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1 Introduction

Efficient volume computation in high dimension is an important question both theoretically and
practically. The first polynomial time randomized algorithm to compute the volume of a convex
body in Rn was given by Dyer, Frieze and Kannan in their pathbreaking paper [3]. A very
high power of the dimension n (about 26) occurred in the running time bound of this algorithm,
but subsequent improvements brought the exponent down to 5 [7]. In this paper, we further
improve the running time to O∗(n4) (where the asterisk means that we suppress factors that are
logarithmic in n). The algorithm uses O∗(n) points for its computations, and in this sense it is
nearly optimal, since any algorithm must use Ω(n) points.

The main ingredient of our algorithm is a method that can be viewed as a variation of simulated
annealing. This method was briefly described in [6], but it was considered as a generalization of
the volume computation algorithm rather than a tool for improvement.

Simulated annealing, introduced by Kirkpatrick et al. [5], is a general-purpose randomized
search method for optimization. It does a random walk in the space of possible solutions, gradually
adjusting a parameter called ”temperature”. At high temperature, the random walk converges
fast to the uniform distribution over the whole space; as the temperature drops, the stationary
distribution becomes more and more biased towards the optimal solutions. Simulated annealing
often works well in practice, but it is notoriously difficult to obtain any theoretical guarantees for
its performance.

To explain the connection between volume computation and simulated annealing, let us re-
view the common structure of previous volume algorithms. All these algorithm reduce volume
computation to sampling from a convex body, using the “Multi-Phase Monte-Carlo” technique.
One constructs a sequence of convex bodies K0 ⊆ K1 ⊆ · · · ⊆ Km = k, where K0 is a body whose
volume is easily computed, and one estimates the ratios vol(Ki−1)/vol(Ki) (i = 1, . . . , m) by
generating sufficiently many independent uniformly distributed random points in Ki and counts
what fraction of them falls in Ki−1. The generation of random points in Ki is done by some
version of the Markov chain method (lattice walk, ball walk, hit-and-run), whose details can be
ignored for the moment.

Of course, one would like to choose the number of phases, m, to be small. Any saving in the
number of phases enters as its square in the running time: not only through the reduced number
of iterations but also through the fact that we can allow larger errors in each phase, which means
a smaller number of sample points are needed.

However, reducing the number of phases is constrained by the fact that in order to get a
sufficiently good estimate for the ratio vol(Ki−1)/vol(Ki), one needs about mvol(Ki)/vol(Ki−1)
random points. It follows that the ratios vol(Ki)/vol(Ki−1) must not be too large; since the
volume ratio between vol(K) and vol(K0) is nΩ(n) in the worst case for any conceivable choice of
K0, it follows that m has to be Ω(n) just to keep the ratios vol(Ki)/vol(Ki−1) polynomial size.
It turns out that the best choice is to keep these ratios bounded; this can be achieved e.g. if
K0 = B is the unit ball and Ki = K∩(2i/nB) for i = 1, 2, . . . ,m = Θ(n log n). (After appropriate
preprocessing, one can assume that B ⊆ K ⊆ O(

√
n)B.) Reducing m any further (i.e., o(n))

appeared to be a fundamental hurdle.
On the other hand, volume computation is a special case of integration. Since the paper of

Applegate and Kannan [1], the flexibility obtained by extending the problem to the integration
of special kinds of functions (mostly logconcave) has been exploited in several papers. Mostly
integration was used to dampen the boundary effects; we use it in a different way. Instead of
a sequence of bodies, we construct a sequence of functions f0 ≤ f1 ≤ · · · ≤ fm that “connect”
a function f0 whose integral is easy to find to the characteristic function fm of K. The ratios
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(
∫

fi−1)/(
∫

fi) can be estimated by sampling from the distribution whose density function is
proportional to fi, and averaging the function fi−1/fi over the sample points.

If the fi are characteristic functions of the Ki, then this is just the standard algorithm. The
crucial gain comes from the fact that the number of sample points needed in each phase is smaller
if the fi are smooth. We use functions of the form f(x) = e−x0/T , where x0 is the first coordinate
of x (we’ll come back to the preprocessing of K that is needed). For this choice, we’ll only need
O∗(

√
n) phases, and O∗(

√
n) sample points in each phase.

