
Resilient Peer-to-Peer Streaming

Venkata N. Padmanabhan
Helen J. Wang
Philip A. Chou

Microsoft Research

March 2003

Technical Report
MSR-TR-2003-11

Microsoft Research
Microsoft Corporation
One Microsoft Way

Redmond, WA 98052

Resilient Peer-to-Peer Streaming*

Venkata N. Padmanabhan Helen J. Wang Philip A. Chou
Microsoft Research

Abstract— We consider the problem of distributing “live”
streaming media content to a potentially large and highly
dynamic population of hosts. Peer-to-peer content distribution is
attractive in this setting because the bandwidth available to serve
content scales with demand. A key challenge, however, is making
content distribution robust to peer transience. Our approach to
providing robustness is to introduce redundancy, both in network
paths and in data. We use multiple, diverse distribution trees to
provide redundancy in network paths and multiple description
coding (MDC) to provide redundancy in data.

We present a simple tree management algorithm that provides
the necessary path diversity and describe an adaptation frame-
work for MDC based on scalable receiver feedback. We evaluate
these using MDC applied to real video data coupled with real
usage traces from a major news site that experienced a large flash
crowd for live streaming content. Our results show significant
benefits in using multiple distribution trees and MDC. We also
present a method for combining MDC with traditional layering
to accommodate bandwidth heterogeneity. Our layered MDC
construction enables a novel hybrid parent- and child-driven
congestion control scheme appropriate for situations where the
last-hop links of end-hosts are prone to congestion.

I. I NTRODUCTION

We consider the problem of distributing “live” streaming
media content from a server to a potentially large and highly
dynamic population of interested clients.1 Due to the lack of
widespread support for IP multicast (especially at the inter-
domain level), the server resorts to unicasting the stream to
individual clients. However, this approach only scales up to
a point. A surge in the client population, say due to a flash
crowd, could easily overwhelm the server’s bandwidth.

A range of solutions have been proposed in the literature
and employed in practice. The content provider could purchase
additional bandwidth and install a (possibly distributed) cluster
of servers. Alternatively, the services of a content distribution
network (CDN) such as Akamai could be used to achieve
the necessary scaling, thereby relieving the content provider
from the task of scaling their server site. However, these
approaches may not be cost effective, at least for small or
medium sized sites, because the normal traffic levels may not
be high enough to justify the cost of purchasing additional
bandwidth or subscribing to the services of a CDN. In fact, the
volume of traffic at a small site, even during a flash crowd, may
be too low to be of commercial interest to a CDN operator.
(Consider, for instance, a flash crowd that overwhelms a server

* For more information, please visit the CoopNet project page at
http://www.research.microsoft.com/projects/CoopNet/.

1We use the term “live” to refer to the synchronous distribution of content
to the clients; the content itself may either be truly live or a playback of a
recording.

that is webcasting a high school football game.) Furthermore,
there is some evidence that even large sites (e.g., CNN) are
moving away from CDNs to in-house server farms [22].

An alternative to these infrastructure-based solutions is end-
host-based or peer-to-peer content distribution.2 A P2P ap-
proach is attractive in this setting because the bandwidth avail-
able to serve content scales with demand (i.e., the number of
interested clients). This then forms the basis for the approach
CoopNet system we present in this paper. CoopNet makes
selective use of P2P networking, placing minimal demands on
the peers. The goal is only to help a server tide over crises
such as flash crowds rather than replace the server with a pure
P2P system.

There are a few key issues that need to be addressed
in CoopNet. First, users may be wary of dedicating their
bandwidth to the common good, especially when ISPs charge
based on (upstream) bandwidth usage. We address this issue
in CoopNet by insisting that a node participate in (and
contribute bandwidth for) content distribution only so long as
the user is interested in the content. It stops forwarding traffic
when the user tunes out. This requirement makes CoopNet
fundamentally different from many other P2P systems (e.g.,
[10]) where nodes are expected to route traffic so long as
they are online, even if they are themselves not interested in
the corresponding content. We also insist that a node only
contribute as much (upstream) bandwidth as it consumes (in
the downstream direction). This creates a natural incentive
structure where a node may tune in to higher bandwidth (and
better quality) content if and only if it is also willing and able
to forward traffic at the higher rate.

A second key issue is that the nodes in CoopNet are
inherently unreliable. The outgoing stream from a node may
be disrupted because the user tunes out, the node crashes or
loses connectivity, or simply because the upstream bandwidth
is temporarily used up by a higher-priority user task (e.g.,
sending out an email with large attachments)3. The traditional
approach to end-host-based application-level multicast, which
involves constructing a single distribution tree, is vulnerable
to such failures because the descendants of the failed node
might experience severe disruption until the tree is repaired (or
the failed node is revived). We address this issue in CoopNet
by introducing redundancy, both in network paths and in
data. Multiple, diverse distribution trees spanning the set of
participating nodes are constructed, thus providing redundancy

2We use the terms end-host-based multicast and peer-to-peer multicast
synonymously in this paper.

3We term these as “failures” although the node may not have actually failed.

2

in network paths. The streaming content is encoded using
multiple description coding (MDC) [18] and the descriptions
are distributed over different trees. As our experimental results
show, this approach significantly improves the quality of the
received stream in the face of a high level of node churn.

In CoopNet, the server plays a central role in constructing
and managing the distribution trees. The availability of a
resourceful server that is likely to be far more robust than any
individual peer greatly simplifies the system design. Note that
in this “centralized” design, the most constrained resource, viz.
bandwidth for forwarding the data stream, is still contributed
by the distributed set of peers and scales with the population
size. In this respect, our design is akin to that of the erstwhile
Napster system. While the central server does constitute a
single point of failure, it is also the source of the data stream.
So failures of the server will disrupt the data stream regardless
of how tree management is done.

Here are the specific contributions of this paper:
1) A simple, centralized tree management algorithm to

construct and maintain a diverse set of trees.
2) A framework for adapting MDC based on scalable

receiver feedback.
3) Evaluation of tree management and MDC adaptation

using real video data coupled with real usage traces
derived from the access logs of the MSNBC news
site [2] that experienced a large flash crowd for live
streaming content on Sep 11, 2001. Our results show the
significant benefits of using multiple, diverse distribution
trees and MDC. Our results also indicate that MDC
outperforms pure FEC in the face of wide variation in
loss rate across clients.

4) A method for combining MDC with traditional layering
to accommodate bandwidth heterogeneity. Our layered
MDC construction also enables a novel hybrid parent-
and child-driven congestion control scheme appropriate
for situations where the last-hop links of end-hosts are
prone to congestion, say due to competition from other
applications running on the hosts.

In a previous workshop paper [28], we sketched the basic
idea of CoopNet (viz., combining multiple distribution trees
with MDC) and presented some preliminary analysis. This
paper is substantially different in many respects. The tree
management algorithm significantly improves over our pre-
vious algorithm. The adaptation framework for MDC based
on scalable receiver feedback as well as the parent- and child-
driven congestion control scheme are novel contributions of
this paper. So is the application of MDC to real video data for
performance evaluation.

The rest of this paper is organized as follows. In Section II,
we present the centralized tree management approach used
in CoopNet. We discuss our MDC construction in Section
III and the adaptation framework based on scalable receiver
feedback in Section IV. We then present a performance
evaluation of these in Section V using real video data and the
flash crowd traces from MSNBC. In Section VI, we outline
our approach to accommodating bandwidth heterogeneity and

network congestion. We present our layered MDC construction
and briefly discuss a novel hybrid parent-and-child-driven
congestion control scheme. We conclude in Section VIII with
a summary of our contributions and an outline of our ongoing
work.

II. T REE MANAGEMENT

We now discuss the problem of constructing and maintain-
ing the distribution trees. The key challenge is to keep up with
the frequent node arrivals and departures that may be typical of
flash crowd scenarios. As noted in Section I, we assume that
nodes participate (and contribute bandwidth resources) only
for as long as they are interested in receiving content, so they
may depart or fail with little notice.

A. Goals and Design Rationale

There are many (and sometimes conflicting) goals for the
tree management algorithm:

1) Short trees: The trees should be as short as possible,
i.e., have a minimal number of intermediate end-hosts
between the root and the leaves. Shortness would mini-
mize the probability of disruption due to the departure,
failure, or congestion at an ancestor node. For it to
be short, each tree should be balanced and as wide as
possible, i.e., the out-degree of each node should be as
much as its bandwidth will allow. However, making the
out-degree large (and thus consuming more bandwidth)
may increase the the likelihood of disruption in the
CoopNet stream due to competing traffic from other
applications.

2) Tree diversity versus efficiency:The distribution trees
should be diverse, i.e., the set of ancestors of a node
in each tree should be as disjoint as possible. The
effectiveness of the MDC-based distribution scheme de-
pends critically on the diversity of the distribution trees.
However, striving for diversity may interfere with the
goal of having efficient trees, i.e., ones whose structure
closely matches the underlying network topology. For
instance, if we wish to connect three nodes, one each
located in New York (NY), San Francisco (SF), and
Los Angeles (LA), the structure NY→SF→LA would
likely be far more efficient than SF→NY→LA, where→
denotes a parent-child relationship. Note that shortness
could make a tree more efficient but not necessarily so.

3) Quick join and leave: The processing of node joins and
leaves should be quick to ensure that an interested node
starts receiving streaming content as quickly as possible
after it joins (or migrates to a new parent, as discussed
below) and with minimal interruption (in case one or
more ancestors depart or fail). In particular, the number
of network round-trips needed for the joins and leaves
to complete should be minimal.

