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Abstract 

This paper is concerned with the 
problem of learning and exploiting 
string patterns in natural language 
processing, particularly information 
extraction. We propose a new algo-
rithm for learning such patterns. Our 
algorithm is novel in that it can learn 
non-consecutive patterns with con-
straints, which are necessary for in-
formation extraction. Specifically, it 
employs an extended version of the 
so-called apriori algorithm at the pat-
tern generation step. Our experimental 
results indicate that in information ex-
traction the use of non-consecutive 
patterns with constraints is signifi-
cantly better than the use of only con-
secutive patterns. 
 

1 Introduction 

We consider here the problem of learning and 
using string patterns, particularly 
non-consecutive patterns� in information ex-
traction. 

In learning, for example, given the instances 
“<company> today announced the worldwide 
availability of <product>”, “<company> today 
announced the immediate availability of <prod-
uct>”, etc, we acquire non-consecutive patterns 
like “<company> today announced the \w+ 
availability of <product>”, where ‘\w+’ is a 
wildcard denoting a skip of at least one word. 
We refer to the patterns as ‘non-consecutive 
patterns’. Note that ‘consecutive patterns’ are 
special cases of ‘non-consecutive patterns’. In 
extraction, we use the acquired patterns to match 
the strings in new instances and extract from the 

matched strings information on which company 
has released what product. 

Methods for learning and using only con-
secutive patterns for information extraction have 
been proposed (e.g., Brin 1998; Ravichandran 
and Hovy 2002). The coverage of such patterns 
is small, however, as they do not contain 
generalization. 

In this paper, we propose a new algorithm 
which can accurately and efficiently learn 
non-consecutive patterns with constraints. Our 
algorithm consists of two steps: pattern genera-
tion and pattern ranking. At the first step, it cre-
ates all the possible patterns which cover the 
positive instances. At the second step, it ranks 
the patterns according to their precision scores 
using both the positive and negative instances. 

Our algorithm is especially novel in that it 
employs an extended version of the apriori al-
gorithm to accurately and efficiently acquire 
patterns. The apriori algorithm was proposed for 
learning associations in the field of data or text 
mining. We think that it is the first time that it is 
used for the information extraction task. Fur-
thermore, the apriori algorithm is extended here 
for learning patterns with constraints. We pro-
pose three constraints necessary for accurately 
acquiring non-consecutive patterns. We prove 
that even on the constraints, the so-called apri-
ori (or anti-monotonicity) property still holds. 

We applied the proposed algorithm to prod-
uct-release information extraction from the web 
sites of IT companies. We also applied it to 
question answering regarding inventions. Ex-
perimental results indicate that the use of 
non-consecutive patterns with constraints sig-
nificantly outperforms the use of only consecu-
tive patterns in information extraction. Experi-
mental results also indicate that the constraints 
we have defined are necessary for accurate ex-
traction. 



2 Related Work 

2.1 Information Extraction Using String 
Patterns 

A straightforward approach to learn natural lan-
guage patterns would be to syntactically parse 
sentences and acquire sentential or phrasal pat-
terns from the obtained parsed trees (e.g., Lin 
and Pantel, 2001; Sudo et al, 2001). Another 
approach would be to discover string patterns by 
using syntactic and semantic constraints (e.g., 
Huffman 1995; Soderland et al, 1995; Riloff, 
1996). The two approaches are in general costly 
in development.  

Methods for directly acquiring consecutive 
patterns from surface word strings have been 
proposed. 

For example, Brin (1998) proposed learning 
and using consecutive patterns for extracting 
information on certain pairs such as (<author>, 
<book>) pairs. They conducted extraction from 
web data through a bootstrapping process. 

For another example, Ravichandran and 
Hovy (2002) proposed learning and using con-
secutive patterns for extracting information on 
<question, answer> pairs in question answering. 
For example, they extracted patterns like ‘<per-
son> was born in <year>’ for answering a ques-
tion regarding the birth year of a person. Their 
method consisted of two steps: pattern genera-
tion and pattern ranking. They used a suffix tree 
to store all the possible string patterns at pattern 
generation. 