On two points this new approach brings in new difficulties. First, we have to sample from
distributions that are not uniform over K. Various methods for sampling have been extended
to logconcave distributions, and indeed our density functions are logconcave; but they do not
satisfy any smoothness conditions, and so we have to use recent results [8, 9, 10] that give
sampling algorithms with O∗(n3) steps (oracle calls) per sample point, without any smoothness
assumption.

The other difficulty is that these sampling algorithms need a “warm start”, i.e., they cannot be
started from a fixed point but from a random point that is already almost uniformly distributed,
in the sense that their density function (relative to the stationary distribution) is bounded. In the
standard versions of the volume algorithm, this could be guaranteed by using the sample points
generated in the preceding phase as starting points for the new phase. In our case this cannot
be done, since these densities are not bounded. Instead, we use recent results from [10], which
enable us to do efficient sampling if we only know that the L2 norm of the starting density is
bounded.

2 Outline of volume algorithm

2.1 Sampling

In our algorithm, we use as a black box a sampling algorithm (or sampler for short), which
samples from a distribution supported on a convex body K, whose density is proportional to a
given exponential function e−aT x; the algorithm needs a starting point X ∈ K.

Convex Body Sampler:

• Input: a convex body K ∈ Rn, a vector a ∈ Rn, a starting point
X ∈ K, a warm start measure M , and an accuracy parameter ε > 0;

• Output: a point Y ∈ K.

A sampler we can use was given in [10], using an implementation of the hit-and-run algorithm.
We consider the density function

f(x) =
e−aT x

∫
K e−aT y dy

and the corresponding probability measure µf . We make the following assumptions about the
data:

(A1) Every level set L of f contains a ball with radius Ω(µf (L)).
(A2)

∫
K f(x)|x|2 dx = O(n).
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(A3) The starting point X is a random point from a distribution σ whose L2-norm with
respect to µf is at most M . This norm is defined as

‖σ‖ =
∫

K

dσ

dµf
dσ =

∫

K

(
dσ

dµf

)2

dµf .

Then the total variation distance of the output distribution from µf is less than ε. Further-
more, the number of calls on the membership oracle is

O(n3 ln5 Mn

ε2
).

If M is polynomially bounded in n (as it will be in our case), this bound is O∗(n3). The number
of other arithmetic operations is O∗(n5), on numbers with a polylogarithmic number of digits.
As in all previous algorithms, it is a factor of O∗(n2) more than the oracle complexity.

We remark that (A1) and (A2) hold if f is in isotropic position. But it will be important for
us that these weaker conditions are sufficient.

2.2 Rounding the body

We assume that K contains the unit ball B and is contained in the ball DB of radius D about the
origin, where D = O(

√
n). This can be achieved by applying an appropriate affine transformation:

we generate O(n log2 n) approximately uniformly distributed random points in K, and bring these
points (more exactly, the uniform measure on this finite set) into isotropic position. By results
of Bourgain [2] and Rudelson [11], this brings the body into isotropic position. If we replace the
body by its intersection with the ball DB, then we only loose a o(1) fraction of the volume, and
so we have achieved the well-rounded position.

The outline of this is as follows. Assume that we begin with a point that is the center of
a unit ball B contained in K. We consider a sequence of convex bodies Ki = K ∩ 2iB. By
the results of [10], we can get O∗(n) samples from Ki in O∗(n4) steps (the first point in O∗(n4)
steps and the remaining in O∗(n3) each). We use these to put Ki in near-isotropic position. The
number of iterations is O(log D) and so the overall complexity is O∗(n4). In [7], the rounding
was interlaced with volume computation. This can be done with the current algorithm also, but
it will be conceptually easier to think of it as a preprocessing step. We don’t go into more details
in this abstract.

2.3 The pencil construction

Let K be the given body in Rn and ε > 0. Let C denote the cone in Rn+1 defined by

C = {x ∈ Rn+1 : 2|x| ≤ x0}

(where x = (x0, x1 . . . , xn)T). We define a new convex body K ′ ∈ Rn+1 as follows:

K ′ =
(
[0, 2D]×K

)
∩ C.

In other words, K ′ is an (n+1)-dimensional “pencil” whose cross-section is K, which is sharpened
and its point is at the origin. Note that by the definition of D, the part of K ′ in the halfspace
x0 ≥ D is inside C and so it is a cylinder over K, while the part of K ′ in the halfspace x0 ≤ 1
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is a cone CB over the unit ball. See Fig. 1 in the appendix for an illustration. It is trivial to
implement a membership oracle for K ′.