4) Scalability: The tree management algorithm should
scale to a large number of nodes, with a correspondingly
high rate of node arrivals and departures. For instance,
in the extreme case of the flash crowd at MSNBC on

3

September 11, the average rate of node arrivals and
departures was 180 per second while the peak rate was
about 1000 per second (both aggregated over a cluster
of streaming servers). While a distributed algorithm
might scale better, it is generally at the cost of a larger
number of network round-trips. For instance, consider
that content lookup takesO(1) network round-trips in
a centralized system such as Napster or Google but
O(log N) (or more) hops (whereN is the number of
nodes in the system) in a distributed system such as one
based on DHTs [33], [36].

Some of these goals (appear to) conflict with each other, so
we prioritize them as follows. Since resilience is our overall
objective, we choose to focus on building short and diverse
trees with short join and leave times.

We prioritize shortness and diversity over efficiency because
in the CoopNet setting, the peer nodes and their often con-
strained last-hop links are likely to be the causes of disruption.
So it makes sense to try to minimize the number of ancestors
that a node has and maximize their diversity. And since the
live streaming application we consider is non-interactive, a
modest delay (from the root to a node) of even 10 seconds or
so may be acceptable. That said, having efficient trees would
likely benefit the network as a whole by reducing bandwidth
consumption on the backbone links. So we include efficiency
as a secondary goal.

To enable quick joins and leaves, we use a centralized
tree management scheme, where a central node (possibly the
streaming server) coordinates tree construction and mainte-
nance. We refer to this node as the “root” to connote the
probability that it is (or is collocated with) the root of the
distribution trees in practice. Leveraging the (often resource-
ful) root greatly simplifies tree management and consequently
makes joins and leaves quick. A join or leave operation would
only require one or two network round trips — one to the root
and possibly one to the new parent.

The dependence on the root means that the system is
not self-scaling, but only so with respect to control traffic
pertaining to tree management; it is still self-scaling with
respect to (the more expensive) data traffic. Our (untuned)
prototype implementation can keep up with about 100 joins
and leaves per second on a 1.7 GHz Pentium-4 PC. The tree
management task is CPU-bound (the memory and network
bandwidth requirements are quite low) and should scale with
CPU speed. Should the tree management processing on one
root node become a bottleneck, it would be easy to scale up
using a (possibly distributed) cluster of roots and directing
each client to one of the roots, say at random. A client would
retain its association with the assigned root until it departs
the system. If in addition the aggregate bandwidth of the root
nodes (i.e., the source nodes of the data stream) is scaled up,
it would result in shorter, and hence better, trees.

Another criticism of centralized tree management might be
that the root is a single point of failure. Nonetheless, this may
be a moot point in our setting because the root (or a node
collocated with it) is also the source of the data stream. So

the failure or disconnection of the root is likely to disrupt the
data stream also4

B. Centralized Tree Management

The root coordinates all tree management functions. When
a node wishes to join, it contacts the root, which responds
with a designated parent node in each tree. The new node
then contacts the parents to have the flow of data started.
(Alternatively, the root could directly notify the parent nodes
(concurrently with its message to the new node), thereby
reducing the join time by about an RTT.) When a node leaves
gracefully, it informs the root. The root then finds a new parent
for the children of the departed node (in each tree) and notifies
the children of the identities of their new parents.

In addition, there is the problem of ungraceful leaves where
a node departs because of a network disconnection, host crash,
or another reason that gives it no opportunity to notify the root
(or its children). To accommodate such ungraceful leaves (and
general variability in network quality), each node monitors the
packet loss rate of the incoming stream on each tree. Losses
are deduced from gaps in the packet sequence number, or a
stoppage in the packet stream (for instance, because the parent
got disconnected).

If the loss rate on a tree exceeds a threshold, the node checks
with its parent to see if the parent too is experiencing a high
loss rate on that tree. (The network round trip needed for this
check can possibly be saved by having the parent piggyback
its packet loss rate information on the data stream it forwards
to its children.) If the parent is also experiencing a high loss
rate, then the cause of the problem is probably upstream of
the parent. So the node holds off for a while before checking
with its parent again, hoping that the parent (or one of its
ancestors) will resolve the problem in the meantime.

If the parent is not experiencing the problem or it fails to
respond or resolve the problem, the node contacts the root to
request a new parent for itself in the affected tree. In addition
to returning a new parent to the requesting node, the root also
records the “complaint” against the old parent. Such complaint
information could be used to guide future parent selection and
possibly scale back the level of participation of the suspect
parent. We touch upon some of these issues in our discussion
of congestion control (Section VI), but do not consider it
further here.

We now consider the question of how exactly the root
chooses the set of parents for a node. We discuss two tree
construction algorithms — randomized and deterministic.

1) Randomized Tree Construction:This algorithm was pre-
sented in our previous workshop paper [28]. The motivation
is simple: since we would like the trees to be diverse, we ran-
domize the process of tree construction within the constraints
imposed by node bandwidth and the desire for short trees. The

4This statement is not strictly true because Internet connectivity is not
strictly transitive [4]. A node may lose direct connectivity to the root and
hence be unable to exchange tree management messages with the root, yet it
may be able to receive the data stream routed via its ancestors (i.e., an overlay
path).

4

algorithm proceeds as follows. For each tree, we start at the
root (i.e., the source of the data stream) and search down the
tree until we get to a level that has one or more nodes with
spare bandwidth to support a new child. (Note that this search
is performed in the local data structures maintained at the root
and does not involve any network communication.) We then
randomly pick one of these nodes with “room” as the parent
of the new node in that tree. To further increase diversity, we
could randomly pick the parent from among nodes withinK
levels of the first level that has room.K would typically be
set to a small value such as 1 or 2 to avoid sacrificing too
much in terms of the shortness of the tree.

2) Deterministic Tree Construction:While randomization
would result in a degree of tree diversity, the question is
whether we can do better. We leverage the insightful obser-
vation made in the recent work on SplitStream [9] that the
outgoing bandwidth constraint of nodes can be honored by
making each node an interior node in just one tree. (That
said, there are some crucial differences between SplitStream
approach and ours, which are discussed in detail in Section
VII-A.) In our setting, the centralization of tree construction
makes it relatively easy to honor the bandwidth constraints
of each node. But we can use the idea of making each node
an interior node in exactly one tree to make the trees wider
and henceshorter. Figure 1 illustrates a simple example where
doing so results in shorter trees than if tree construction where
randomized.

R

1 2

3 4

5 6

R

1 2

4 3

5 6

R

1 3

R

2

4

4 5 6 5 6

2

1 3

(a) Randomized construction (b) Deterministic construction

Fig. 1. The (total) out-degree limit for the root (R) is 4 while the limit for
the other nodes is 2. By concentrating the out-degree of each node in one
tree (its “fertile tree”), deterministic tree construction (case (b)) yields shorter
trees than randomized tree construction (case (a)).

Making the set of interior nodes in each tree disjoint also
contributes to tree diversity and hence robustness. The failure
of a single node would only disrupt one tree. However, in
the MSNBC scenario considered in Section V, multiple nodes
can fail concurrently, so it is less clear to what extent the
disjointness of the interior nodes helps.

The deterministic algorithm proceeds as follows. When a
new node joins, we first decide the tree in which it is going
to be fertile (i.e., be an interior node that can have children);
the node will besterile (i.e., a leaf node) in all the remaining
trees. We keep track of the number of fertile nodes in each
tree, and (deterministically) pick the tree wth the least number
of fertile nodes as the one in which the new node will be fertile
(we term this the “fertile tree” of the node, the rest being its

“sterile trees”). The goal is to roughly balance the number of
fertile nodes in each tree.

To insert the new node into its fertile tree, we start at the
root and proceed down until we reach a level that either has
a node with room (i.e., with spare bandwidth) or a node with
a sterile child. If a node with room is found at that level, we
designate it as the parent. Otherwise, we designate a node with
a sterile child as the parent of the new node and find a new
parent for the sterile child, as discussed below. (The idea is to
have the upper levels of the tree populated by fertile nodes,
which can support children.) In both cases, the parent is chosen
deterministically (say the first node meeting these criteria that
is encountered in the search through our data structures). The
disjointness of the interior (i.e., fertile) nodes across the trees
makes randomization unnecessary.

To insert the new node into one of its sterile trees, we use a
similar procedure as above except that we only consider nodes
with spare bandwidth when searching for a parent. Since the
new node is sterile in this tree, there is nothing to be gained
from substituting an existing sterile node in the upper levels
of the tree with the new node.

With this deterministic algorithm, it is possible (although
quite unlikely in practice) that a tree runs out of capacity to
support new nodes. This can happen, for instance, because a
large number of departing nodes all happen to have been fertile
nodes in the same tree. When a tree runs out of capacity, we
pick a fertile node from the tree with the largest number of
fertile nodes and “migrate” it to the tree that is starved of
capacity. Migration involves changing the designation of the
node from fertile to sterile in one tree (and finding new parents
for each of its children in that tree) and designating it as fertile
in the starved tree.