2.2 Sequential Data Mining 

Agrawal and Srikant (1994) proposed employ-
ing the apriori algorithm for mining patterns 
from sequential data. Each data sequence is a list 
of transactions ordered by transaction-time. 
Subsequently, Srikant and Agrawal (1996) pro-
posed extending the algorithm by incorporating 
time and taxonomy constraints. Lent et al (1997) 
proposed using the apriori algorithm for mining 
phrasal patterns in order to discover trends in a 
text database.  

For other work on sequential data mining, 
see (e.g., Mannila and Toivonen, 1996; Ahonen 
et al, 1998). 

The apriori algorithm was mainly used for 
learning associations between data items in data 
mining, or words in text mining. It was not used 
for learning patterns necessary for information 
extraction. Note that there are some clear dif-

ferences between information extraction and text 
mining. For example, information extraction is 
generally concerned with more complex patterns 
than text mining. Information extraction gener-
ally needs annotated data for training, while text 
mining does not necessarily need. 

3 Problem 

In learning, given ‘positive and negative training 
instances’ as those in Figure 1, we are to acquire 
patterns as those in Figure 2. In extraction, we 
use the acquired patterns to extract information 
from ‘test instances’ as that in Figure 1. Note 
that there are negative test instances from which 
no information can be extracted. 

The example in Figure 1 is concerned with 
product release information extraction. Positive 
instances contain information on “<company> 
has released <product>”. (We replace here  
specific names such as ‘<com-
pany>Microsoft</company>’ with variables 
such as ‘<company>’). Negative instances 
contain information on <company>, but it is not 
about product release. The goal is to extract 
from the positive test instances information on 
“<company> has released <product>”, more 
precisely, the name of <product>, e.g., Micro-

Positive training instances: 
<company> Microsoft Corp. </company> today an-
nounced the immediate availability of <product> Mi-
crosoft Internet Explorer Plus </product>, the eagerly 
awaited retail version of Internet Explorer 4.0. 
 
<company> Microsoft Corp. </company> today an-
nounced the availability of <product> Microsoft Visual 
J++ 6.0 Technology Preview 2</product>, a beta re-
lease of the next version of the industry's most widely 
used development system for Java.  

 
<company> Microsoft Corp. </company> today an-
nounced the immediate, free availability of <product> 
Microsoft Visual InterDev 6.0 March pre-release 
</product>, a preview of the new version of the leading 
team-based Web development system for rapidly 
building data-driven Web applications. 

Negative training instance: 
<company> Microsoft Corp. </company> today an-
nounced the availability of an expanded selection of 
Web-based training through its independent training 
providers. 

Positive test instance: 
<company> Microsoft Corp. </company> today an-
nounced the immediate worldwide availability of  
Microsoft Office 60 Minute Intranet Kit version 2.0, 
downloadable for free (connect-time charges may ap-
ply) from the Office intranet Web site located at 
http://www.microsoft.com/office/intranet/. 

Figure 1: Training and Test Data 



soft’s “Microsoft Office 60 Minute Intranet Kit 
version 2.0”. That is to say, we assume here that 
in extraction <company> has already been iden-
tified, but <product> has not. Hereafter, we will 
sometimes refer to <product> as ‘anchor’. 
Consecutive patterns: 

<company> today announced the immediate availabil-
ity of <product>, 
 
<company> today announced the availability of 
<product>, 
 
<company> today announced the immediate, free 
availability of <product>, 

Non-consecutive patterns: 
<company> today announced the {\w +3} availability 
of <product>, 

Figure 2: Patterns 
 

Using the existing methods (e.g., Brin 1998; 
Ravichandran and Hovy 2002), one can obtain 
consecutive patterns as those in Figure 2. The 
coverage of such patterns is small, however, as 
they do not contain generalization. For example, 
using the patterns, one cannot extract the infor-
mation in the test instance in Figure 1. It is ob-
vious that the words ‘immediate’ and ‘free’ are 
not necessary for the extraction, and thus it is 
desirable to learn and use non-consecutive pat-
terns that can skip such kind of words. Figure 2 
also shows an example of non-consecutive pat-
terns. With the pattern, one can correctly extract 
the information in the instance. The question 
then is how to acquire non-consecutive patterns. 

