (L4 )p
Proof Let i, £ = 1,...m be the rovs of A o the beginning of sme iession. Let 5 be  unit vector

satifring p = min3; =, and let o7 = & 7. After a parception improvement phass, e get & vactar
such that

3 in the thaorem statemant, lt 4’ bs the matrix abtainad after the reccaling s, i,

atles

Finally, define

Sl 2z

where a il be specifisd shortl. Although < i not nacessarly the center of ', ¢’ is 2 maximum aver a
oot and o0 considering on slement (%) of the sot uffies t lower bound /. We have

e

We chaces

a=3G% -1

20 that 204+ 1 = p/(= ). We hase not ensured that £ = 0, but substitutng in £ a(2 ) in the

deinition of =/ using the valus v have cheeen for o mould remeve this boundry cass. Wa have chossn
ot to do this o aid the exposition. We procesd to caleulate

)

We consider ta cases:
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Viewing | 2  qustic polsnamial in (2 2), e s ths i i masimicd when
In this cass, v have

2P0
[PV

Using the slementary dentity A 21— & for 3 & (-1,1), we find

W

W

W

W

‘This proves both parts of the Lemma.
o

Theorem 3.2 7ith high probbility the clgorithm fnds @ feasible soluson n O Iag(1/p)) iteraions.

Proof: From our pravious discusion, it sufice to share that p has grown o a laast 1/4n in this many
iteraticns., Lt X; be o random variable for the ¢th iteraticn, with valus L if p grows by a factor of
(L+1/4n) or more and valus 0 otherwise. Lat X be the sum of the X,'s over T iterations. Then by
Lemma 3(8)

E[x]

The Chermaff bound gives,
P(X < (1-BIX]) £ 2
Lot pr s th p valus afve T iterations. Let T = 20:8nlog(L/p) and € = L/16. Then
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We summariza ith probability 2t least 1 —e~", bafora the algorithm runs mera than T terations, p
10w 0 at lsast (4], a3 which point the parcaptron phise suceseds in finding a Basible point. 1

‘Theorem 3.3 7ith high probabiiy. the loorithm finds  feasibe solution n time Of s ogn g1 /p).

Proof: The innar loop of sither the parcaptron phase or the percepron improvame phase raquies at
most one matris-vector multiplication (time O(mn)), and a canstant mumber of vctor manjpulations
{time O(x)). The numbe o times e sepat the inner loop is a¢ most 161 in the pesceptren phase, and
at most log n/0% = O |og) in the parcaptren improvement phase. The bound on the total murber
of timss through the percaptran iauprovement phase is probabilistc, but it can be shorm to be closs to
s expactation using a. Chernoff bound just 25 in th previous thesrem. The scaling phase takes time
(). Caleulating B siaulasl takes tima O(r?)

By the previous theorem, the mumbe of itrations i ot mest O(n1og(L/p)). This ields the cverall time
bound O(mrtlog nlog(1/ ) o

Lemma 3.4 (BKV [4]) Let = and A be os before. 1With probabiiy c leas 3, in ot most I o steps,
the modiied perceptron algorithm (0w perceptron improve ment phase) retums @ vector = for which
(e) 32 o for every rowa of A and
) 2210
Proof: The proof of both perts is similar. By slementary gsomety, - 2 1/ with probabilty at

Isast 1/4. Wa now share that f this is the cass, e tarminate in the dasired mumber of tarations. I it i
ot the case, s might terminat anywaye, or e might nat,

Mote that in such update stap, : - = dows not dacrasse

ey

) smzes (a6
bauss =5 had to be negative in crdr for & to be wd in an update stap, and &= = p 2 0 by

asumption. (This also impliss that if == > 1/, initall, = will naver ba st t 2ax0.) On tha other
hand -z doss dacrause sgnificantly because

-t (-t

z— @2

Ja) =z =

zox(i-a?)

Thus ater ¢ trations ] < (1— %)%, 16 ¢ > (1), we would have 5§ > 1, which cannot happen
Thersfore, evers tima e start through the algorithm, v finish with probabilty 25 laast 1/4, and every
time e fnih, with prebabilty at st 1/4 v reburn = auch that 75 = 1/ o

.



[image: image8.png]Lemma 3.5 (Block-Novikefl [13]) [/ p 2 1/(dn), the classical perceptron aloerithm (our perceptron
phase) returns o feasible point in af most 16n? Herasions.

Proof: Considar the potential function f-f 25 in the proof of Lemma 3.4 The mumerator increasss by
atlanst p cn sach step:

(z48) =z 2482220 4p
‘Whil tha square of the denominator increases by at mest L

(z4&) (z4a) =z 2422 545 Gz 241

Sincez 3 £ 0. Aftar ¢ iarations, the potential function s at aast 2 and thus the classial parcaptron

algorithm must tarminate befors 1/g? itsrations. IF the elgorithm terminatss, it must have found o
Rasible point. o

4 The Standard Form

In this ssction wa show how o rsduce the standard orm linsar fasibility problem
axshrzo

into the linsa fasibility problem e study in the pravious sations of the paper. This technique is
typieally refrred to 25 homegenization. We aleo relata p, the condition number, and the “bit langth” of
the problem bafore and after homogenization. We canclude from this that the algorithi is polsmomal
in the traditional sense 10]

Intrcduce the variable 2 and consider the problem
ArSEz2om>0
To convart a sclution for the standard form to o for the homogeniad form, o2t 7o = 1. To comsert a

solution from the hemogenizad form t0 & solution for the standard form, divide z by . To revrite the
homogenizad form as just

o] and

0. Hoveves, bacauss the classi percsptren algorith (our
‘perceptran phase) alays producse sluticns in the strict interior of the fassible segion, aur algorithm
il ks et o solution with 7 - 0

‘The raditionl messussof the ifficulty of a linsa prograrmiming problem in the Turing model of compu-
tation s callad tha bit-length" and denoted by L. The quantity L is never more than polsnorial in the
input length of the linsar progsam. The condition mumber of a linser program was dfined by Rensgar
25 the normalicat distance o il pesedness [14. Renegar shorved that the log of the condition number i
upper-boundad by L, and a0 insar progeamming ol orithms that ass polynemial in the log of the condi-
tion number are alss polynomial in L. The quantity p s relatad o the condition number in [5], and
alan in [6], and the quantity eppsassd in the literaturs sven sarler. In particular, p of the homsgeniad
‘rogram is 1o more than 1 times the condition numbes of the criginal program. W concluds from this
that the algorithm is polynomial in L.
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