
 Learning and Exploiting Non-Consecutive String Patterns for

Information Extraction
Yunbo Cao

Microsoft Research Asia
5F Sigma Center, No.49
Zhichun Road, Haidian
Beijing, China, 100080

 i-yucao@microsoft.com

Hang Li
Microsoft Research Asia

5F Sigma Center, No.49
Zhichun Road, Haidian
Beijing, China, 100080
hangli@microsoft.com

Shenjie Li
Computer Science Department

Tsinghua University
Haidian

Beijing, China, 100084

Abstract

This paper is concerned with the
problem of learning and exploiting
string patterns in natural language
processing, particularly information
extraction. We propose a new algo-
rithm for learning such patterns. Our
algorithm is novel in that it can learn
non-consecutive patterns with con-
straints, which are necessary for in-
formation extraction. Specifically, it
employs an extended version of the
so-called apriori algorithm at the pat-
tern generation step. Our experimental
results indicate that in information ex-
traction the use of non-consecutive
patterns with constraints is signifi-
cantly better than the use of only con-
secutive patterns.

1 Introduction

We consider here the problem of learning and
using string patterns, particularly
non-consecutive patterns� in information ex-
traction.

In learning, for example, given the instances
“<company> today announced the worldwide
availability of <product>”, “<company> today
announced the immediate availability of <prod-
uct>”, etc, we acquire non-consecutive patterns
like “<company> today announced the \w+
availability of <product>”, where ‘\w+’ is a
wildcard denoting a skip of at least one word.
We refer to the patterns as ‘non-consecutive
patterns’. Note that ‘consecutive patterns’ are
special cases of ‘non-consecutive patterns’. In
extraction, we use the acquired patterns to match
the strings in new instances and extract from the

matched strings information on which company
has released what product.

Methods for learning and using only con-
secutive patterns for information extraction have
been proposed (e.g., Brin 1998; Ravichandran
and Hovy 2002). The coverage of such patterns
is small, however, as they do not contain
generalization.

In this paper, we propose a new algorithm
which can accurately and efficiently learn
non-consecutive patterns with constraints. Our
algorithm consists of two steps: pattern genera-
tion and pattern ranking. At the first step, it cre-
ates all the possible patterns which cover the
positive instances. At the second step, it ranks
the patterns according to their precision scores
using both the positive and negative instances.

Our algorithm is especially novel in that it
employs an extended version of the apriori al-
gorithm to accurately and efficiently acquire
patterns. The apriori algorithm was proposed for
learning associations in the field of data or text
mining. We think that it is the first time that it is
used for the information extraction task. Fur-
thermore, the apriori algorithm is extended here
for learning patterns with constraints. We pro-
pose three constraints necessary for accurately
acquiring non-consecutive patterns. We prove
that even on the constraints, the so-called apri-
ori (or anti-monotonicity) property still holds.

We applied the proposed algorithm to prod-
uct-release information extraction from the web
sites of IT companies. We also applied it to
question answering regarding inventions. Ex-
perimental results indicate that the use of
non-consecutive patterns with constraints sig-
nificantly outperforms the use of only consecu-
tive patterns in information extraction. Experi-
mental results also indicate that the constraints
we have defined are necessary for accurate ex-
traction.

2 Related Work

2.1 Information Extraction Using String
Patterns

A straightforward approach to learn natural lan-
guage patterns would be to syntactically parse
sentences and acquire sentential or phrasal pat-
terns from the obtained parsed trees (e.g., Lin
and Pantel, 2001; Sudo et al, 2001). Another
approach would be to discover string patterns by
using syntactic and semantic constraints (e.g.,
Huffman 1995; Soderland et al, 1995; Riloff,
1996). The two approaches are in general costly
in development.

Methods for directly acquiring consecutive
patterns from surface word strings have been
proposed.

For example, Brin (1998) proposed learning
and using consecutive patterns for extracting
information on certain pairs such as (<author>,
<book>) pairs. They conducted extraction from
web data through a bootstrapping process.