The sharpening took less than half of the volume of the pencil away. Hence if know the volume
of K ′, it is easy to estimate the volume of K by generating 1/ε2 sample points from the uniform
distribution on [0, 2D] ×K and then counting how many of them fall into K ′. Note that K ′ is
also well-rounded (if we shift the origin to the point (D, 0)).

2.4 The multi-phase Monte-Carlo

For each real number a > 0, let

Z(a) =
∫

K′
e−ax0 dx

where x0 is the first coordinate of x. For a ≤ ε2/D, an easy computation shows that have
(1− ε)vol(K ′) ≤ Z(a) ≤ vol(K), so it suffices to compute Z(a) for such an a. On the other hand,
for a ≥ 2n the value of Z(a) is essentially the same as the integral over the whole cone, which is
easy to compute:

Z(a) ≤
∫

C
e−ax0 dx =

∫ ∞

0
e−attnπn dt = n!πna−(n+1).

and

Z(a) ≥
∫

CB

e−ax0 dx =
∫ 1

0
e−attnπn dt > (1− ε)

∫ ∞

0
e−attnπn dt

by standard computation.
So if we select a sequence a0 > a1 > · · · > am for which a0 ≥ 2n and am ≤ ε2/D, then we can

estimate vol(K ′) by

Z(am) = Z(a0)
T−1∏

i=0

Z(ai+1)
Z(ai)

.

Next we have to estimate the ratios

Ri =
Z(ai+1)
Z(ai)

. (1)

Let µi be the probability distribution over K ′ with density proportional to e−aix1 , i.e.

dµi(x)
dx

=
e−aix1

Z(ai)
.

Let X be a random sample point from µi, and let Y = e(ai−ai+1)X0 . It is easy to verify that Y
has expectation Ri:

E(Y ) =
∫

K′
e(ai−ai+1)x0 dµ(x) =

∫

K′
e(ai−ai+1)x0

dµi(x)
dx

dx

=
∫

K′
e(ai−ai+1)x0

e−aix1

Z(ai)
dx =

1
Z(ai)

∫

K′
e−ai+1x0 dx =

Z(ai+1)
Z(ai)

.

So to estimate the ratio Ri, we draw random samples X1, . . . , Xk from µi, and compute the
average

Wi =
1
m

m∑

j=1

e(ai−ai+1)(X
j)0 .
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Sample points from µ0 are easy to get: select a random positive real number X0 from the expo-
nential distribution with density proportional to e−2nx, and a uniform random point (Y1, . . . , Yn)
from the unit ball B. If X = (X0, X0Y1, . . . , X0Yn) /∈ K ′, try again; else, return X.

In order to get appropriate sample points from µi (i > 0), we have to make a simple affine
transformation. Let γi = max(1, ai/

√
n), and

(Tix)j =

{
γix0 if j = 0,

xj otherwise.

The algorithm shown in the box takes as input the dimension n of K, a sampling oracle for
µi (i = 1, . . . , m), and an accuracy parameter ε. Its output Z is an estimate of the volume of K ′,
correct to within a 1± ε

2 factor, with high probability.

Volume algorithm:

(V1) Set m = 2d√n ln n
ε e, k = 8

ε2

√
n ln n

ε , δ = n−10 and

ai = 2n(1− 1√
n

)i for i = 1, . . . , m.

(V2) For i = 0, 1, . . . , m, do the following.

— Run the sampler k times for convex body TiK, with exponential function
e−aix0/γi , error parameter δ, and (for i > 0) starting points TiX

1
i−1, . . . TiX

k
i−1.

Apply T−1
i to the resulting points to get points X1

i , . . . , Xk
i .

— Using these points, compute

Wi =
1
k

k∑

j=1

e(ai−ai+1)(X
j
i )0 . (2)

(V3) Return
Z = n!πna−(n+1)W1 . . .Wm

as the estimate of the volume of K ′.

The sequence of sample points (Xj
0 , X

j
2 , . . . , X

j
m) for a fixed j is called a thread. Note that

the threads are independent.
The analysis of the algorithm will need the verification of a number facts. Specifically, we are

going to show:

1. The variance of the function e(ai−ai+1)x0 relative to the distribution µi is small enough so
that k sample points suffice to estimate its mean (Lemma 4.1).

