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Abstract

We show that the perceptron algorithm along with periodic rescaling solves linear programs in polynomial
time. The algorithm requires no matrix inversions and no barrier functions.

1 Introduction

Linear programs arise naturally in many areas. The standard form is

max cT x

Ax ≤ b

x ≥ 0

where b, c are in Rn, and A is an m × n matrix of reals. Algorithms for solving them efficiently (i.e.,
in polynomial-time) include the Ellipsoid method [10, 12, 19], interior point methods [11, 18] and the
random walk method [2]. In practice, though, variants of the simplex algorithm [1, 7] (perhaps the most
popular algorithm for the problem) are often very efficient, although they lack worst-case guarantees.

Another classical algorithm which is quite practical for problems arising in machine learning is the
perceptron algorithm [13, 15]. The algorithm is a simple greedy method that is guaranteed to converge,
but could take an exponential number of iterations in the worst case. However, it has many useful
properties, including noise tolerance [4, 5]. The perceptron algorithm has also been related to boosting
in the PAC model of learning [16, 17]. It was recently shown that the algorithm is polynomial with high
probability for randomly perturbed linear programs [3]. It has been an open question as to whether there
is a variant of the perceptron algorithm that is polynomial in the worst case.

In this paper, we consider only the feasibility version of the linear programming problem in standard form,
neglecting the objective function max cT x. Polynomial time reductions of the optimization problem to
the feasibility version of the problem are well-known [10]. A typical approach is to replace max cT x by
the constraint cT x ≥ c0 for some value of c0. Binary search can be used to determine a nearly optimal
value of c0. A solution that is feasible for the problem with c0 sufficiently close to optimal can be rounded
to an optimal vertex solution through basis reduction [10].

We show that a perceptron-like algorithm along with periodic rescaling applied to a strictly feasible linear
program will return a feasible point in polynomial time. As in all variants of the perceptron algorithm,
it does not use any matrix inversions or barrier functions. Our main Theorem (Theorem 3.3) is that a
strictly feasible linear program with m constraints in Rn is solved in time O(mn4 log n log(1/ρ)) where
ρ is a parameter that roughly corresponds to the radius of a ball that fits in the feasible region, and
log(1/ρ) is guaranteed to be polynomial in the input description.

2 The Algorithm

In this section we present an algorithm for the linear feasibility problem

Ax ≥ 0, x 6= 0

consisting of m constraints in n dimensions, i.e. x ∈ Rn and A is m × n. In Section 4 we show how
well-known methods can be used to reduce the standard form feasibility problem to this homogenized
form.
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The algorithm is iterative and each iteration consists of three phases, a perceptron phase, a perceptron
improvement phase, and a rescaling phase. The perceptron phase uses the classical perceptron algorithm.
The perceptron improvement phase uses a modified version of the basic perceptron algorithm. This
modified version was first described in [4].

The classical perceptron algorithm for the linear feasibility problem is to find a violated constraint, move
the trial solution x one unit in the direction normal to the violated constraint, and repeat if necessary
(this is step 2 in the algorithm).

In rest of the paper, we let x̄ denote the unit vector in the direction of x.

Algorithm.

Input: An m× n matrix A.
Output: A point x such that Ax ≥ 0 and x 6= 0.

1. Let B = I, σ = 1/(32n).

2. (Perceptron)

(a) Let x be the origin in Rn.

(b) Repeat at most 16n2 times:
If there exists a row a such that a · x ≤ 0, set x = x + ā.

3. If Ax ≥ 0, then output Bx as a feasible solution and stop.

4. (Perceptron Improvement)

(a) Let x be a random unit vector in Rn.

(b) Repeat at most ln n/σ2 times:
If there exists a row a such that ā · x̄ < −σ, set x = x− (ā · x)ā.
If x = 0, go back to step (a).

(c) If there still exists a row a such that ā · x̄ < −σ, restart at step (a).

5. If Ax ≥ 0, then output Bx as a feasible solution and stop.

6. (Rescaling)

Set A = A(I + x̄x̄T ) and B = B(I + x̄x̄T ).