For another example, Ravichandran and
Hovy (2002) proposed learning and using con-
secutive patterns for extracting information on
<question, answer> pairs in question answering.
For example, they extracted patterns like ‘<per-
son> was born in <year>’ for answering a ques-
tion regarding the birth year of a person. Their
method consisted of two steps: pattern genera-
tion and pattern ranking. They used a suffix tree
to store all the possible string patterns at pattern
generation.

2.2 Sequential Data Mining

Agrawal and Srikant (1994) proposed employ-
ing the apriori algorithm for mining patterns
from sequential data. Each data sequence is a list
of transactions ordered by transaction-time.
Subsequently, Srikant and Agrawal (1996) pro-
posed extending the algorithm by incorporating
time and taxonomy constraints. Lent et al (1997)
proposed using the apriori algorithm for mining
phrasal patterns in order to discover trends in a
text database.

For other work on sequential data mining,
see (e.g., Mannila and Toivonen, 1996; Ahonen
et al, 1998).

The apriori algorithm was mainly used for
learning associations between data items in data
mining, or words in text mining. It was not used
for learning patterns necessary for information
extraction. Note that there are some clear dif-

ferences between information extraction and text
mining. For example, information extraction is
generally concerned with more complex patterns
than text mining. Information extraction gener-
ally needs annotated data for training, while text
mining does not necessarily need.

3 Problem

In learning, given ‘positive and negative training
instances’ as those in Figure 1, we are to acquire
patterns as those in Figure 2. In extraction, we
use the acquired patterns to extract information
from ‘test instances’ as that in Figure 1. Note
that there are negative test instances from which
no information can be extracted.

The example in Figure 1 is concerned with
product release information extraction. Positive
instances contain information on “<company>
has released <product>”. (We replace here
specific names such as ‘<com-
pany>Microsoft</company>’ with variables
such as ‘<company>’). Negative instances
contain information on <company>, but it is not
about product release. The goal is to extract
from the positive test instances information on
“<company> has released <product>”, more
precisely, the name of <product>, e.g., Micro-

Positive training instances:
<company> Microsoft Corp. </company> today an-
nounced the immediate availability of <product> Mi-
crosoft Internet Explorer Plus </product>, the eagerly
awaited retail version of Internet Explorer 4.0.

<company> Microsoft Corp. </company> today an-
nounced the availability of <product> Microsoft Visual
J++ 6.0 Technology Preview 2</product>, a beta re-
lease of the next version of the industry's most widely
used development system for Java.

<company> Microsoft Corp. </company> today an-
nounced the immediate, free availability of <product>
Microsoft Visual InterDev 6.0 March pre-release
</product>, a preview of the new version of the leading
team-based Web development system for rapidly
building data-driven Web applications.

Negative training instance:
<company> Microsoft Corp. </company> today an-
nounced the availability of an expanded selection of
Web-based training through its independent training
providers.

Positive test instance:
<company> Microsoft Corp. </company> today an-
nounced the immediate worldwide availability of
Microsoft Office 60 Minute Intranet Kit version 2.0,
downloadable for free (connect-time charges may ap-
ply) from the Office intranet Web site located at
http://www.microsoft.com/office/intranet/.

Figure 1: Training and Test Data

soft’s “Microsoft Office 60 Minute Intranet Kit
version 2.0”. That is to say, we assume here that
in extraction <company> has already been iden-
tified, but <product> has not. Hereafter, we will
sometimes refer to <product> as ‘anchor’.
Consecutive patterns:

<company> today announced the immediate availabil-
ity of <product>,

<company> today announced the availability of
<product>,

<company> today announced the immediate, free
availability of <product>,

Non-consecutive patterns:
<company> today announced the {\w +3} availability
of <product>,

Figure 2: Patterns

Using the existing methods (e.g., Brin 1998;
Ravichandran and Hovy 2002), one can obtain
consecutive patterns as those in Figure 2. The
coverage of such patterns is small, however, as
they do not contain generalization. For example,
using the patterns, one cannot extract the infor-
mation in the test instance in Figure 1. It is ob-
vious that the words ‘immediate’ and ‘free’ are
not necessary for the extraction, and thus it is
desirable to learn and use non-consecutive pat-
terns that can skip such kind of words. Figure 2
also shows an example of non-consecutive pat-
terns. With the pattern, one can correctly extract
the information in the instance. The question
then is how to acquire non-consecutive patterns.