2. Random samples from one phase provide a warm start for the next phase (Lemma 4.4).

3. The convex body TiK and exponential function e−aix0/γi satisfy (A1) and (A2) (Lemmas
4.5, 4.6).

4. The overall complexity is

O∗(
√

n) phases ×O∗(
√

n) samples per phase ×O∗(n3) steps per sample = O∗(n4).
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To be more precise,

Theorem 2.1 The volume of a convex body K, given by a membership oracle, can be approxi-
mated to within a relative error of ε with probability 1− δ in

O(
n4

ε2
log7 n

εδ
) = O∗(n4)

oracle calls.

This will need some technical preliminaries, collected in the next section.

3 Preliminaries

3.1 Logconcavity

The following lemma about logconcave functions will play a key role.

Lemma 3.1 Let K ⊆ Rn be a convex body and f : K → R, a logconcave function. For a > 0,
define

Z(a) =
∫

K
f(ax) dx.

Then anZ(a) is a logconcave function of a.

Proof. Let

G(x, t) =

{
1 if t > 0 and (1/t)x ∈ K,

0 otherwise.

It is easy to check that G(x, t) is logconcave, and so the function

F (x, t) = f(x)G(x, t)

is also logconcave. It follows that its marginal in t is a logconcave function of t. But this marginal
is just ∫

Rn

f(x)G(x, t) dx = tn
∫

K
f(tx) dx.

¤

3.2 Probability

Two random variables X,Y will be called µ-independent (0 < µ < 1) if for any two sets A,B in
their ranges, ∣∣P(X ∈ A, Y ∈ B)− P(X ∈ A)P(Y ∈ B)

∣∣ ≤ µ.

Several basic properties of this notion are collected in the Appendix.
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4 Analysis of volume algorithm

4.1 Variance

We begin by bounding the variance of our sampling estimate for Ri.

Lemma 4.1 Let X be a random sample from dµi, h ∈ Z+ and let

Y = e(ai−ai+1)X0 .

Then
E(Y 2) ≤ eE(Y )2.

Proof. For notational convenience, let a = ai and b = ai+1 − ai. We have

E(Y ) =

∫
K′ e

−(a+b)x0 dx∫
K′ e−ax0 dx

and

E(Y 2) =

∫
K′ e

−(a+2b)x0 dx∫
K′ e−ax0 dx

.

By Lemma 3.1 the value an+1
∫
K′ e

−ax0 dx is a logconcave function of a, and so

∫

K
e−ax0 dx

∫

K
e−(a+2b)x0 dx ≤

(
(a + b)2

a(a + 2b)

)n+1 (∫

K
e−(a+b)x0 dx

)2

.

Since we have b = a/
√

n, the coefficient on the right hand side is

(
(a + b)2

a(a + 2b)

)n+1

=
(

1 +
1

n + 2
√

n

)n+1

< e.

¤
This lemma proves that k sample points are enough to estimate Ri by (2) with relative error

ε/m, with probability 1− 1/n10.

4.2 Divine intervention

Our goal is to prove

Lemma 4.2 With probability 1− o(1),

(1− ε)R1 . . . Rm ≤ W1 . . .Wm ≤ (1 + ε)R1 . . . Rm.

Proof. To analyze the algorithm we use the “divine intervention” method. The distribution
of the random point Xj

i is approximately µi. We construct modified random variables X
j
i (i =

0, . . . , m, j = 1, . . . , k) whose distribution is exactly µi as follows. Fix j. We define X
j
0 = Xj

0 .
Assuming that X

j
i is defined, let Z be the random point returned by the sampler Si when it

is started from X
j
i . Let ν denote the total variation distance of the distribution of Z from the

distribution µi+1. By the specification of the sampler, nu ≤ δ. Then we define X
j
i+1 as a random
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variable with distribution µi+1 such that P(Z = Xj
i+1) = 1 − ν. The construction is carried out

independently for each thread, so that the modified threads (Xj
0, X

j
1, . . . ,X

j
m) are independent.

Assume that Xj
i = X

j
i . Then Xj

i+1 = Z, and so X
j
i+1 = Xj

i+1 with probability at least 1− δ.