3) Tree Efficiency:As noted in Section II-A, making the
trees efficient is a (secondary) goal. The idea is to make the
tree structure match the underlying network topology to the
extent possible, thereby minimizing duplication of traffic on
network links. Towards this end, we would like the parent of
a node to be close to it in terms of network distance (and
perhaps even on the same ISP network to conserve expensive
egress bandwidth), where possible. Note that such proximity
to parent nodes (in all trees) does not necessarily compromise
tree diversity (and hence robustness) in the CoopNet setting.
Given the high rate of node churn, departures or failures of
end-nodes and/or their network links are more likely causes
of disruption than failures in the interior of the network.

What we need is an efficient way to pick a proximate
parent for a node without requiring extensive P2P network
measurements. We use the simple delay-coordinates based
“GeoPing” technique, proposed in [27] for a somewhat differ-
ent application (viz., determining the geographic location of
Internet hosts). Each node maintains its “delay coordinates” of
ping times to a small set of landmark hosts (say 10 hosts). The
pings are repeated at a low frequency to keep the coordinates
updated. When it wishes to join the distribution trees, the node
reports its delay coordinates to the root. Once the root has
identified a set of candidate parents in a tree (subject to the

5

bandwidth and tree level considerations discussed above), it
picks the one whose delay coordinates are closest to that of
the new node (in terms of Euclidean distance).

In Section V-A.3, we evaluate the efficacy of this delay-
coordinates based approach in finding proximate peers. How-
ever, since we do not have delay coordinates information for
the clients in the MSNBC trace, we do not consider proximity
in the rest of our evaluation.

III. M ULTIPLE DESCRIPTIONCODING

A. MDC Overview

Multiple description coding (MDC) is a method of encoding
an audio and/or video signal intoM > 1 separate streams, or
descriptions, such that any subset of these descriptions can
be received and decoded. The distortion with respect to the
original signal is commensurate with the number of descrip-
tions received; i.e., the more descriptions received, the lower
the distortion and the higher the quality of the reconstructed
signal. This differs from layered coding5 in that in MDC every
subset of descriptions must be decodable, whereas in layered
coding only a nested sequence of subsets must be decodable.
For this extra flexibility, MDC incurs a modest performance
penalty relative to layered coding (Section III-F), which in
turn incurs a slight performance penalty relative to single
description coding.

Many multiple description coding schemes have been inves-
tigated over the years. For an overview see [18]. A particularly
efficient and practical system is based on layered audio or
video coding [29], [23], Reed-Solomon coding [37], priority
encoded transmission [3], and optimized bit allocation [15],
[32], [25]. In such a system the audio and/or video signal is
partitioned into groups of frames (GOFs), each group having
a duration ofT = 1 second or so, for example. Each GOF
is then independently encoded, error protected, and packetized
into M packets, as shown in Figure 2 and elaborated in Section
III-C.

If any m ≤ M packets are received, then the initialRm

bits of the bit stream for the GOF can be recovered, resulting
in distortionD(Rm), where0 = R0 ≤ R1 ≤ · · · ≤ RM and
consequentlyD(R0) ≥ D(R1) ≥ · · · ≥ D(RM). Thus allM
packets are equally important; only the number of received
packets determines the reconstruction quality of the GOF.
Further, the expected distortion is

∑M
m=0 p(m)D(Rm), where

p(m) is the probability thatm out of M packets are received.
Givenp(m) and the operational rate-distortion functionD(R),
this expected distortion can be minimized using a simple
procedure that adjusts the rate pointsR1, . . . , RM subject to a
constraint on the packet length [15], [32], [25]6. By assigning
themth packet in each GOF to themth description, the entire
audio and/or video signal is represented byM descriptions,
where each description is a sequence of packets transmitted at
rate 1 packet per GOF. It is simple to generate these optimized

5Layered coding is also known as embedded, progressive, or scalable
coding.

6The “optimizer” in our system (Figure 3) performs this function.

Rate-distortion
Curve

GOF
n

GOF
n+1

GOF
n-1

GOF
n+2

GOF
n-2

Bits

D
is

to
rt

io
n

… ..

R0 R 1 R2 R3 RM-1 RM

D(R
0
)

D(R1)

D(R 2)

D(R
M

)

…

…

…

…

…

Packet 1

Packet 2

Packet 3

Packet 4

Packet M

…

(M
, 1

)

(M
, 2

)
(M

, 3
)

(M
,M

)

co
de

R
S

…
Embedded bit stream

Fig. 2. Priority encoding packetization of a group of frames (GOF). The
source bits in the range[Ri−1, Ri) are mapped toi source blocks and
protected withM − i FEC blocks. Anym out of M packets can recover
the initial Rm bits of the bit stream for the GOF.

FEC
Profile

GOF n

Prioritizer
Embedded Stream

RD
Curve Optimizer

Packetizer

RS Encoder

Server

GOF
Depacketizer

Embedded
Stream

(truncated)

DePrioritizer Decoder

RS Decoder
Client

Render

M
descriptions

m
�
M

descriptions

Frame 1
Frame 2
Frame 3

…..

Frame 10
….. Tree

Manager

M, p(m),
PacketSize

Internet

Fig. 3. CoopNet MDC System Architecture

M descriptions on the fly [35], assuming that the signal is
already coded with a layered codec.

B. FEC, Layered Coding and MDC

The independence and priority encoding of the MDC de-
scriptions offers efficient data redundancy needed for robust
peer-to-peer media streaming. Both layered coding and For-
ward Error Correction (FEC) are building blocks for MDC.
Layered coding is used by MDC to prioritize the streaming
data. Forward Error Correction (FEC), such as Reed-Solomon
encoding, is then used to offer different levels of protection
to data units depending on their priorities.M descriptions can
accommodate up toM priority levels for the data units. In fact,
pure FEC is a special case of MDC where all the streaming
data is accorded the same priority. Hence, it is much less
flexible in adapting to wide variation in packet loss rates across
clients, as is likely in the CoopNet setting. We compare MDC
and FEC using real video data and real flash crowd traces in
Section V-G.

C. CoopNet MDC System Architecture

In this section, we present the CoopNet MDC system
architecture. Figure 3 shows the architecture we have imple-
mented. The input stream is from a layered codec; in our
implementation, we use the PFGS codec (also known as the

6

SMART codec) reported in [38]. The sequence of operations
is as follows:

1) Frames in a GOF are partitioned into a set of data
units that carry rate-distortion information. The prior-
itizer prioritizes and sorts these data units according
to their contribution towards reducing signal distortion.
The larger the reduction per byte a data unit offers, the
higher its priority and the greater the protection it is
given using FEC encoding. The prioritizer produces an
embedded bit stream(i.e., the sorted data units), and
rate-distortion information (RD Curve). The latter is fed
into the optimizer.

2) The optimizer computes thep(m) distribution (i.e., the
probability distribution of the number of descriptions
received by clients) based on the scalable feedback
received from clients (Section IV).

3) Using the number of descriptions (M), the packet size
(P), the p(m) distribution, and the RD curve (received
from the prioritizer), the optimizer produces a priority
encoding profile (FEC profile),R1, . . . , RM , for optimal
packetization (Figure 2).

4) The packetizer FEC-encodes the embedded stream that
is produced by the prioritizer according to the FEC
profile from the optimizer, and producesM packets,
each with the GOF number (n) recorded in its header
(Figure 2). The streaming server distributes these packets
over its trees.

5) The M packets traverse multiple CoopNet trees and
may experience different amounts of delay in reaching a
client. The packets received at a client are synchronized
using the GOF number (n) contained in their headers.
Due to network congestion or disruption caused by node
departures, some packets may be lost, and only a subset
of theM packets (descriptions) corresponding to a GOF
may be received by a client.

6) Upon receiving a subset of theM packets in a GOF,
the de-packetizer at a client FEC-decodes the received
packets, and assembles an embedded stream which is a
prefix of the original embedded stream generated at the
server.

7) The de-prioritizer retrieves the individual data units from
the embedded stream and sorts them by their media
decode time. The quality of this reconstructed GOF
depends on the number of descriptions received.

8) Finally, a media player decodes the GOF and renders it
at the client.

D. Configuring MDC

A number of parameters affect the MDC construction: the
stream bit rateR, the GOF durationG, the total number
of descriptionsM , the packet sizeP , and the probability
distribution p(m). We fix P to be 1250 bytes, leaving about
250 bytes (in a 1500-byte network packet) for headers and
auxiliary information as necessary. Given a desired stream
bit rate R and packet sizeP , M and G are related by
M = GR/P . For example, for a stream bit rateR = 160

0 2
0

40 M=2
 N=10

0 2
0

40 M=2
 N=1000

0 2
0

40 M=2
 N=100000

0 4
0

40 M=4
 N=10

0 4
0

40 M=4
 N=1000

0 4
0

40 M=4
 N=100000

0 8
0

40 M=8
 N=10

0 8
0

40 M=8
 N=1000

0 8
0

40 M=8
 N=100000

0 16
0

40 M=16
 N=10

0 16
0

40 M=16
 N=1000

0 16
0

40 M=16
 N=100000

Fig. 4. SNR in dB (line) and probabililty distribution (bars) as a function
of the number of descriptions received, when the probability of host failure
is ε = 1%.

Kbps, packet sizeP = 1250 bytes and a GOF sizeG = 1
second,M = 16 descriptions would be generated. However,
this does not necessarily mean that 16 distribution trees would
be needed. When the number of treesT is less thanM , M

T
descriptions would be distributed over each tree. For example,
with T = 8 trees, 2 descriptions would distributed over each
tree.