4 Our Method

Our method of learning non-consecutive (and
also consecutive) patterns comprises of two
steps: pattern generation and pattern ranking.
At the first step, it creates all the possible pat-
terns which cover the positive instances. At the
second step, it ranks the patterns according to
their precision scores using both the positive and
negative instances. In extraction, it utilizes the
ranked patterns to match strings and extracts the
anchor information from the matched strings.

4.1 Pattern Generation

The input of pattern generation is a number of
strings, and the output is a number of
non-consecutive patterns that cover the input
strings. We replace specific names with general
variables (e.g., <company>, <product>). The
non-consecutive patterns are unique in that they
can have ‘wildcards’. We use ‘\w +n’ to denote

a wildcard that skips at least one and at most n
words. The non-consecutive patterns thus con-
tain generalization of strings.

Algorithm

Figure 3 shows the algorithm which generates
patterns satisfying the constraints described be-
low. The algorithm is an extension of the apriori
algorithm.

Let iP denote the set of generated patterns
in the i-th iteration (ki ≤≤1). Initially, let 1P
to be the set of words. Our algorithm recursively
creates patterns in iP by combining the pat-
terns in)i(P 1− and the words in 1P . The algo-

rithm comprises of two sub algorithms:

Learn-non-consecutive-pattern-with-constraints
1. S = set of input strings,

2. 1P = set of words in S ;

3. for (++≤= i;ki;i 2){

4. iP = find-nonconsecutive-pattern()1(−iP , 1P);

5. for each (iPp ∈){

6. if (not satisfy-constraints(p))

7. remove p from iP ;

8. if (p ’ s frequency is not larger than a threshold)

9. remove p from iP ;

10. if (p does not contain <anchor>)

11. remove p from iP ;

12. }
13. if (iP is empty)

14. Goto line 16;
15. }
16. output

j
i
j PP 2== U ;

Figure 3: Algorithm of Pattern Generation

find-non-consecutive-pattern()i(P 1− , 1P)

1. for each ()i()i(Pp 11 −− ∈){

2. for each (11 Pp ∈){

3. 11 ppp)i(i −= ;

4. if (ip exists in S)

5. put ip into iP ;

6. 11 } { pnw\p'p)i(i += − ;

7. if (i'p exists in S)

8. put i'p into iP ;

9. }
10. }
11. output iP ;

Figure 4: Sub-Algorithm of Pattern Generation

‘find-non-consecutive-patterns’ (Figure 4) and
‘satisfy constraints’.

At lines 6 and 7 of Figure 3, we check if pat-
tern p satisfies the constraints, if not we remove
it from the set of patterns. At lines 8 and 9, we
check if the frequency of pattern p is not lar-
ger than a threshold, if so we remove it from the
set of patterns (the same as in apriori).

At line 3 of Figure 4, we concatenate patterns
)i(p 1− and 1p into pattern ip . At line 6 of Fig-

ure 4, we concatenate patterns)i(p 1− and

1p into pattern i'p in which there is a wildcard
of at least one word and at most n words be-
tween)i(p 1− and 1p , where n is calculated with

the input data.
In the algorithm we treat a wildcard as a

special word. As a result, for example, the string
‘\w the book \w’ is not the superstring of the
string ‘\w the \w’.