4 Our Method 

Our method of learning non-consecutive (and 
also consecutive) patterns comprises of two 
steps: pattern generation and pattern ranking. 
At the first step, it creates all the possible pat-
terns which cover the positive instances. At the 
second step, it ranks the patterns according to 
their precision scores using both the positive and 
negative instances. In extraction, it utilizes the 
ranked patterns to match strings and extracts the 
anchor information from the matched strings. 

4.1 Pattern Generation 

The input of pattern generation is a number of 
strings, and the output is a number of 
non-consecutive patterns that cover the input 
strings. We replace specific names with general 
variables (e.g., <company>, <product>). The 
non-consecutive patterns are unique in that they 
can have ‘wildcards’. We use ‘\w +n’ to denote 

a wildcard that skips at least one and at most n 
words. The non-consecutive patterns thus con-
tain generalization of strings.  

Algorithm 

 

 
Figure 3 shows the algorithm which generates 
patterns satisfying the constraints described be-
low. The algorithm is an extension of the apriori 
algorithm. 

Let iP  denote the set of generated patterns 
in the i-th iteration ( ki ≤≤1 ). Initially, let 1P  
to be the set of words. Our algorithm recursively 
creates patterns in iP  by combining the pat-
terns in )i(P 1− and the words in 1P . The algo-

rithm comprises of two sub algorithms: 

Learn-non-consecutive-pattern-with-constraints 
1. S = set of input strings, 

2. 1P  = set of words in S ; 

3. for ( ++≤= i;ki;i 2 ){ 

4.   iP  = find-nonconsecutive-pattern( )1( −iP , 1P ); 

5.   for each ( iPp ∈ ){ 

6.     if ( not satisfy-constraints( p ) ) 

7.         remove p  from iP ; 

8.     if ( p ’ s frequency is not larger than a threshold) 

9.         remove p  from iP ; 

10.     if ( p does not contain <anchor>) 

11.         remove p  from iP ; 

12.   } 
13.   if ( iP  is empty ) 

14.       Goto line 16; 
15. } 
16.  output

j
i
j PP 2== U ; 

Figure 3: Algorithm of Pattern Generation 

find-non-consecutive-pattern( )i(P 1− , 1P ) 

1. for each ( )i()i( Pp 11 −− ∈ ){ 

2.   for each ( 11 Pp ∈ ){ 

3.    11 ppp )i(i −= ; 

4.     if ( ip exists in S ) 

5.       put ip into iP ; 

6.    11 } { pnw\p'p )i(i += − ; 

7.     if ( i'p exists in S ) 

8.       put i'p into iP ; 

9.    } 
10.  } 
11.   output iP ; 

Figure 4: Sub-Algorithm of Pattern Generation 



‘find-non-consecutive-patterns’ (Figure 4) and 
‘satisfy constraints’. 

At lines 6 and 7 of Figure 3, we check if pat-
tern p satisfies the constraints, if not we remove 
it from the set of patterns. At lines 8 and 9, we 
check if the frequency of pattern p  is not lar-
ger than a threshold, if so we remove it from the 
set of patterns (the same as in apriori). 