It follows by induction that Xj
i = X

j
i is at least 1− jδ, and hence

P(Xj
i = X

j
i for all j) ≥ 1− kmδ. (3)

[It would be nice to use “divine intervention” to achieve that the Xj
i in one of the threads be

independent, but this does not work (for this, the sampler would have to work with a cold start,
which would take too long). We’ll have to estimate the dependence between consecutive phases
carefully.]

Since the random variables X
j
i have the “right” distribution µi, we have

E(eai−ai+1(Xj
i )0) = Ri.

Let

W i =
1
k

k∑

j=1

eai−ai+1(X
j
i )0 .

Then E(W i) = Ri, and by Lemma 4.1, E(W 2
i ) ≤ (1 + e−1

k )R2
i .

Now consider the product Z = W 1W 2 . . . Wm. If we had independence between successive
phases, then we would have

E(
m∏

i=1

W i) =
m∏

i=1

Ri

and

E(
T∏

i=1

W
2
i ) ≤ (1 +

e− 1
k

)m
m∏

i=1

R2
i .

This would imply V ar(Z) ≤ (1 + e−1
k )m − 1, and we could easily show that with probability at

least 3/4, Z is within a factor of (1 ± ε) to the volume of K ′. Since Z = Z with probability
1− o(1), it follows that with probability at least 3/4− o(1), Z is within a factor of (1± ε) to the
volume of K ′.

Unfortunately, since we are using the sample points from each phase as the starting points
for the next, the random variables Wi are only approximately independent as shown in the next
Lemma.

Lemma 4.3 (a) For every phase 0 ≤ i < m and every thread j, the random variables Xj
i and

Xj
i+1 are δ-independent, and the random variables X

j
i and X

j
i+1 are (3δ)-independent.

(b) For every phase 0 ≤ i < m and every thread 1 ≤ j ≤ k, the random variables (Xj
0 , . . . , X

j
i )

and Xj
i+1 are (3δ)-independent.

(c) For every phase 0 ≤ i < m, the random variables W 1 . . .W i and W i+1 are (3kδ)-
independent.

The variables W 1 . . .W i and W i+1 are not bounded, so we cannot apply Lemma 6.2 directly.
So we define another set of random variables

Vi = min{W i,
1√
nµ

E(W i)}

where µ = 3kδ. The rest of the proof is given in the appendix. ¤
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4.3 Warm start

The next lemma shows that samples from one phase provide a warm start for the next phase.

Lemma 4.4 The L2-norm of µi with respect to µi+1 is at most 4.

Proof. Let X be a random sample from µi. Then we have to prove that

E

[
dµi(X)

dµi+1(X)

]
≤ 4.

Indeed, using Lemma 3.1

E

[
dµi(X)

dµi+1(X)

]
=

∫
K e(ai+1−ai)X1e−aiX1dx∫

K e−aix1dx

∫
K e−ai+1x1dx∫
K e−aix1dx

=
Z(2ai − ai+1)Z(ai+1)

Z(ai)Z(ai)

≤
(

(2ai)2

4ai+1(2ai − ai+1)

)n

=

(
1

(1− 1√
n
)(1 + 1√

n
)

)n

< 4.

¤

4.4 Rounding

For s ≥ 0, let Ks = {x ∈ K ′ : x0 ≤ s}. Note that these sets are exactly the level sets of the
functions fi = e−aix0 .

Lemma 4.5 Let c = µi(Ks). Then TiKs contains a ball with radius c/10.

Proof. Let X be a random point from µi, and let X0 be its first coordinate. We denote by F
the density function of X0.

The intersection of the hyperplane x0 = s with K ′ contains a ball with radius min(1, s). Hence
the body TiK

′ contains a cone with height γis ≥ s over this ball. If we show that s > c/4, then
it follows by simple geometry that Ks contains a ball with radius c/12.

We may assume that s < 1/4. Let F (t) denote the density function of X0. This function is
proportional to tne−ait for t < 1. Using that ai ≤ 2n, it follows that F (t) is monotone increasing
for t ≤ 1/2, and so its value is at least F (s) between 1/4 and 1/2. Thus we have

c =

∫ s
0 F (t) dt∫ 2D

0 F (t) dt
≤ sF (s)

(1/4)F (s)
= 4s.