E. Analysis ofp(m)

The distributionp(m) can be used to optimize the multiple
description code by choosing the rate pointsR0, R1, . . . , RM

to minimize the expected distortion
∑M

m=0 p(m)D(Rm) sub-
ject to a packet length constraint. Now, we analyzep(m) in
the CoopNet setting. Suppose that the server encodes its AV
signal intoM descriptions as described above, and transmits
the descriptions downM different distribution trees, each
rooted at the server. Each of the distribution trees conveys
its description to allN destination hosts. Ordinarily, allN
destination hosts receive allM descriptions. However, if any
of the destination hosts fail (or leave the session), then all
of the hosts that are descendents of the failed hosts in the
mth distribution tree will not receive themth description.
The number of descriptions that a particular host will receive
depends on its location in each tree relative to the failed
hosts. Specifically, a hostn will receive themth description
if none of its ancestors in themth tree fail. This happens
with probability (1 − ε)An , whereAn is the number of the
host’s ancestors andε is the probability that a host fails
(assuming independent failures). If hosts are placed at random
sites in each tree, then the unconditional probability that any
given host will receive itsmth description is the average
θN = (1/N)

∑N
n=1(1− ε)An across all hosts in the tree. Thus

the number of descriptions that a particular host will receive is
randomly distributed according to a Binomial(M, θN) distri-
bution, i.e.,p(m) =

(
M
m

)
θm

N (1−θN)M−m. Hence for largeM ,
the fraction of descriptions received is approximately Gaussian
with meanθN and varianceθN (1 − θN). This can be seen
in Figure 4, which shows (in bars) the distributionp(m) for
various values ofM = 2, 4, 8, 16 andN = 10, 1000, 100000.

7

In the figure, to computeθN we assumed balanced binary trees
with N nodes and probability of host failureε = 1%. Note
that asN grows large, performance slowly degrades, because
the depth of the tree (and hence1− θN) grows like log2 N .

Figure 4 shows (in lines), the quality associated with each
p(m), measured as SNR in dB, i.e.,10 log10(σ2/D(Rm)),
as a function of the number of received descriptions,m =
0, 1, . . . , M . In the figure, to compute the rate points
R0, R1, . . . , RM we assumed an operational distortion-rate
function D(R) = σ22−2R/s, which is asymptotically typical
for any source with varianceσ2, whereR/s is expressed in
bits per symbol, and we assumed a packet length constraint
corresponding toR/s = 8. (For example, if the source pro-
ducess = 20K symbols per second, thenR = 160 Kbps and
the packet length constraint is given byP = GR/M , whereG
is the GOF duration andM is the number of descriptions.) We
can see that asN increases, the SNR decreases becauseAn

increases withN , resulting in lower probability of receiving
mth description. AndM = 16 has the highest possible SNR
because it has the least redundancy (Figure 5).

In this section we have analyzed optimizing the MDC
system to the unconditional distributionp(m) derived by
averaging over trees and hosts. Given any set of trees, however,
the distribution of the number of received descriptions varies
widely across the set of hosts as a function of their upstream
connectivity. By optimizing the MDC system to the uncondi-
tional distributionp(m), we are not minimizing the expected
distortion for any given host, but rather minimizing the sum
of the expected distortions across all hosts, or equivalently,
minimizing the expected sum of the distortions over all hosts.

F. MDC Evaluation

In this section, we evaluate FEC overhead as a function of
the number of trees and the tree failure rate, and we discuss
the choice of GOF duration. For FEC overhead, we use as a
measure of redundancy the ratio of the total number of source
plus parity bytes to the number of source bytes (i.e., the recip-
rocal of the channel coding rate). We assume that tree failures,
caused by client departures, dominate the packet loss, and that
the trees fail independently with probabilityθ. So, either all or
none of theM/T descriptions distributed over a tree for a GOF
are received. Hencep(m) =

(
T

mT/M

)
θT−mT/M (1 − θ)mT/M

for m a multiple of M/T and p(m) = 0 otherwise. In
Section V, we will considerp(m) constructed from real traces,
capturing both network loss and client dynamics, using our
scalable feedback mechanism.

Figure 5 shows the average redundancy as a function of tree
failure rate forT = 1, 2, 4, 8, 16. Correspondingly, Figure 6
depicts the packet layout for all 16 packets under various fail-
ure rates and numbers of trees. The light color spaces represent
FEC bytes. The thicker the light spaces are, the higher priority
and protection the source bytes below them receive. Except for
the 1-tree case, which permits no redundancy, and the 2-tree
case, which is relatively constrained combinatorially (in that
the packet layout permits only a mixture of redundancy factors
1× and 2×, corresponding to zero and 100% redundancy,

respectively), as the number of trees increases less redundancy
is needed. This is because the standard deviation ofp(m)
decreases as1/

√
T , making it less and less probable asT

grows that there can be a large fraction of descriptions lost. As
expected, as the tree failure rate increases, more redundancy
is needed.

0.9

1.1

1.3

1.5

1.7

1.9

2.1

2.3

2.5

2.7

0 5 10 15 20
Tree Failure Rate (%)

R
ed

u
n

d
an

cy
 F

ac
to

r

1 Tree
2 Trees
4 Trees
8 Trees
16 Trees

Fig. 5. Redundancy vs. Failure Rate vs. Number of Trees (1 second GOF)

1

16
T=1

 0
%

T=2 T=4 T=8 T=16

1

16

 2
%

1

16

 5
%

1

16

10
%

1

16

20
%

Fig. 6. Packet layout for each configuration of failure rate and number of
trees.

We also experimented with GOF size. For GOF sizes of
1 second and 2 seconds, we computed the peak signal-to-
noise ratio (PSNR) of the average distortion over time for
the Akiyo clip (Section V-A.2). (PSNR is computed from
the luminance distortionD asPSNR = 10Log10(2552/D).)
Figure 7 shows the difference between the PSNR values for
the two GOF sizes as the number of trees and the tree failure
rate are varied. We find that a 2-second GOF offers significant
quality improvement for the 1- and 2-tree case. Also, the
gap is wider for higher tree failure rates. However, as the
number of the trees increases, the advantage of the 2-second
GOF diminishes. For the 16 tree case, the qualities are nearly
identical. Note, however, that a GOF size of 2 seconds admits
M = 32 descriptions and hence upto 32 trees. The best quality
that a 2-second GOF can offer using 32 trees is somewhat

8

Video Prioritizer+Optimization Packetization DePacketization
Akiyo 8.8 ms 4.3 ms 4.1 ms
Stefan 3.6 ms 4.9 ms 4.0 ms
Foreman 11.1 ms 6.3 ms 5.7 ms

TABLE I

THE PERFORMANCE OFMDC SYSTEM COMPONENTS FOR1 SECOND

GOF)

better than that of a 1-second GOF using 16 trees, especially
at high loss rates.

PSNR(GOF2) - PSNR(GOF1)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 5 10 15 20

Tree Failure Rate (%)

P
S

N
R

 D
if

fe
re

n
ce

 (
d

B
)

1 Tree
2 Trees
4 Trees
8 Trees
16 Trees
32 vs 16

Fig. 7. Impact of GOF Size

A small GOF duration penalizes performance by tightly
constraining the variation in bit rate across frames in a GOF.
This is because the number of bits in each GOF must be
equal to a constant fixed by the number of descriptions and
the packet size. A large GOF duration, on the other hand,
permits a larger variation in bit rate across frames in the GOF,
but forces a larger delay. We have found that increasing the
GOF duration from 1 to 2 seconds only marginally increases
quality when the number of trees is larger than two. So we use
a 1-second GOF size in the experiments reported in Section V.

We implemented the MDC system in C#. We measured the
system performance on a 1.70 GHz desktop with 768 MB
of RAM, running Windows XP. Table I shows the average
running time of the MDC components for the three MPEG
test sequences (Table II) and a GOF size of 1 second.

IV. SCALABLE CLIENT FEEDBACK

The streaming server periodically gathers client reception
information to derivep(m), the probability distribution of re-
ceivingm descriptions. This information is fed into the MDC
optimizer (Figure 3), allowing adaptation to dynamic network
conditions and client population. Thep(m) distribution reflects
packet loss both due to client churn and network congestion.

Having reports sent directly from the clients to the server
would not scale to large numbers of clients. Instead, we use a
subset of the distribution trees for propagating and aggregating
client reports from the leaves to the root (i.e., the server).
(Note that the client reports flow in the opposite direction to

the data streams sent down the trees.) The use of more than
one distribution tree makes the feedback process resilient to
packet loss.

In more detail, during each report interval, a clientC records
a histogram of the number of descriptions received for each
GOF. Then, at the end of the report interval,C adds to this
histogram the histograms reported by each of its children
and sends the accumulated histogram in one report to its
parent. This report thus contains a histogram of the number of
descriptions received by all clients in the subtree rooted atC.
This happens recursively from the leaves to the server (i.e., the
root). Finally, the server normalizes the histogram to generate
p(m) and feeds it to the MDC optimizer (Figure 3).

V. PERFORMANCEEVALUATION

We now present our performance evaluation of CoopNet.
We first describe the data sets and the experimental method-
ology used for the evaluation, and then discuss the individual
experiments.

A. Methodology and Data Sets

We used a combination of flash crowd traces from MSNBC,
a major Internet news site, and real video data to do the
evaluation.

1) Flash Crowd Traces:The traces correspond to the flash
crowd that occurred at MSNBC on Sep 11, 2001. The traces
record accesses made by clients to a live 100 Kbps Windows
Media stream. The individual clients are identified using a
unique “player ID” reported by the Windows Media player.
(This helps get around the ambiguity introduced by NATs in
IP address-based client identification.) The trace reports the
time and duration for which each client tuned in.