Note that ‘find consecutive patterns’ be-
comes a special case of ‘find non-consecutive
patterns’, if we remove lines 6, 7 and 8 in Figure
4. Also note that ‘find non-consecutive patterns
without constraints’ becomes a special case of
‘find non-consecutive patterns with constraints’,
if we remove lines 6 and 7 in Figure 3.

Three Constraints

We propose the use of three constraints neces-
sary for accurately acquiring non-consecutive
patterns for information extraction.

The first constraint is that there cannot be a
wildcard immediately before or after an anchor.
We call the constraint ‘boundary constraint’.
The constraint is obligatory for information ex-
traction, since it is necessary to accurately de-
termine the boundaries of an anchor (e.g.,
<product>). Without this constraint, pattern 1 in
Figure 5 will be generated, and with the pattern
the information in test instance 1 will be incor-
rectly extracted.

The second constraint is that the number of n
in the wildcard ‘\w +n’ in a context should not
be larger than the largest number of words to be
skipped in the same context in the training data.
We call the constraint ‘distance constraint’.
Without this constraint, pattern 2 in Figure 5
will be generated, and the information in test
instance 2 will be incorrectly extracted.

The third constraint is that ‘an isolated func-
tion word’ is prohibited. For example, in the
pattern ‘\w+ the \w+’, ‘the’ is an isolated func-

tion word. The rational behind the constraint is
that a pattern should include content words and
skip isolated function words. We call the con-
straint ‘island constraint’. Without this con-
straint, pattern 3 in Figure 5 will be generated,
and the information in test instance 3 will be
incorrectly extracted.

The use of the constraints also has a desirable

effect of improving efficiency in learning, as it
helps reduce the search space.

Theorem 1 below guarantees that our algo-
rithm is able to find all the patterns which cover
the input strings satisfying the constraints.

Definition 1)s(bρ ,)(sdρ and)s(iρ are

properties of string s, such that





=
otherwise 0

constraintboundary thesatisfies s if 1
)s(bρ

Non-consecutive patterns without certain con-
straint:
1. <company> today announced the immediate avail-

ability {\w +3} <product>

2. <company> {\w +} today announced {\w +} deliver
<product>.

3. <company> {\w +8} the {\w +13} of the <product> ,

the first
Test instances:
1. Microsoft Corp. today announced the immediate

availability of Internet Explorer for no-charge
download from the Internet.

2. Microsoft Corp. and Policy Management Systems

Corp. (PMSC) today announced a plan in which the
two companies will work together to deliver enter-
prise and electronic-commerce solutions based on the
Microsoft Windows NT Server operating system and
the BackOffice family of products.

3. Microsoft Corp. today provided attendees of the

Consumer Electronics Show in Las Vegas with a
demonstration of the Microsoft Entertainment Pack
for the Windows CE operating system, the first game
product to be released for the Windows CE-based
handheld PC platform.

Incorrectly extracted <product> information:
1. any substring of ‘of Internet Explorer for no-charge

download from the Internet’

2. enterprise and electronic-commerce solutions based

on the Microsoft Windows NT Server operating sys-
tem and the BackOffice family of products

3. Microsoft Entertainment Pack for the Windows CE

operating system
Figure 5: Patterns without Constraints





=
otherwise 0

constraint distance thesatisfies s if 1
)s(dρ





=
otherwise 0

constraint island thesatisfies s if 1
)s(iρ

Definition 2 (anti-monotonicity) Let s denote
any string and let t denote any superstring of s.
A property ρ of strings is anti-monotone, if

0=)s(ρ implies 0=)t(ρ .1
Theorem 1)(sbρ ,)(sdρ and)(siρ are

anti-monotonic.
The proof of the theorem is omitted here due

to the limitation of space.

4.2 Pattern Ranking

The patterns obtained at pattern generation are
ranked based on their precisions, using both
positive and negative instances, provided that
the precisions are larger than a predetermined
threshold.