7. Go back to step 2.

Figure 1 depicts the Rescaling step.

3 Analysis

Let A0 denote the initial A input to the algorithm, and let A∗ denote the A that the algorithm has
when it terminates. When the algorithm terminates, it produces a non-zero vector x′ = Bx such that
A∗x = (A0B)x ≥ 0, i.e., A0(Bx) ≥ 0, as desired.

The perceptron improvement phase may be re-run a number of times, but it terminates quickly with high
probability. In [4] it was shown that with probability 1

4 , the vector x at the end of step 4(b) satisfies
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Figure 1: A constraint system before and after rescaling.

ā · x̄ ≥ −σ. We recall this proof for convenience as Lemma 3.4(a) below.

Thus the main question is, how many iterations does the algorithm make? To answer this, we define the
following quantity which measures the “roundness” of the feasible region:

ρ = max
x:|x|=1,Ax≥0

min
i

(āi · x).

We call ρ the radius of A. This quantity was related to the condition number of a linear program in
[8], and also in [6], and the quantity appears in other work on linear programs as well. We review
the relationship between ρ and the condition number in Section 4. The unit vector realizing the above
maximum is called the center and denoted by z. Roughly speaking, the point z is located centrally in
the feasible cone. Lemma 3.4(b) asserts that the vector x at the end of step 4(b) satisfies z · x̄ ≥ 1/

√
n

with probability at least 1/4.

The classical analysis of the perceptron algorithm [13] (repeated in lemma 3.5) shows that the classical
perceptron algorithm (our perceptron phase) applied to a linear feasibility problem with radius ρ will
terminate in at most 1/ρ2 iterations. Our main lemma shows that in any iteration of our algorithm where
ρ is small, it will increase in expectation by a multiplicative factor. Combining our main lemma with the
classical analysis will yield that if ρ is small, it gets bigger (guaranteed by the perceptron improvement
and scaling phases), and if ρ is big, the algorithm finds a feasible point (guaranteed by the perceptron
phase).

Lemma 3.1 Suppose ρ ≤ 1/4n. Let σ ≤ 1/32n. Let A′ be obtained from A by one iteration of the
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algorithm (one on which the problem was not solved). Let ρ′ and ρ be the radii of A′ and A respectively.
Then,

(a) ρ′ ≥ (1− 1
16n )ρ.

(b) With probability at least 1
4 , ρ′ ≥ (1 + 1

4n )ρ.

Proof: Let ai, i = 1, . . . m be the rows of A at the beginning of some iteration. Let z be a unit vector
satisfying ρ = mini āi · z, and let σi = āi · x̄. After a perceptron improvement phase, we get a vector x
such that

āi · x̄ = σi ≥ −σ.

As in the theorem statement, let A′ be the matrix obtained after the rescaling step, i.e.

a′i = ai + (ai · x̄)x̄.

Finally, define
z′ = z + α(z · x̄)x̄.

where α will be specified shortly. Although z′ is not necessarily the center of A′, ρ′ is a maximum over a
set, and so considering one element (z̄′) of the set suffices to lower bound ρ′. We have

ρ′ ≥ min
i

ā′i · z̄′ =
ā′i · z′
|z′| .

We will first prove that ā′i · z′ cannot be too small.

ā′i · z′ =
(

āi + (āi · x̄)x̄
‖āi + (āi · x̄)x̄‖

)
· z′

=
[āi + (āi · x̄)x̄][z + α(z · x̄)x̄]√

1 + 3(āi · x̄)2

≥ ρ + σi(z · x̄)(1 + 2α)√
1 + 3σ2

i

We choose :
α =

1
2
(

ρ

x̄ · z − 1)

so that 2α + 1 = ρ/(x̄ · z). We have not ensured that x̄ · z 6= 0, but substituting in for α(x̄ · z) in the
definition of z′ using the value we have chosen for α would remove this boundary case. We have chosen
not to do this to aid the exposition. We proceed to calculate

ā′i · z′ ≥ ρ
1 + σi√
1 + 3σ2

i

≥ ρ
1− σ√
1 + 3σ2

. (1)

where the second inequality follows from σi ∈ [−σ, 1]. Next, observe that

|z′|2 = 1 + (α2 + 2α)(x̄ · z)2 = 1 +
ρ2

4
+ (z · x̄)

(
ρ

2
− 3

4
(z · x̄)

)
.