At line 3 of Figure 4, we concatenate patterns 
)i(p 1−  and 1p into pattern ip . At line 6 of Fig-

ure 4, we concatenate patterns )i(p 1−  and 

1p into pattern i'p  in which there is a wildcard 
of at least one word and at most n words be-
tween )i(p 1−  and 1p , where n is calculated with 

the input data. 
In the algorithm we treat a wildcard as a 

special word. As a result, for example, the string 
‘\w the book \w’ is not the superstring of the 
string ‘\w the \w’. 

Note that ‘find consecutive patterns’ be-
comes a special case of ‘find non-consecutive 
patterns’, if we remove lines 6, 7 and 8 in Figure 
4. Also note that ‘find non-consecutive patterns 
without constraints’ becomes a special case of 
‘find non-consecutive patterns with constraints’, 
if we remove lines 6 and 7 in Figure 3. 

Three Constraints 

We propose the use of three constraints neces-
sary for accurately acquiring non-consecutive 
patterns for information extraction.  

The first constraint is that there cannot be a 
wildcard immediately before or after an anchor. 
We call the constraint ‘boundary constraint’. 
The constraint is obligatory for information ex-
traction, since it is necessary to accurately de-
termine the boundaries of an anchor (e.g., 
<product>). Without this constraint, pattern 1 in 
Figure 5 will be generated, and with the pattern 
the information in test instance 1 will be incor-
rectly extracted. 

The second constraint is that the number of n 
in the wildcard ‘\w +n’ in a context should not 
be larger than the largest number of words to be 
skipped in the same context in the training data. 
We call the constraint ‘distance constraint’. 
Without this constraint, pattern 2 in Figure 5 
will be generated, and the information in test 
instance 2 will be incorrectly extracted. 

The third constraint is that ‘an isolated func-
tion word’ is prohibited. For example, in the 
pattern ‘\w+ the \w+’, ‘the’ is an isolated func-

tion word. The rational behind the constraint is 
that a pattern should include content words and 
skip isolated function words. We call the con-
straint ‘island constraint’. Without this con-
straint, pattern 3 in Figure 5 will be generated, 
and the information in test instance 3 will be 
incorrectly extracted. 

 
The use of the constraints also has a desirable 

effect of improving efficiency in learning, as it 
helps reduce the search space. 

Theorem 1 below guarantees that our algo-
rithm is able to find all the patterns which cover 
the input strings satisfying the constraints. 

Definition 1 )s(bρ , )(sdρ and )s(iρ are 

properties of string s, such that 





=
otherwise 0

constraintboundary   thesatisfies s if 1
)s(bρ

Non-consecutive patterns without certain con-
straint: 
1. <company> today announced the immediate avail-

ability {\w +3} <product>  
 

2. <company> {\w +} today announced {\w +} deliver 
<product>. 

 
3. <company> {\w +8} the {\w +13} of the <product> , 

the first 
Test instances: 
1. Microsoft Corp. today announced the immediate 

availability of Internet Explorer for no-charge 
download from the Internet. 

 
2. Microsoft Corp. and Policy Management Systems 

Corp. (PMSC) today announced a plan in which the 
two companies will work together to deliver enter-
prise and electronic-commerce solutions based on the 
Microsoft Windows NT Server operating system and 
the BackOffice family of products. 

 
3. Microsoft Corp. today provided attendees of the 

Consumer Electronics Show in Las Vegas with a 
demonstration of the Microsoft Entertainment Pack 
for the Windows CE operating system, the first game 
product to be released for the Windows CE-based 
handheld PC platform. 

Incorrectly extracted <product> information: 
1. any substring of ‘of Internet Explorer for no-charge 

download from the Internet’ 
 
2. enterprise and electronic-commerce solutions based 

on the Microsoft Windows NT Server operating sys-
tem and the BackOffice family of products 

 
3. Microsoft Entertainment Pack for the Windows CE 

operating system 
Figure 5: Patterns without Constraints 







=
otherwise 0

constraint distance  thesatisfies s if 1
)s(dρ





=
otherwise 0

constraint island  thesatisfies s if 1
)s(iρ

Definition 2 (anti-monotonicity) Let s denote 
any string and let t denote any superstring of s. 
A property ρ of strings is anti-monotone, if 

0=)s(ρ  implies 0=)t(ρ .1 
Theorem 1 )(sbρ , )(sdρ and )(siρ are 

anti-monotonic. 
The proof of the theorem is omitted here due 

to the limitation of space. 