We obtained about 6-hours worth of traces from MSNBC,
beginning at 18:25 UTC on Sep 11. In our study here, we
use a 1700-second section that showed significant variation
in client population. Figure 8 shows the number of clients
that simultaneously tuned in to the live stream as a function
of time. The peak number of simultaneous clients exceeded
17,000. (The dip around the 1000-second mark is apparently
due to a restart of the serving process.) The average rate of
node arrivals and departures was 180 per second while the
peak rate was about 1000 per second. Over 70% of the clients
remained tuned in to the live stream for less than a minute.
We suspect that the short lifetimes were because users were
frustrated by the poor quality the video stream during the flash
crowd. If the quality were improved (say using a CoopNet-like
approach to relieve the server), client lifetimes may well been
longer. This reduction in the churn rate would, in turn, have
improved the quality of the stream delivered by CoopNet.

In our simulations, we assume that clients stop participating
in CoopNet, and stop forwarding traffic, the moment they
depart. The departure may have been caused by a machine
crash or network disconnection, or a shift in the user’s focus
to a different stream or a different application that immediately
starts consuming the client’s limited bandwidth.

9

911 Trace: Number of Clients Vs. Time

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 200 400 600 800 1000 1200 1400 1600 1800

Time (Second)

o

f
N

o
d

es

Fig. 8. 911 Trace: Number of Clients Vs. Time

Sequence Motion-characteristics Texture-characteristics
Akiyo Static background, talking

head
Easy texture

Foreman High motion in the first
half, almost static in the
latter

Relatively easy texture in
the first half, relatively de-
tailed in the latter

Stefan High motion Detailed texture

TABLE II

CHARACTERISTICS OF THETHREE MPEG TEST SEQUENCES

2) Video Data: We do not have a recording of the actual
video data that was streamed out by CoopNet on Sep 11. In
its place, we use three different 10-second QCIF (176x144)
standard MPEG test sequences, each encoded at 10 frames
per second. Table II lists the characteristics of these video
clips.

For our trace-driven evaluation, we continuously replay a
clip to decouple variations in quality inherent in the video from
variations due to CoopNet dynamics. The quality of received
stream at a client is quantified using the Peak Signal-to-
Noise Ratio (PSNR), which is computed from the luminance
distortionD: PSNR = 10Log10(2552/D).

3) Broadband Network Measurements:Since we envision
many of the clients that participate in CoopNet to have
broadband connectivity (cable modem, DSL), we would like to
understand the nature of the network connectivity of such “real
world” hosts (as opposed to the well-connected hosts on aca-
demic or corporate networks). So we deployed measurement
agents (termed PeerMetric clients) at 25 residential broadband
hosts (13 on cable modem and 12 on DSL) spread over 9
geographically dispersed locations in the U.S. We conducted
both P2P and client-server measurements from these vantage
points. We present here a brief overview of the results relevant
to CoopNet; for more details on PeerMetric, please see [20].

We found that the median incoming bandwidth was 900
Kbps and the median outgoing bandwidth was 212 Kbps (these
were measured using TCP transfers to/from well-connected
servers). This asymmetry is consistent with anecdotal evidence
and previous measurement studies [34], and clearly indicates
that the outgoing bandwidth of peers is likely to be the
constraining factor in CoopNet.

The median P2P latency (ping time) we measured was 80

ms. But the median latency even among peers in the same
city (but possibly on different ISP networks) was about 40 ms,
which is an order of magnitude larger than the 3-4 ms ping
times we have measured between (well-connected) university
hosts in similar locations. This large latency even among
broadband hosts in the same location suggests that metrics
such as relative delay penalty used to evaluate the efficiency
of application-level multicast trees are likely to be poor even
for the most efficient trees. As noted in Section II-A, in our
work we lay only secondary emphasis on tree efficiency, in
part because of our focus on non-interactive streaming.

Nevertheless, we used the the broadband measurement data
to evaluate the effectiveness of the delay-coordinates based
proximity determination scheme described in Section II-B.3.
Each of the 25 hosts measured its delay-coordinates by pinging
a set of 10 geographically distributed and well-connected
landmark servers. We computed the coefficients of correlation
and rank correlation7 between the Euclidean distance between
the delay coordinates of a pair of broadband hosts and the
directly measured latency between them, and found these to
be quite high — 0.73 each.

If the root were to select the parent for a new node by
looking for the closest match in delay coordinates (as dis-
cussed in Section II-B.3), the question is how good would the
choice be. We found that the ping time to the delay coordinates
based choice was within 31% (factor of 1.31) of the optimal
50% of the time and within 74% (1.74X) of the optimal 90%
of the time. The 50th and 90th percentile marks for random
selection were much worse — 158% and 218% (2.58X and
3.18X), respectively, off the optimal. While these results are
encouraging, it would also be interesting to compare against
more sophisticated network distance estimation algorithms
such as [26].

4) Parameter Settings:The parameters for our simulation
experiments are set as listed in Table III. The stream bandwidth
and the outgoing bandwidth available at each node are set
to 160 Kbps each, which corresponds to the 70th percentile
of the outgoing bandwidth for the 25 broadband hosts we
measured. (In Section VI, we outline an approach for handling
heterogeneity in client bandwidth.) The bandwidth of the root
is set to 20 Mbps. WithT trees, the stream bandwidth per tree
is 160

T Kbps. So the total out-degree of a peer node (i.e., the
maximum aggregate number of children it can have across all
trees) isT and that of the root is125T .

The reporting interval is the frequency at which each node
feeds back packet loss information (p(m)) to its parent, using
the scalable feedback protocol discussed in Section IV. In our
experiments, we set the reporting interval to 1 second, which
is reasonable because the feedback packet is less than 100
bytes in size.

The repair interval is the time it takes for the tree to be
repaired after the departure of a node. By default, we set this

7The rank correlation only considers the ordering of the host-pairs based
on the metric of interest and hence may be more appropriate for the parent
selection question at hand.

10

Parameter Value
Root bandwidth 20 Mbps
Peer bandwidth 160 Kbps
Stream bandwidth 160 Kbps
Packet size 1250 bytes
GOF size 1 second
descriptions 16
trees 1, 2, 4, 8, 16
Reporting interval 1 second
Repair interval 1, 5, 10 seconds

TABLE III

SIMULATION PARAMETERS

to 1 second, but we also consider larger settings (5 and 10
seconds) in Section V-E.

Unless indicated otherwise, the results presented are for
the Akiyo (news reader) clip with our new deterministic tree
construction algorithm (Section II-B.2). We do present some
results for the other clips and for the old randomized tree
construction algorithm (Section II-B.1).

B. Impact of Number of Distribution Trees

We first consider the benefits of having multiple, diverse
distribution trees in the context of the the deterministic tree
construction algorithm. Figure 9 shows the PSNR (calculated
from the distortion averaged across all clients) as a function of
time for the cases of 1, 2, 4, 8, and 16 trees. We see that PSNR
improves as the number of trees increases. The jump is most
significant when we go from 1 tree (i.e., no path diversity) to
multiple trees.

The PSNR curves dip around the 800 second point for both
the 1-tree and 2-tree cases (and less noticeably for the other
cases). This corresponds to the peak in client population (Fig-
ure 8) and a high churn rate. A large client population means
deeper trees, which increases the likelihood of disruption due
to the departure of a node’s ancestor(s). Soon after that, PSNR
spikes up as the client population drops, to the point where
almost all nodes can directly become children of the root and
hence experience little disruption.

PSNR Vs. Time (Deterministic Algorithm)

5

10

15

20

25

30

35

0 250 500 750 1000 1250 1500
Time (Second)

P
S

N
R

 (
d

B
)

16 Trees
8 Trees
4 Trees
2 Trees
1 Tree

Fig. 9. PSNR (averaged across all clients) versus time for the deterministic
tree construction algorithm. The number of trees is varied from 1 to 16.

Figure 10 presents an alternative view of the same data.
For each GOF, we compute the distortion averaged across all
clients, and calculate the corresponding PSNR. We then plot

PDF of Per-GOF PSNR (Deterministic Algorithm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20 25 30

PSNR (dB)

P
d

f

16 Trees
8 Trees
4 Trees
2 Trees
1 Tree

Fig. 10. PDF of the per-GOF PSNR pdf for the deterministic tree construction
algorithm. The number of trees is varied from 1 to 16.

the PDF of these per-GOF PSNR values (recall from Table
III that the GOF size is set to 1 second, so there are 1700
GOFs during the 1700-second period). As the number of trees
increases, the peak of the PDF grows taller and moves to the
right, indicating an improvement in PSNR. We also note that
8 trees perform almost as well as 16 trees.

0 1
0

1 T=1

0 2
0

1 T=2

0 4
0

1 T=4

0 8
0

1 T=8

0 16
0

1 T=16

Fig. 11. Thep(m) distribution averaged over time for the deterministic
algorithm. The number of trees is varied from 1 to 16.

Figure 11 shows thep(m) distribution, averaged over the
1700 second interval, as the number of trees is varied from
1 through 16. The shift in the distribution to the right can
clearly be seen. With a small number of trees, a non-negligible
fraction of clients receive few or no descriptions, resulting in
poor quality. But with 8 or 16 trees, almost all the clients
receive most or all of the descriptions, thereby achieving high
quality. Thus the multiple diverse trees not only improve the
average quality across clients but also ensure that few clients
experience poor quality.