We consider two cases:
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1. |z · x̄| < 1√
n
. This happens with probability at most 3/4.

Viewing |z′|2 as a quadratic polynomial in (z′ · x), we see that it is maximized when (z′ · x) = ρ
3 .

In this case, we have

|z′|2 ≤ 1 +
ρ2

4
+

ρ2

12
≤ 1 +

1
48n2

.

Using the elementary identity 1√
1+β

≥ 1− β
2 for β ∈ (−1, 1), we find

ρ′ ≥ ρ
1− 1

32n√
1 + 3

210n2

√
1 + 1

48n2

≥ ρ

(
1− 1

32n

)(
1− 3

211n2

)(
1− 1

96n2

)

≥ ρ

(
1− 1

16n

)
.

2. |z · x̄| ≥ 1√
n
. This happens with probability at least 1/4.

In this case,

|z′|2 = 1 +
ρ2

4
+ (z · x̄)

ρ

2
− 3

4
(z · x̄)2 ≤ 1 +

1
64n2

+
1

8n
√

n
− 3

4n
≤ 1− 39

64n
.

Using the same elementary identity as above, we find

ρ′ ≥ ρ
1− 1

32n√
1 + 3

210n2

√
1− 39

64n

≥ ρ

(
1− 1

32n

)(
1− 3

211n2

)(
1 +

39
128n

)

≥ ρ

(
1 +

1
4n

)
.

This proves both parts of the Lemma.

Theorem 3.2 With high probability, the algorithm finds a feasible solution in O(n log(1/ρ)) iterations.

Proof: From our previous discussion, it suffices to show that ρ has grown to at least 1/4n in this many
iterations. Let Xi be a random variable for the i’th iteration, with value 1 if ρ grows by a factor of
(1 + 1/4n) or more and value 0 otherwise. Let X be the sum of the Xi’s over T iterations. Then by
Lemma 3.1(b)

E[X] ≥ T

4
.

The Chernoff bound gives,
Pr(X < (1− ε)E[X]) ≤ e−ε2E[X]/2.

Let ρT be the ρ value after T iterations. Let T = 2048n log(1/ρ) and ε = 1/16. Then

e−ε2T/8 ≤ e−n
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which satisfies the definition of high probability. Analyzing ρT in the case that X is within ε of its
expectation, we have

ρT ≥ ρ

(
1 +

1
4n

)X (
1− 1

16n

)T−X

≥ ρ

(
1 +

1
4n

)T
4 −ε T

4
(

1− 1
16n

) 3T
4 +ε T

4

≥ ρ

(
1 +

1
4n

) 15T
64

(
1− 1

16n

) 47T
64

≥ ρeT/512n.

We summarize: with probability at least 1 − e−n, before the algorithm runs more than T iterations, ρ
grows to at least 1/(4n), at which point the perceptron phase succeeds in finding a feasible point.

Theorem 3.3 With high probability, the algorithm finds a feasible solution in time O(mn4 log n log(1/ρ)).

Proof: The inner loop of either the perceptron phase or the perceptron improvement phase requires at
most one matrix-vector multiplication (time O(mn)), and a constant number of vector manipulations
(time O(n)). The number of times we repeat the inner loop is at most 16n2 in the perceptron phase, and
at most log n/σ2 = O(n2 log n) in the perceptron improvement phase. The bound on the total number
of times through the perceptron improvement phase is probabilistic, but it can be shown to be close to
its expectation using a Chernoff bound just as in the previous theorem. The scaling phase takes time
O(n2). Calculating Bx similarly takes time O(n2).

By the previous theorem, the number of iterations is at most O(n log(1/ρ)). This yields the overall time
bound O(mn4 log n log(1/ρ)).