4.2 Pattern Ranking 

The patterns obtained at pattern generation are 
ranked based on their precisions, using both 
positive and negative instances, provided that 
the precisions are larger than a predetermined 
threshold. 

Let a denote the number of instances 
matched to a pattern p, and let c denote the 
number of the instances matched to p, and at the 
same time the information in the instances can 
be correctly extracted. The precision of p is de-

fined as
a

c
. 

When a pattern p can match all the positive 
instances that a pattern q can match, we say p 
covers q. If p covers q and p is ranked before q 
in the ranked pattern list, we remove q from the 
list. 

4.3 Extraction 

Given a new instance, the ranked patterns are 
examined sequentially. With the pattern which 
matches the instance first, the anchor informa-
tion is extracted. For example, with the 
non-consecutive pattern in Figure 2, one can 
extract from the test instance in Figure 1, the 
anchor (i.e., <product>) information: “Microsoft 
Office 60 Minute Intranet Kit version 2.0”. 

The matching of a string pattern to a string 
instance is performed in the left-to-right order. 
For example for the pattern ‘x \w+ y \w+’: 

First, x matches to its first occurrence in 
the string and y matches to all its occur-
rences in the sub-string after the first oc-
currence of x. If the matching fails, then x 
matches to its second occurrence and y 

                                                   
1 In mathematics, anti-monotonicity is a more general no-
tion. 

matches to all its occurrences in the re-
maining sub-string. The matching contin-
ues. 

5 Experimental Results 

We conducted two experiments in order to test 
the effectiveness of our method. Specifically, we 
performed information extraction regarding 
product releases and inventions. 

Experimental results indicate that for infor-
mation extraction (at least for the problems in-
vestigated), the use of non-consecutive string 
patterns with constraints outperforms the use of 
consecutive string patterns alone and the con-
straints we propose are indeed needed. 

Hereafter, we denote the method using 
non-consecutive string patterns and that using 
consecutive string patterns as NCP and CP, re-
spectively. 

5.1 Product Release Information Ex-
traction 

Many companies routinely publish information 
on product releases at their web sites. Auto-
matically extracting such information has not 
only research values but also practical interests. 
This is exactly the problem we have investigated, 
which is also described above as an example. 

We collected press release articles from the 
websites of five IT companies. From each article, 
we extracted the first sentence using heuristic 
rules (the data in Figure 1 are examples of them). 
Next, we asked two human annotators to assign 
labels on the extracted sentences. The sentences 
containing information on “<company> has re-
leased <product>” were annotated as positive 
instances. Specifically, the company names and 
the product names were assigned labels. The 
sentences containing information only on 
<company> were annotated as negative in-
stances. Specifically, only the company names 
were assigned labels. Details of the data can be 
found in Table 1. 

 
Table 1: Data for Product Release Information 

Extraction 

Company 
Num. of pos. 

data 
Num. of neg. 

data 
Company A 174 229 
Company D 304 390 
Company I 250 556 

Company M 1004 2365 
Company N 208 292 



With the data of each company, we com-
pared NCP against CP. To investigate the neces-
sity of the use of the constraints, we also tested 
two additional methods. In the first method, we 
removed the distance constraint from NCP, in 
the second method, we removed the island con-
straint from NCP. We denote them as NDC and 
NIC, respectively. Note that the boundary con-
straint is an obligatory constraint. 