C. Comparison of the 3 Video Clips

Figure 12 shows a comparison of PSNRs of the three MPEG
test sequence video clips across 1700 seconds of the trace.
The wide gaps in PSNR among the three clips in the 8-tree
case result from the different levels of movement in the clips.
The Akiyo news reader sequence (the topmost curve) has
the least amount of movement and the fewest scene changes,
while the Stefan tennis player clip contains sharp changes in
movement and background. Given the same bit rate, the clips
with quick changing scenes that are harder to compress suffer
more in quality. In fact, the Stefan sequence with 8 trees is
barely viewable, while the Akiyo sequence has significantly
sharper images. The single tree cases for all sequences are not
viewable at all.

11

PSNR Comparison for 3 MPEG Test Sequence Video Clips

5

10

15

20

25

30

35

0 500 1000 1500

Time (Seconds)

P
S

N
R

 (
d

B
) Akiyo-8 Trees

Foreman-8 Trees
Stefan-8 Trees
Foreman-1 Tree
Stefan-1 Tree

Fig. 12. PSNR Comparison of 3 MPEG Test Sequence Video Clips with
Deterministic Algorithm

D. Randomized versus Deterministic Tree Construction

Next, we compare the performance of our old randomized
tree construction algorithm (Section II-B.1) and the new
deterministic algorithm (Section II-B.2). Figure 13 shows the
PDF of the per-GOF PSNR values for the two algorithms when
the number of trees is 8. The deterministic algorithm performs
significantly better because it is able to construct shorter and
also more diverse trees.

Comparison of Tree Algorithms

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 4 8 12 16 20 24 28 32 36

PSNR (dB)

P
D

F

Deterministic
Randomized
Perfect

Fig. 13. A comparison of different tree construction algorithms for the case
of 8 trees. The “perfect” tree construction algorithm refers to the ideal but
impractical case where the trees are constructed afresh from scratch (using
the deterministic algorithm) every second.

To quantify the penalty incurred due toevolutionary tree
construction (i.e., incremental updates as nodes join and leave),
we also consider the case where trees are constructed afresh
from scratch (using the deterministic algorithm) every second.
This is labelled as “perfect” tree construction in Figure 13.
Clearly, perfect tree construction is impractical because of the
overhead and disruption it would result in, but it provides a
useful basis for comparison. From Figure 13, we observe that
evolutionary tree construction does incur a significant penalty.
The reason is that a skewed sequence of joins and leaves
can result in unbalanced trees that are deeper than ideal. In
future work, we plan to consider augmenting evolutionary tree
construction with selective re-balancing to correct significant
skews in the trees, if and when they occur.

E. Impact of Repair Interval

Thus far we have assumed that it takes 1 second for a tree
to be repaired following the departure of a node. This may
be reasonable for graceful leaves, where the departing node

has the opportunity to notify the root of its intention to leave.
In this case, the entire repair process takes only 1-2 network
round-trips (Section II-B).

However, in the case of an ungraceful leave (say due to a
node or network failure), the departing node is unable to notify
the root or its children. The children of the departing node need
to infer the departure of their parent based on an upswing in the
packet loss rate or a complete stoppage of the packet stream.
With our settings of 16 descriptions, GOF size of 1 second,
and 8 trees, only 2 packets are sent down each tree every
second. So 1 second is likely too short a duration in which to
make a reliable determination of the parent’s departure.

Impact of Repair Interval

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

14 16 18 20 22 24 26 28 30 32

PSNR (dB)

P
D

F

100% Graceful (1 sec)
10% Ungraceful (5 sec)
10% Ungraceful (10 sec)
100% Ungraceful (5 sec)
100% Ungraceful (10 sec)

Fig. 14. Impact of the repair interval for deterministic tree construction with
8 trees. We consider repair intervals of 1, 5, and 10 seconds for all leaves.
We also consider the case where 90% of the leaves are graceful (with a repair
interval of 1 second) while the remain 10% have a repair interval of 5 or 10
seconds.

Therefore, we experiment with longer repair intervals — 5
seconds and 10 seconds — that provide a greater opportunity
for failure detection. Figure 14 shows that when all leaves are
ungraceful, with a repair interval of 5 or 10 seconds, quality
suffers significantly compared to the case where repairs only
take 1 second. The reason for this degradation is that the
longer the repair interval, the larger the number of concurrent
failures and so higher the likelihood of disruption to the stream
received by a client.

It might, however, be reasonable to consider the case where
the majority of leaves are graceful (with a repair interval of 1
second) and only a minority are ungraceful, with a longer 5
or 10 second repair interval. Figure 14 shows that when only
10% of the leaves are ungraceful, the quality is almost as good
as when all the leaves are graceful. The diversity provided by
the 8 distribution trees makes it unlikely for a client to suffer
from ungraceful leaves of its ancestors in all trees.

One might wonder why graceful leaves must result in any
disruption at all. The point is that graceful leaves may yet be
immediate. For instance, the leave may be triggered by the
user switching to a new stream/channel (e.g., channel surfing
during a major news event) or launching another, higher-
priority application that immediately starts consuming most or
all of a client’s bandwidth. Thus while the gracefully departing
node might have the opportunity to send a short notification
message to the root, it would not, in general, be able to
continue forwarding traffic from the old stream.

12

F. The Impact of Network Packet Loss

Thus far we have only considered distribution caused by
client departures and failures. We now evaluate the impact of
network packet loss by introducing packet loss at the (more
constrained) outgoing links of clients. We experimented with
three scenarios: (1) a loss rate of 0.01 on the outgoing links
of all clients; (2) a loss rate of 0.1 on the outgoing links of
all clients; (3) a loss rate of 0.1 on the outgoing links of 10%
of the clients chosen at random. Figure 15 shows the results.
While cases (1) and (3) both have the same average loss rate
over all outgoing links, case (3) has a better PSNR because
tree diversity is more effective when losses are distributed non-
uniformly. As expected, with a high loss rate of 0.1 on all the
outgoing links, PSNR degrades significantly.

Impact of Network Packet Loss

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

12 17 22 27 32

PSNR (dB)

P
D

F

Loss rate = 0
Loss rate = 0.1 for 10% of Nodes
Loss rate = 0.01
Loss rate = 0.1

Fig. 15. Impact of Network Packet Loss

G. MDC versus FEC

Pure FEC is a special case of MDC where all data units in
a GOF are treated with the same priority. FEC is ideal when
all clients experience similar loss rates, but adapts poorly to
wide variations in loss rate across clients. We compare FEC
to MDC with our trace using 8 trees and the deterministic
tree construction algorithm. For each GOF, we measure the
redundancy introduced by our adaptive MDC protocol, and
use roughly the same redundancy for FEC. For example, if
the redundancy of MDC (i.e., the ratio of source bytes plus
parity to source bytes) isr , then the number of redundancy
packets for pure FEC is set tof = round(M − M

r). The
FEC configuration is optimal when the loss rate experienced
by all clients is f

M . When the actual loss rate is lower than
this threshold, there is unnecessary FEC redundancy that could
have been used for more source bytes to improve the streaming
quality. When the loss rate is higher, no source bytes can be
recovered. MDC exactly addresses this inflexibility by using
priority encoding based on a loss distribution rather than a
single loss rate. From Figure 16, we can see that MDC yields
significantly better PSNR values and is more robust in the face
of high client churn.

VI. BANDWIDTH HETEROGENEITY ANDCONGESTION

CONTROL

Thus far we have assumed a common stream bit rate that all
clients are capable of receiving and forwarding. However, in

MDC Vs. FEC

10

15

20

25

30

35

0 500 1000 1500

Time (Second)

P
S

N
R

 (
d

B
)

MDC
FEC

Fig. 16. MDC Vs. FEC

practice client connectivity is likely to be heterogeneous, with
a possibly wide range in bandwidths. It is desirable to enable a
client with higher bandwidth to receive (and forward) a higher
bandwidth stream of better quality. The bandwidth available to
a client could also fluctuate with time, say due to competition
from other traffic. Thus we need a solution that accommodates
bandwidth heterogeneity and congestion control.

An elegant framework proposed in the literature is based
on layered coding [24]. The idea is to encode the streaming
content into layers so that a client can (dynamically) choose
how many layers to subscribe to depending on the currently
available bandwidth. Inspired by this, we briefly discuss a
layered MDC construction that we have developed, and then
outline a novel congestion control framework that exploits the
tree diversity provided by CoopNet.

A. Layered MDC

The added flexibility afforded by MDC over layered coding
requires redundancy, as we have seen from the construction in
Section III. This flexibility is needed in CoopNet, where node
failures and packet losses do not come in any particular order.
When dealing with bandwidth heterogeneity and congestion,
however, it is possible to control the sequence in which
descriptions are added and subtracted, and for these purposes
layered coding should be adequate and more efficient than
MDC since no redundancy is incurred.

Therefore, in CoopNet, to deal with bandwidth heterogene-
ity and congestion in addition to node failure and packet loss,
we have developed a novellayered MDC scheme [12] in
which the descriptions are partitioned into layers such that
if there is a choice, descriptions in the least important layers
are dropped first. For simplicity, here we concentrate on two
layers. Figure 17 shows the quality of MDC versus Layered
MDC as a function of the number of decodable descriptions,
when there are a total of 32 descriptions: 16 in each layer.
Layered MDC outperforms conventional MDC by a large
margin when there are 24 or fewer decodable descriptions, and
is close or identical in performance under better conditions.
Construction and optimization of Layered MDC is the subject
of [12].