¤

Lemma 4.6 If X is a random point from the distribution µi, then E(|TiX|2) ≤ 5D2.

9



Proof. Let X be a random point from µi, and let Y = TiX. First we estimate the expectation
of Y 2

0 . If ai ≤
√

n, then γi = 1 and Y = X, so |Y0| ≤ 2D, so E(Y 2
0 ) ≤ 4D2.

Let ai >
√

n. Let Z be a random point from the distribution over the whole cone C with
density function proportional to e−aix0 . Then

E(X2
0 ) ≤ E(Z2

0 ) =
∫

tn+2e−at dt∫
tne−at dt

=
(n + 1)(n + 2)

a2
,

and hence

E(Y 2
0 ) = γ2

i E(X2
0 ) ≤ a2

n

(n + 1)(n + 2)
a2

=
(n + 1)(n + 2)

n
< D2.

The expectation of Y 2
1 + · · · + Y 2

n , conditional on any X0 = t, is at most D2, since K is
well-rounded. This proves the lemma. ¤

5 Concluding remarks

1. If we view the sampler as a blackbox, then the number of calls to the sampler is O∗(n), and
this is the total number of points used to estimate the volume. In this sense, the algorithm is
nearly optimal, since any algorithm has to examine Ω(n) points.
2. The same “simulated annealing” technique can be used to maximize a linear objective func-
tion over a convex body. Indeed, a randomized algorithm for this maximization problem can be
thought of as a way of generating a sample from a distribution that is heavily biased in the direc-
tion of the objective function. Starting from the uniform distribution, and gradually increasing
the bias, do we get an analyzable version of the simulated annealing for optimization?
3. It is a natural next step to extend this method to integration of logconcave functions. The
fundamental lemma 3.1 can be extended to this case, but certain technical results we used from
[10] are still not known for the general case. We believe that these difficulties can be overcome,
and one can design an O∗(n4) integration algorithm for logconcave functions (after appropriate
preprocessing).
4. How far can the exponent in the volume algorithm be reduced? There is one possible further
improvement on the horizon. This depends on a difficult open problem in convex geometry, the
“Slicing Conjecture”. If this conjecture is true, then the mixing time of the hit-and-run walk in a
convex body in isotropic position could be reduced to O∗(n2), which, when combined with ideas
of this paper, could perhaps lead to an O∗(n3) volume algorithm. But besides the mixing time,
a number of further problems concerning achieving isotropic position would have to be solved.

Acknowledgement. We are deeply grateful to Adam Kalai for many useful comments and
ideas and for his help in simplifying the proof of Lemma 3.1.
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Appendix

Figure 1: The pencil construction when K is a square.

The following are some basic properties of µ-independence.

Lemma 6.1 If X and Y are µ-independent, and f, g are two measurable functions, then f(X)
and g(Y ) are also µ-independent.

Proof. We have
∣∣P(f(X) ∈ A, g(Y ) ∈ B)− P(f(X) ∈ A)P(f(Y ) ∈ B)

∣∣
=

∣∣P(X ∈ f−1(A), Y ∈ g−1(B))− P(X ∈ f−1(A))P (Y ∈ g−1(B))
∣∣

≤ µ.

¤
Another useful fact is the identity
∣∣P(X ∈ A, Y ∈ B)− P(X ∈ A)P(Y ∈ B)

∣∣ =
∣∣P(X ∈ A, Y ∈ B)− P(X ∈ A)P(Y ∈ B)

∣∣, (4)

which implies that to check µ-independence, it suffices to consider sets A,B with P(X ∈ A) ≥ 1/2
and P(Y ∈ B) ≥ 1/2.

Lemma 6.2 Let X, Y ≥ 0 be µ-independent random variables such that |X| ≤ a and |Y | ≤ b.
Then ∣∣E(XY )− E(X)E(Y )

∣∣ ≤ µab.

This is a variation of a lemma in [7]), and the proof is the same.
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Lemma 6.3 Let X,Y,X ′, Y ′ be random variables, and assume that (a) the pair (X,Y ) is inde-
pendent from the pair (X ′, Y ′), (b) X is µ-independent from Y and (c) X ′ is µ′-independent from
Y ′. Then the pair (X, X ′) is (µ + µ′)-independent from the pair (Y, Y ′).