We performed the experiments with ��-fold 
cross-validation. The results obtained were thus 
those averaged over ten experimental trials. We 
evaluated the results in terms of precision, recall 
and f-measure. Let |D| denote the number of in-
stances extracted by using the patterns. Let |F| 
denote the number of instances correctly ex-
tracted by using the patterns. Let |E| denote the 
number of instances that should be extracted. 
We define  

|D||F| precision =  

|E||F|  recall =  

recall precision 

recallprecision2
  measure-f

+
××=  

With different thresholds on the precisions at 
pattern ranking, we obtained results of different 
precisions and recalls on the test set. Figures 
6-10 show the ‘precision recall curves” for the 
five companies.  

From the figures, we see that NCP signifi-
cantly outperforms CP with respect to Compa-
nies D, I, M, and N. It performs as well as CP 
with respect to Company A. Furthermore, NCP 
performs better than both NDC and NIC in most 
cases (note that NDC and NIC should also be 
considered as our methods). The results indicate 
that the use of non-consecutive patterns is better. 
They also indicate that both the distance and 
island constraints are needed for reliable infor-
mation extraction. 
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Figure 6: Company A  
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Figure 7: Company D  
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Figure 8: Company I  
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Figure 9: Company M   
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Figure 10: Company N 

 
Table 2 shows the highest f-measure for each 

method. From the results, we see that NCP has 
the best performances in terms of highest 
f-measure in most of the cases except that of 
‘Company N’.  



 
NIC has the best f-measure for Company N. 

This is because without the island constraint 
more patterns could be acquired from the com-
pany’s data, and the recall values turned out to 
be very high, as shown in Figure 10. 
 
NCP: 
1. <company> {\w +6} the availability of <product>, 
2. <company> {\w +8} announced the {\w +5} avail-

ability of <product>. 
3. <company> {\w +3} unveiled <product>, a 
4. <company> today {\w +10} release of <product>, the 
5. <company> {\w +5} announced the <product>, a 
CP: 
1. <company> today announced the availability of 

<product>, 
2. <company> today announced the <product>, the 
3. <company> today announced the immediate world-

wide availability of <product>. 
4. <company> today announced the release of the 

<product>, the 
5. <company> today announced the <product>, a 
6. <company> today unveiled <product>, a 

Figure 11: Patterns with respect to Company M 
 

Figure 11 shows examples of the patterns for 
Company M extracted by NCP and CP respec-
tively. Since non-consecutive patterns include 
consecutive patterns, we omit the duplicated 
consecutive patterns from NCP in the figure. We 
see that NCP has more generalized patterns than 
CP, which contribute to the better performance 
of NCP. 

Admittedly, the precisions of NCP are still 
not high enough. We investigated the reason and 
found that this was due to the limited coverage 
of the training data. We believe, therefore, that 
with more data being available the accuracies 
will be able to be further improved in the future. 

5.2 Question Answering on Inventions 

We conducted information extraction for ques-
tion answering. More specifically, we conducted 
extraction on <question, answer> pairs. Given a 
<question> we can use the extracted <answer> 
to reply to the <question>. This experiment is 
similar to that in (Ravichandran and Hovy, 
2002). 

We selected four types of <question, an-
swer> pairs related to inventions. They were 
<discovery, discoverer>, <inventor, invention>, 
<invention, inventor> and <invention, invention 
year> pairs.  

We extracted data from the web. Table 3 
shows the details of the data. First, we created 
<question, answer> pairs. For example, 
<McCormick, the mechanical reaper> is an 
<inventor, invention> pair. For each <question, 
answer> pair, we used a search engine 2  to 
search web pages containing both the <ques-
tion> and the <answer>. From the top 50 re-
turned pages, we extracted the sentences con-
taining the <question> and the <answer>. We 
used them as positive instances for pattern gen-
eration. For each <question>, we also used the 
search engine to search web pages containing 
the <question>. From the top 50 returned pages, 
we extracted the sentences containing the 
<question>. We used them as instances (having 
both positive and negative instances) for pattern 
ranking. 