13

0 4 8 12 16 20 24 28 32
0

5

10

15

20

25

30

35

40

number of decodable descriptions

P
S

N
R

 (
dB

)

Fig. 17. Quality of MDC (dotted) vs. Layered MDC(solid), as a function of
number of decodable descriptions.

B. Congestion Control Framework

For the purposes of congestion control (as well as bandwidth
heterogeneity), the 16 “base” layer descriptions are distributed
by a set ofT1 trees, and the 16 “enhancement” layer descrip-
tions are distributed by a set ofT2 trees. Each high-bandwidth
client is fertile in exactly one base layer tree and exactly one
enhancement layer tree. Low-bandwidth clients appear in base
layer trees only.

When congestion is encountered in a high-bandwidth client
(manifested as packet loss), the appropriate reaction depends
on the location of the congested link(s). We consider three
cases:

1) Congestion at or near the outgoing link of a node:
This calls for the node to drop packets to reduce its
outgoing bandwidth requirements.8 The children that see
an increased packet loss should request the root to assign
them a new parent.

2) Congestion at or near the incoming link of a node:
The affected node should alleviate the congestion by
dropping incoming streams from one or more parents
(in the manner of receiver-driven layered multicast [24]).
This would also entail shedding the children that were
receiving a now-discontinued stream from the congested
node.

3) Congestion in the “middle”: The affected nodes should
request the root to assign them new parents with a view
to routing around or avoiding the point(s) of congestion.

In the context of broadband hosts in the today’s Internet,
we would expect cases #1 and #2 to dominate, given the
constrained last-hop bandwidth (especially in the outgoing
direction from a node).

There are three interesting questions that arise: (a) how
could nodes determine where the point of congestion is
located, (b) in case #1, how should a node pick children to
shed, and (c) in case #2, how should a node pick parents to
shed.

To determine the location of the point of congestion, nodes
could exploit the diversity inherent in CoopNet’s distribution

8Per our discussion in Section I, the node should eventually also scale back
the incoming bandwidth it consumes to match the reduced outgoing bandwidth
it contributes to the CoopNet system.

trees. If a node experiences significant packet loss in most or
all trees, it could reasonably conclude that the congestion is
occurring at or close to its incoming link. If a node receives
packet loss complaints from most or all of its children, it could
reasonably conclude that congestion is occurring at or near its
outgoing link.

When a node needs to shed traffic because of congestion on
its outgoing link, it should selectively drop children receiving
enhancement layer descriptions. Such “parent-driven” selec-
tive dropping should result in better quality than a policy of
randomly dropping packets across all children.

Finally, when a node needs to shed incoming streams, it
should drop base layer parents last. Of the enhancement layer
parents, it should drop the stream it sends to its children (in
the fertile tree) last. Such “child-driven” selective dropping
should likewise result in better quality than randomly dropping
incoming streams.

The parent- and child-driven congestion control scheme
elegantly addresses a key difficulty in using layered coding in
today’s Internet, viz., the mismatch between the prioritization
of the layers and the lack of (widespread) support for service
differentiation in the Internet.

VII. R ELATED WORK

The literature relevant to our work spans multiple areas. We
discuss work on application-level multicast and that on source
coding and path diversity in turn.

A. Application-level Multicast

The deployment of IP multicast [16], [17], especially at
the inter-domain level, has been slow due to technical and
operational concerns [14]. This has spurred the development
of application-level multicast schemes where end-hosts (clients
and/or servers) perform the role of “routers”.

Narada [14] and Scattercast [11] build application-level
meshes formed by connections among a subset of node pairs.
The links in the mesh are monitored periodically to improve
the quality of the mesh. An efficient application-level multicast
tree is formed by running a reverse path forwarding algorithm
on the mesh. The choice of link metrics depends on the
application. For instance, [13] proposes a combination of
bandwidth and latency metrics for a conferencing application.

It is interesting to note that the the set of links spanned
by the multiple trees in CoopNet can also be viewed as a
mesh (although not as carefully optimized as in Narada or
Scattercast). However, unlike CoopNet, Narada and Scattercast
use a single optimized tree (per source), so the benefits of
path diversity are not (fully) realized. Also, these protocols are
clearly not designed for large groups (for instance, node arrival
and departure information is disseminated to all members of
the mesh). However, these could be used in the context of
CoopNet for communication among a small, stable set of
distributed servers.

An alternative approach is NICE [6], which uses a hierarchy
to scale better than a mesh-based protocol. However, NICE is
not optimized for a high rate of node churn. Joins require

14

O(log(N)) network round-trips, whereN is the size of the
tree, and disruptions in the tree due to node failures can take
up to 30 seconds to heal. In contrast, CoopNet exploits the
availability of a stable and resourceful server to optimize these
operations.

In ALMI [30] and Overcast [19], a central node coordinates
tree management, as in CoopNet. In ALMI, a centralized
session controller gathers peer-to-peer ping data to perform
a bounded-degree minimum spanning tree computation and
periodically reorganize the tree. This procedure is not well-
suited to the CoopNet scenario because the minimum spanning
tree computation is not necessarily consistent with the desire
for low tree depth and high tree diversity. Also, periodic
reorganizations may be too disruptive for large trees.

In Overcast, the root node plays a central role in tree
management. However, a key difference compared to CoopNet
arises because Overcast is intended for use in the context of a
dedicated set of infrastructure nodes that is relatively stable. So
Overcast strives to build deep distribution trees that maximize
the bandwidth from the root to any node. In contrast, CoopNet
seeks short trees to minimize the likelihood of disruption.

Recent work has leveraged the scalable routing substrate
provided by distributed hash tables (DHTs) to build efficient
multicast trees (e.g., Bayeux [39], Scribe [10]). It is unclear
how well these perform in the face of a high rate of node churn,
especially since the data structures needed for efficient routing
are updated lazily. Furthermore, a fundamental difference
compared to CoopNet is that in these systems nodes can be
called on to forward traffic even if they are not themselves
interested in the data.

All of the above pieces of work differ from CoopNet in that
they seek to build a single distribution tree, so issues such as
tree diversity are not a consideration.

The only piece of work (besides our previous workshop
paper [28]) to our knowledge that advocates the use of multiple
distribution trees is SplitStream [9]. SplitStream uses multiple
trees to evenly distribute forwarding load across the nodes.
This is accomplished by making a node a leaf in all but one
tree. We leverage this insightful observation in our new, deter-
ministic CoopNet tree construction algorithm (in contrast to
our earlier randomized algorithm [28]). However, SplitStream
and CoopNet differ in a fundamental way. SplitStream is built
on top of the distributed Scribe protocol [10] discussed above.
Therefore, it is assumed that nodes will be available to forward
traffic even when they are not interested in it. This facilitates
the construction of a diverse set of trees since nodes can be
retained at specific positions in the trees long after they have
“departed”. In fact, whether a node is called upon to forward
traffic depends only on its node ID and the multicast group
ID. Therefore, it is possible that a node may be assigned
more children than it can handle. [9] presents a procedure to
address this issue. However, this may sacrifice interior-node-
disjointness.

CoopNet, on the other hand, has to construct such trees
incrementally, i.e., as nodes arrive and depart one by one. This
presents a challenge because nodes that arrive early would

tend to be at the higher levels in all trees (unless we resort
to large-scale and potentially disruptive reorganizations of the
trees to move some of the early members down the tree). Our
deterministic tree construction algorithm attempts to construct
short and diverse trees with minimal disruption (only sterile
nodes, with no descendants, get pushed down the tree). The
issue of limiting the out-going bandwidth requirement of a
node (which is a key concern in SplitStream) is solved trivially
in CoopNet because the number of children of a node is
explicitly controlled by the omniscient root. Furthermore, our
deterministic tree construction algorithm is able to guarantee
the disjointness of the set of interior nodes across the trees.

B. Source Coding and Path Diversity

Several researchers have advocated the use of source coding,
possibly in conjunction with path diversity, to make data
transfer robust to packet loss.

Digital Fountain [8] uses Tornado codes (a form of erasure
coding) coupled with multiple multicast groups to distribute
files scalably to a heterogeneous population of clients. The
source transmits the coded blocks repeatedly and clients tune
in until they have received a sufficient number of blocks
for decoding. Such repeated transmissions, however, are not
feasible in our live streaming context.

Byers et al. [7] use Digital Fountain erasure coding tech-
nique and parallel downloads to take advantage of lateral
bandwidth between peers (like P2P file sharing systems like
KaZaa [1] do). The use of multiple trees in CoopNet also
results in a form of parallel download, but the goal is to gain
robustness rather than speed and the focus is on live streaming
content rather than files. Also, as discussed in Section V-
G, MDC offers the advantage of more graceful degradation
compared to FEC.

The use of multiple description coding in conjunction with
multipath routing in (telephone) networks dates back to the late
1970s [18]. The application of this approach in the context
of the Internet has received increasing attention in recent
years. Apostopolous et al. [5] advocate the use of MDC
and path diversity for on-demand streaming from a content
distribution network. The idea is for the client to request
distinct descriptions from two or more server nodes (akin to
parallel downloads). It is unclear, however, to what extent path
diversity and MDC will help in this context given that the last
hop to the client rather than the server’s network connection is
often the bottleneck. In contrast, in a P2P setting like CoopNet,
the constrained upstream bandwidth at peers and the transience
of the peers makes path diversity and MDC advantageous.