Lemma 3.4 (BFKV [4]) Let z and A be as before. With probability at least 1
4 , in at most ln n/σ2 steps,

the modified perceptron algorithm (our perceptron improvement phase) returns a vector x for which

(a) ā · x ≥ −σ for every row a of A and

(b) z · x̄ ≥ 1/
√

n.

Proof: The proof of both parts is similar. By elementary geometry, z · x ≥ 1/
√

n with probability at
least 1/4. We now show that if this is the case, we terminate in the desired number of iterations. If it is
not the case, we might terminate anyways, or we might not.

Note that in each update step, z · x does not decrease

(x− (x · āi)āi) · z = x · z − (x · āi)(āi · z) ≥ x · z
because x · āi had to be negative in order for āi to be used in an update step, and āi · z = ρ ≥ 0 by
assumption. (This also implies that if z · x ≥ 1/

√
n initially, x will never be set to zero.) On the other

hand x · x does decrease significantly because

(x− (x · āi)āi) · (x− (x · āi)āi) = x · x− 2(āi · x)2 + (āi · x)2 = x · x− (āi · x)2

≤ x · x(1− σ2)

Thus after t iterations ‖x‖ ≤ (1− σ2)t/2. If t > (ln n)/σ2, we would have x·z
‖x‖ > 1, which cannot happen.

Therefore, every time we start through the algorithm, we finish with probability at least 1/4, and every
time we finish, with probability at least 1/4 we return x such that x·z

‖x‖ ≥ 1/
√

n.
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Lemma 3.5 (Block-Novikoff [13]) If ρ ≥ 1/(4n), the classical perceptron algorithm (our perceptron
phase) returns a feasible point in at most 16n2 iterations.

Proof: Consider the potential function x·z
‖x‖ as in the proof of Lemma 3.4. The numerator increases by

at least ρ on each step:
(x + āi) · z = x · z + āi · z ≥ x · z + ρ

While the square of the denominator increases by at most 1:

(x + āi) · (x + āi) = x · x + 2x · āi + āi · āi ≤ x · x + 1

since x · āi ≤ 0. After t iterations, the potential function is at least tρ√
t

and thus the classical perceptron
algorithm must terminate before 1/ρ2 iterations. If the algorithm terminates, it must have found a
feasible point.

4 The Standard Form

In this section we show how to reduce the standard form linear feasibility problem

Ax ≤ b, x ≥ 0

into the linear feasibility problem we study in the previous sections of the paper. This technique is
typically referred to as homogenization. We also relate ρ, the condition number, and the “bit-length” of
the problem before and after homogenization. We conclude from this that the algorithm is polynomial
in the traditional sense [10].

Introduce the variable x0 and consider the problem

Ax ≤ bx0, x ≥ 0, x0 > 0

To convert a solution for the standard form to one for the homogenized form, set x0 = 1. To convert a
solution from the homogenized form to a solution for the standard form, divide x by x0. To rewrite the
homogenized form as just

A′x′ ≥ 0, x′ 6= 0

Let x′ = [x x0] and

A′ =
[−A b

I

]

A valid solution to A′x′ ≥ 0 might have x0 = 0. However, because the classic perceptron algorithm (our
perceptron phase) always produces solutions in the strict interior of the feasible region, our algorithm
will always return a solution with x0 > 0.

The traditional measure of the difficulty of a linear programming problem in the Turing model of compu-
tation is called the “bit-length” and denoted by L. The quantity L is never more than polynomial in the
input length of the linear program. The condition number of a linear program was defined by Renegar
as the normalized distance to ill-posedness [14]. Renegar showed that the log of the condition number is
upper-bounded by L, and so linear programming algorithms that are polynomial in the log of the condi-
tion number are also polynomial in L. The quantity ρ was related to the condition number in [8], and
also in [6], and the quantity appeared in the literature even earlier. In particular, ρ of the homogenized
program is no more than n times the condition number of the original program. We conclude from this
that the algorithm is polynomial in L.
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