Table 3: Data for Question Answering  

Q/A type 
Num. of 

Q/A pairs 

Num. of 
data for 

generation  

Num. of 
data for 
ranking 

Discoverer 31 1280 97312 
Invention 112 2412 184209 
Inventor 112 2412 93960 
Invention 

year 
71 1154 57185 

 
The name of a person can appear in data in 

various ways. For example, �McCormick’ can 
appear as ‘Cyrus Hall McCormick’, ‘Cyrus 
McCormick’, and ‘Cyrus’. In the experiment, 
we normalized the names of persons (e.g., nor-
malized the above names to ‘McCormick’). We 
also assumed that any 3 or 4 digitals can be the 
expression of a year. 

We performed pattern learning and extrac-
tion experiments using the data through 10-fold 
cross-validation. The results obtained thus were 
averaged over ten trials.  

We evaluated the results using the ‘mean 
reciprocal rank (MRR)’ measure (Voorhees, 
2001), which was also used in (Ravichandran 
and Hovy, 2002). If the correct answer appears 
in the top 5 extracted answers, ‘reciprocal rank’ 
is defined as the reciprocal of the rank of the 
first correct answer; otherwise, ‘reciprocal rank’ 
is defined as zero. MRR is the mean of the re-                                                   
2 We used Google (http://www.google.com). 

Table 2: Highest F-Measure (%) 
 NCP NDC NIC CP 

Company A 60.45 57.97 59.49 59.09 
Company D 47.83 47.68 43.78 24.16 
Company I 54.14 51.32 52.26 48.43 

Company M 61.12 60.98 58.91 56.67 
Company N 42.96 44.12 50.52 18.97 



as zero. MRR is the mean of the reciprocal ranks 
of all the questions. 

We note that precision-recall is suitable for 
the evaluation in the first experiment and MRR 
is suitable for the evaluation in the second ex-
periment. In the first experiment, extraction was 
performed in order to find all the information 
from a closed data set; while in the second ex-
periment, extraction was performed so that 
whenever an answer was found, the search of an 
answer would be no longer needed. 

 
From Table 4, we see that NCP performs 

significantly better than CP with respect to ‘dis-
coverer’, ‘invention’ and ‘inventor’, and it per-
forms as well as CP with respect to ‘invention 
year’.  
<Discovery> was discovered by <Discoverer> in 
<Discovery> {\w +9} was discovered by <Discoverer>. 
<Discovery> {\w +8} discovered by <Discoverer> on 
<Discovery> {\w +15} discovered by <Discoverer> in 
<Discovery> {\w +10} discovered by <Discoverer> ( 
<Discovery> {\w +6} discovered in {\w +4} Sir <Discov-
erer>. 
<Discovery> was discovered {\w +5} Sir <Discoverer>, 

Figure 12: NCP Patterns  
with respect to Discoverer 

 
Figure 12 shows the example patterns ob-

tained by applying NCP to the ‘discoverer’ data. 

6 Conclusion 

This paper has presented a new algorithm for 
learning non-consecutive patterns with con-
straints for information extraction. The pattern 
generation step of the algorithm is an extension 
of the apriori algorithm. 

We believe that the use of non-consecutive 
patterns is necessary, when it is to extract in-
formation concerning with complex expressions 
(note that flexibility or non-consecutiveness is 
the nature of language).  

The main contributions of this paper, we 
think, are (a) the designing of the learning algo-
rithm which can accurately and efficiently ac-
quire non-consecutive patterns, (b) the proposal 
of using the constraints necessary for accurate 
and efficient information extraction, and (c) the 

empirical verification of the necessity of the use 
of non-consecutive patterns in information 
extraction. 
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Table 4: MRR Scores 
Q/A type NCP CP 

Discoverer 0.776 0.709 
Invention 0.375 0.305 
Inventor 0.407 0.360 

Invention year 0.390 0. 395 