Let a denote the number of instances
matched to a pattern p, and let c denote the
number of the instances matched to p, and at the
same time the information in the instances can
be correctly extracted. The precision of p is de-

fined as
a

c
.

When a pattern p can match all the positive
instances that a pattern q can match, we say p
covers q. If p covers q and p is ranked before q
in the ranked pattern list, we remove q from the
list.

4.3 Extraction

Given a new instance, the ranked patterns are
examined sequentially. With the pattern which
matches the instance first, the anchor informa-
tion is extracted. For example, with the
non-consecutive pattern in Figure 2, one can
extract from the test instance in Figure 1, the
anchor (i.e., <product>) information: “Microsoft
Office 60 Minute Intranet Kit version 2.0”.

The matching of a string pattern to a string
instance is performed in the left-to-right order.
For example for the pattern ‘x \w+ y \w+’:

First, x matches to its first occurrence in
the string and y matches to all its occur-
rences in the sub-string after the first oc-
currence of x. If the matching fails, then x
matches to its second occurrence and y

1 In mathematics, anti-monotonicity is a more general no-
tion.

matches to all its occurrences in the re-
maining sub-string. The matching contin-
ues.

5 Experimental Results

We conducted two experiments in order to test
the effectiveness of our method. Specifically, we
performed information extraction regarding
product releases and inventions.

Experimental results indicate that for infor-
mation extraction (at least for the problems in-
vestigated), the use of non-consecutive string
patterns with constraints outperforms the use of
consecutive string patterns alone and the con-
straints we propose are indeed needed.

Hereafter, we denote the method using
non-consecutive string patterns and that using
consecutive string patterns as NCP and CP, re-
spectively.

5.1 Product Release Information Ex-
traction

Many companies routinely publish information
on product releases at their web sites. Auto-
matically extracting such information has not
only research values but also practical interests.
This is exactly the problem we have investigated,
which is also described above as an example.

We collected press release articles from the
websites of five IT companies. From each article,
we extracted the first sentence using heuristic
rules (the data in Figure 1 are examples of them).
Next, we asked two human annotators to assign
labels on the extracted sentences. The sentences
containing information on “<company> has re-
leased <product>” were annotated as positive
instances. Specifically, the company names and
the product names were assigned labels. The
sentences containing information only on
<company> were annotated as negative in-
stances. Specifically, only the company names
were assigned labels. Details of the data can be
found in Table 1.

Table 1: Data for Product Release Information

Extraction

Company
Num. of pos.

data
Num. of neg.

data
Company A 174 229
Company D 304 390
Company I 250 556

Company M 1004 2365
Company N 208 292

With the data of each company, we com-
pared NCP against CP. To investigate the neces-
sity of the use of the constraints, we also tested
two additional methods. In the first method, we
removed the distance constraint from NCP, in
the second method, we removed the island con-
straint from NCP. We denote them as NDC and
NIC, respectively. Note that the boundary con-
straint is an obligatory constraint.

We performed the experiments with ��-fold
cross-validation. The results obtained were thus
those averaged over ten experimental trials. We
evaluated the results in terms of precision, recall
and f-measure. Let |D| denote the number of in-
stances extracted by using the patterns. Let |F|
denote the number of instances correctly ex-
tracted by using the patterns. Let |E| denote the
number of instances that should be extracted.
We define

|D||F| precision =

|E||F| recall =

recall precision

recallprecision2
 measure-f

+
××=

With different thresholds on the precisions at
pattern ranking, we obtained results of different
precisions and recalls on the test set. Figures
6-10 show the ‘precision recall curves” for the
five companies.

From the figures, we see that NCP signifi-
cantly outperforms CP with respect to Compa-
nies D, I, M, and N. It performs as well as CP
with respect to Company A. Furthermore, NCP
performs better than both NDC and NIC in most
cases (note that NDC and NIC should also be
considered as our methods). The results indicate
that the use of non-consecutive patterns is better.
They also indicate that both the distance and
island constraints are needed for reliable infor-
mation extraction.