Proof. Let R, R′, S, S′ be the range of X, Y, X ′Y ′, respectively, and let A ⊆ R×R′, B ⊆ S×S′

be measurable sets. We want to show that
∣∣P((X, X ′) ∈ A, (Y, Y ′) ∈ B)− P((X,X ′) ∈ A)P((Y, Y ′) ∈ B)

∣∣ ≤ µ + µ′. (5)

For r ∈ R and s ∈ S, let Ar = {r′ ∈ R′ : (r, r′) ∈ A}, Bs = {s′ ∈ S′ : (s, s′) ∈ B},
f(r) = P(X ′ ∈ Ar), g(s) = P(Y ′ ∈ Bs) and h(r, s) = P(X ′ ∈ Ar, Y

′ ∈ Bs). Then

P((X, X ′) ∈ A) = E(f(X)), P((Y, Y ′) ∈ B) = E(g(Y ))

and
P((X,X ′) ∈ A, (Y, Y ′) ∈ B) = E(h(X, Y ))

(here we use that (X, Y ) is independent of (X ′, Y ′). We can write the left hand side of (5) as

E(h(X, Y ))− E(f(X))E(g(Y )) (6)

=
[
E(h(X,Y )− f(X)g(Y ))

]
+

[
E(f(X)g(Y ))− E(f(X))E(g(Y ))

]

By assumption,

|h(r, s)− f(r)g(s)| = ∣∣P(X ′ ∈ Ar, Y
′ ∈ Bs)− P(X ′ ∈ Ar)P(Y ′ ∈ Bs)

∣∣ ≤ µ′

for every r and s, and hence the first term on the right hand side in (6) is at most µ′ in absolute
value. The second term is at most µ by Lemma 6.2. This proves (5). ¤

Lemma 6.4 Let X0, X1, . . . , be a Markov chain, and assume that for some i > 0, Xi+1 is µ-
independent from Xi. Then Xi+1 is µ-independent from (X0, . . . , Xi).

Proof. Let Si be the range of Xi, and let A ⊆ S0 × · · · × Si, B ⊆ Si+1. We want to prove that
∣∣P((X0, . . . , Xi) ∈ A, Xi+1 ∈ B)− P((X0, . . . , Xi) ∈ A)P(Xi+1 ∈ B)

∣∣ ≤ µ. (7)

For r ∈ Si, let f(r) = P((X0, . . . , Xi−1, r) ∈ A). Let g denote the characteristic function of B.
Then

P((X0, . . . , Xi−1, Xi) ∈ A) = E(f(Xi)), and P(Xi+1 ∈ B) = E(g(Xi+1)).

For every r ∈ Si,

P((X0, . . . , Xi−1, r) ∈ A,Xi+1 ∈ B)
= P((X0, . . . , Xi−1, r) ∈ A)P(Xi+1 ∈ B | Xi = r)
= f(r)E(g(Xi+1)| Xi = r) = E(f(r)g(Xi+1) | Xi = r).

by the Markov property, and so

P((X0, . . . , Xi−1, Xi) ∈ A,Xi+1 ∈ B) = E(f(Xi)g(Xi+1)).

So (7) follows from Lemma 6.2 again. ¤
We need another simple fact from probability:

13



Lemma 6.5 Let X ≥ 0 be a random variable, a > 0, and X ′ = min(X, a). Then

E(X ′) ≥ E(X)− E(X2)
4a

.

Proof. Let X ′′ = X −X ′. Note that X ′X ′′ = aX ′′ (if X ′′ 6= 0 then X ′ = a). Using this,

E(X2) = E((X ′ + X ′′)2) ≤ 4E(X ′X ′′) = 4aE(X ′′),

which implies the assertion. ¤
Proof. [of Lemma 4.3] (a) Let A,B ⊆ K; we claim that

∣∣P(Xj
i ∈ A,Xj

i+1 ∈ B)− P(Xj
i ∈ A)P(Xj

i+1 ∈ B)
∣∣ ≤ δ. (8)

By the remark after (4), we may assume that µi(A) ≥ 1/2. Let µ′i be the restriction of µi to A,
scaled to be a probability measure. Then µ′i ≤ 2µi, and it is easy to check that χ2(µ′i, µi+1) ≤
4χ2(µi, µi+1) + 3. Hence by the basic property of the sampler Si,

∣∣P(Xj
i+1 ∈ B | Xj

i ∈ A)− P(Xj
i+1 ∈ B)

∣∣ ≤ δ,

and so (8) holds. The second assertion is immediate, since putting a bar above the variables
changes the probabilities in the condition by at most δ.