Lee et al. [21] present a framework where feedback from an
AIMD congestion control protocol (in the form of transmission
rate and packet loss profile) is used to optimize an MDC coder.
This is related to the MDC adaptation in CoopNet. However,
CoopNet focuses on a multicast setting rather than unicast,
with a fixed transmission rate (for each layer). In a different
paper [31], the same authors present some preliminary ideas
on applying MDC in a multicast setting. Their proposal is to
have application-level proxies that re-encode the stream placed

15

at bottleneck links. However, such an optimal placement of
proxies may be infeasible when the last-hop links to the
clients are the bottlenecks. Still, an interesting question for
future investigation is how an approach based on re-encoding
streams to match the bandwidth of a client group compares
with the layered approach advocated by McCanne et al. [24]
and outlined in Section VI.

VIII. C ONCLUSION

In this paper, we have considered the problem of support-
ing resilient live streaming using application-layer multicast
layered on top of an inherently unreliable set of peers. A
motivating scenario is alleviating a flash crowd at a live
streaming server by recruiting clients to help forward traffic.
We make minimal assumptions about the willingness of a
peer to contribute bandwidth. In particular, we assume that
a client will only help forward a stream while it is interested
in receiving the stream.

Our solution, CoopNet, provides resilience by introducing
redundancy both in network paths (via multiple, diverse dis-
tribution trees) and in data (using MDC). A centralized tree
management protocol is used to construct short and diverse
trees and support quick joins and leaves. A scalable feedback
mechanism is used to drive an adaptive MDC optimization
algorithm. We have evaluated CoopNet using flash crowd
traces from a busy news site couple with real video data.
Our results indicate that multiple trees provide a significant
improvement in the video quality received by clients. We also
found that MDC outperforms FEC in the face of wide variation
in loss rate across clients.

We also presented a novel parent- and child-driven con-
gestion control scheme that takes advantage of our layered
MDC construction and the tree diversity inherent in CoopNet.
In ongoing work, we are investigating these ideas further,
including a comparative analysis of the benefits of layering
versus streams separately optimized for different bandwidth
levels.

ACKNOWLEDGEMENTS

We are grateful to Steven Lautenschlager, Ted McConville,
and Dave Roth for providing us the MSNBC streaming media
traces. We would also like to thank Steve Zabinsky for his help
with the MDC implementation and Karthik Lakshminarayanan
for his work on PeerMetric.

REFERENCES

[1] KaZaa. http://www.kazaa.com.
[2] MSNBC. http://www.msnbc.com.
[3] A. Albanese, J. Bl̈omer, J. Edmonds, M. Luby, and M. Sudan. Priority

Encoding Transmission.IEEE Trans. Information Theory, 42:1737–
1744, November 1996.

[4] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. Morris.
Resilient Overlay Networks. InProcȦCM SOSP, October 2001.

[5] J. Apostolopoulos, T. Wong, W. Tan, and S. Wee. On Multiple
Description Streaming with Content Delivery Networks. InProcİEEE
INFOCOM, June 2002.

[6] S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Scalable Applica-
tion Layer Multicast. InProc. ACM SIGCOMM, August 2002.

[7] J. W. Byers, J. Considine, M. Mitzenmacher, and S. Rost. Informed
Content Delivery Across Adaptive Overlay Networks. InProc. ACM
SIGCOMM, August 2002.

[8] J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege. A Digital
Fountain Approach to Reliable Distribution of Bulk Data. InProc.
ACM SIGCOMM, September 1998.

[9] M. Castro, P. Druschel, A-M. Kermarrec, A. Nandi, A. Rowstron,
and A. Singh. SplitStream: High-bandwidth Content Distribution in
a Cooperative Environment. InProc. IPTPS, February 2003.

[10] M. Castro, P. Druschel, A-M. Kermarrec, and A. Rowstron. SCRIBE:
A Large-scale and Decentralized Application-level Multicast Infrastruc-
ture. IEEE JSAC, 20(8):100–110, October 2002.

[11] Y. Chawathe. Scattercast: An Architecture for Internet Broadcast
Distribution as an Infrastructure Service. PhD thesis, U.C. Berkeley,
December 2000.

[12] P. A. Chou, H. J. Wang, and V. N. Padmanabhan. Layered Multiple
Description Coding. InProc. Packet Video Workshop, April 2003.

[13] Y. Chu, S. G. Rao, S. Seshan, and H. Zhang. Enabling Conferencing
Applications on the Internet using an Overlay Multicast Architecture.
In Proc. ACM SIGCOMM, August 2001.

[14] Y. Chu, S. G. Rao, and H. Zhang. A Case for End System Multicast.
In Proc. ACM SIGMETRICS, June 2000.

[15] G. Davis and J. Danskin. Joint source and channel coding for image
transmission over lossy packet networks. InConf. Wavelet Applications
to Digital Image Processing. SPIE, August 1996.

[16] S. Deering. Multicast Routing in Internetworks and Extended LANs. In
Proc. ACM SIGCOMM, August 1988.

[17] S. Deering, D. Estrin, D. Farinacci, V. Jacobson, C. Liu, and L. Wei.
An Architecture for Wide-Area Multicast Routing. InProc. ACM
SIGCOMM, August 1994.

[18] V. K. Goyal. Multiple Description Coding: Compression Meets the
Network. IEEE Signal Processing Magazine, pages 74–93, September
2001.

[19] J. Jannotti, D. Gifford, K. L. Johnson, M. F. Kaashoek, and J. W.
O’Toole. Overcast: Reliable Multicasting with an Overlay Network.
In Proc. OSDI, October 2000.

[20] K. Lakshminarayanan and V. N. Padmanabhan. Network Performance
of Broadband Hosts: Measurements & Implications. Technical Report
MSR-TR-2003-15, Microsoft Research, Redmond, WA, March 2003.

[21] K. W. Lee, R. Puri, T. Kim, K. Ramchandran, and V. Bharghavan. An
Integrated Source Coding and Congestion Control Framework for Video
Streaming in the Internet. InProc. IEEE INFOCOM, March 2000.

[22] W. LeFebvre. CNN.com: Facing a World Crisis. Invited talk at the
USENIX Technical Conference, June 2002.

[23] Z. Lu and W. A. Pearlman. An Efficient, Low-complexity Audio
Coder Delivering Multiple Levels of Quality for Interactive Applications.
In Proc. Workshop on Multimedia Signal Processing, pages 529–534.
IEEE, December 1998.

[24] S. R. McCanne, V. Jacobson, and M. Vetterli. Receiver-driven Layered
Multicast. In Proc. ACM SIGCOMM, August 1996.

[25] A. E. Mohr, E. A. Riskin, and R. E. Ladner. Unequal Loss Protection:
Graceful Degradation of Image Quality over Packet Erasure Channels
through Forward Error Correction.IEEE J. Selected Areas in Commu-
nications, 18(6):819–829, June 2000.

[26] T. S. E. Ng and H. Zhang. Predicting Internet Network Distance with
Coordinates-Based Approaches. InProc. IEEE INFOCOM, June 2002.

[27] V. N. Padmanabhan and L. Subramanian. Determining the Geographic
Location of Internet Hosts. InProc. ACM SIGCOMM, August 2001.

[28] V. N. Padmanabhan, H. J. Wang, P. A. Chou, and K. Sripanidkulchai.
Distributing Streaming Media Content Using Cooperative Networking.
In Proc. NOSSDAV, May 2002.

[29] W. A. Pearlman, B.-J. Kim, and Z. Xiong. Embedded Video Subband
Coding with 3D SPIHT. In P. Topiwala, editor,Wavelet Image and Video
Compression. Kluwer, 1998.

[30] D. Pendarakis, S. Shi, D. Verma, and M. Waldvogel. ALMI: An
Application Level Multicast Infrastructure. InProc. USITS, March 2001.

[31] R. Puri, K. W. Lee, K. Ramchandran, and V. Bharghavan. Application
of FEC-based Multiple Description Coding for Internet Video Streaming
and Multicast. InProc. Packet Video Workshop, May 2000.

[32] R. Puri and K. Ramchandran. Multiple Description Source Coding
Through Forward Error Correction Codes. InProc. Asilomar Conference
on Signals, Systems, and Computers. IEEE, October 1999.

[33] S. Ratnawamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A
Scalable Content-Addressable Network. InProc. ACM SIGCOMM,
August 2001.

[34] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A Measurement Study
of Peer-to-Peer File Sharing Systems. InProc. MMCN, January 2002.

16

[35] V. Stankovíc, R. Hamzaoui, and Z. Xiong. Packet Loss Protection of
Embedded Data with Fast Local Search. InProc. Int’l Conf. Image
Processing. IEEE, September 2002.

[36] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan.
Chord: A Scalable Peer-To-Peer Lookup Service for Internet Applica-
tions. In Proc. ACM SIGCOMM, August 2001.

[37] S. B. Wicker. Error Control Systems for Digital Communication and
Storage. Prentice Hall, 1995.

[38] F. Wu, S. Li, and Y. Zhang. A Framework for Efficient Progressive Fine
Granularity Scalable Video Coding.IEEE CSVT, 11(3):332–344, March
2001.

[39] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz, and J. D.
Kubiatowicz. An Architecture for Scalable and Fault-tolerant Wide-Area
Data Dissemination. InProc. NOSSDAV, April 2001.

17