(b) Follows from Lemma 6.4.
(c) Follows from Lemma 6.3. ¤

Proof. (of Lemma 4.2.) Let

Vi = min{W i,
1√
nµ

E(W i)}

where µ = 3kδ. By Lemma 6.5, we have

E(Vi) ≥ E(Wi)−√nµ
E(W 2

i )
E(Wi)

≥ (1− 2
√

nµ)E(Wi). (9)

Define recursively

Ui+1 = min{UiVi+1,
1√
nµ

E(V1) . . .E(Vi+1)}.

By Lemma 6.1, the random variables Ui and Vi+1 are µ-independent, so it follows by Lemma 6.2
that

|E(UiVi+1)− E(Ui)E(Vi+1)| ≤ 1
n

E(V1) . . . E(Vi+1). (10)

Next we show that

E(Ui) ≤
(

1 +
i

n

)
E(V1) . . .E(Vi). (11)

This is easy by induction:

E(Ui+1) ≤ E(UiVi+1) ≤ E(Ui)E(Vi+1) +
1
n

E(V1) . . .E(Vi+1)

(by (10))

≤
(

1 +
i + 1

n

)
E(V1) . . . E(Vi+1)
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(using the induction hypothesis). A similar argument shows that

E(U2
i ) ≤

(
1 +

i

n

)
E(V 2

1 ) . . .E(V 2
i ). (12)

and

E(U2
i V 2

i+1) ≤
(

1 +
i

n

)
E(V 2

1 ) . . .E(V 2
i+1). (13)

Next we bound E(Ui+1) from below. Using Lemma 6.5 and inequality (13), we get

E(Ui+1) ≥ E(UiWi+1)−√nµ
E(U2

i V 2
i+1)

4E(V1) . . .E(Vi+1)

≥ E(UiWi+1)−√nµ

(
1 +

i

n

)
E(V 2

1 ) . . .E(V 2
i+1)

4E(V1) . . .E(Vi+1)
.

Here, using (9),

E(V 2
i ) ≤ E(W 2

i ) ≤
(

1 +
e− 1

k

)
E(Wi)2 ≤

(
1 +

e− 1
k

)
1

1− 2
√

nµ
E(Vi)2 <

(
1 +

4
k

)
E(Vi)2),

so we get that

E(Ui+1) ≥ E(UiVi+1)−√nµ

(
1 +

i

n

) (
1 +

4
k

)i

E(V1) . . . E(Vi+1) (14)

≥ E(UiVi+1)− 1
n

E(V1) . . .E(Vi+1). (15)

We use (10) to estimate the first term:

E(UiVi+1) ≥ E(Ui)E(Vi+1)− 1
n

E(V1) . . . E(Vi+1).

Thus
E(Ui+1) ≥ E(Ui)E(Vi+1)− 2

n
E(V1) . . . E(Vi+1),

and hence by induction

E(Ui+1) ≥ E(V1) . . . E(Vi+1)− 2i

n
E(V1) . . .E(Vi+1).

In particular, it follows that

E(Um) = (1 + o(1))E(V1) . . .E(Vm) = (1 + o(1))E(W 1) . . . E(Wm).

By (12),
E(U2

m) = (1 + o(1))E(Um)2,

and hence Um is close to its expectation with large probability.
Furthermore, using Markov’s inequality,

P(Ui+1 6= UiVi+1) = P

(
UiVi+1 >

1√
nµ

E(V1) . . . E(Vi+1)
)

≤ √
nµ

E(UiVi+1)
E(V1) . . .E(Vi+1)

≤ √
nµ

(
1 +

i + 1
n

)
< 2

√
nµ,
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and similarly
P(Vi 6= W i) ≤ √

nµ.

So with probability at least 1 − 3m
√

nµ, we have Um = W 1 . . .Wm. Furthermore, by (3), we
have W 1 . . . Wm = W1 . . .Wm with probability at least 1− kmδ.

So W1 . . .Wm is close to E(W1) . . .E(Wm) = R1 . . . Rm with large probability. This completes
the proof of Lemma 4.2. ¤
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