���

���

���

���

���

���

���

��	

��

���

���

��� ��� ��� ��� ��� ��� ��� ��	 ��
 ��� ���

�
����

�
�
�
�
�
�
�
�
�

���

��

���

���

Figure 6: Company A

���

���

���

���

���

���

���

��	

��

���

���

��� ��� ��� ��� ��� ��� ��� ��	 ��
 ��� ���

�
����

�
�
�
�
�
�
�
�
�

���

��

���

���

Figure 7: Company D

���

���

���

���

���

���

���

��	

��

���

���

��� ��� ��� ��� ��� ��� ��� ��	 ��
 ��� ���

�
����

�
�
�
�
�
�
�
�
�

���

��

���

���

Figure 8: Company I

���

���

���

���

���

���

���

��	

��

���

���

��� ��� ��� ��� ��� ��� ��� ��	 ��
 ��� ���

�
����

�
�
�
�
�
�
�
�
�

���

��

���

���

Figure 9: Company M

���

���

���

���

���

���

���

��	

��

���

���

��� ��� ��� ��� ��� ��� ��� ��	 ��
 ��� ���

�
����

�
�
�
�
�
�
�
�
�

���

��

���

���

Figure 10: Company N

Table 2 shows the highest f-measure for each

method. From the results, we see that NCP has
the best performances in terms of highest
f-measure in most of the cases except that of
‘Company N’.

NIC has the best f-measure for Company N.

This is because without the island constraint
more patterns could be acquired from the com-
pany’s data, and the recall values turned out to
be very high, as shown in Figure 10.

NCP:
1. <company> {\w +6} the availability of <product>,
2. <company> {\w +8} announced the {\w +5} avail-

ability of <product>.
3. <company> {\w +3} unveiled <product>, a
4. <company> today {\w +10} release of <product>, the
5. <company> {\w +5} announced the <product>, a
CP:
1. <company> today announced the availability of

<product>,
2. <company> today announced the <product>, the
3. <company> today announced the immediate world-

wide availability of <product>.
4. <company> today announced the release of the

<product>, the
5. <company> today announced the <product>, a
6. <company> today unveiled <product>, a

Figure 11: Patterns with respect to Company M

Figure 11 shows examples of the patterns for
Company M extracted by NCP and CP respec-
tively. Since non-consecutive patterns include
consecutive patterns, we omit the duplicated
consecutive patterns from NCP in the figure. We
see that NCP has more generalized patterns than
CP, which contribute to the better performance
of NCP.

Admittedly, the precisions of NCP are still
not high enough. We investigated the reason and
found that this was due to the limited coverage
of the training data. We believe, therefore, that
with more data being available the accuracies
will be able to be further improved in the future.

5.2 Question Answering on Inventions

We conducted information extraction for ques-
tion answering. More specifically, we conducted
extraction on <question, answer> pairs. Given a
<question> we can use the extracted <answer>
to reply to the <question>. This experiment is
similar to that in (Ravichandran and Hovy,
2002).

We selected four types of <question, an-
swer> pairs related to inventions. They were
<discovery, discoverer>, <inventor, invention>,
<invention, inventor> and <invention, invention
year> pairs.

We extracted data from the web. Table 3
shows the details of the data. First, we created
<question, answer> pairs. For example,
<McCormick, the mechanical reaper> is an
<inventor, invention> pair. For each <question,
answer> pair, we used a search engine 2 to
search web pages containing both the <ques-
tion> and the <answer>. From the top 50 re-
turned pages, we extracted the sentences con-
taining the <question> and the <answer>. We
used them as positive instances for pattern gen-
eration. For each <question>, we also used the
search engine to search web pages containing
the <question>. From the top 50 returned pages,
we extracted the sentences containing the
<question>. We used them as instances (having
both positive and negative instances) for pattern
ranking.

Table 3: Data for Question Answering

Q/A type
Num. of

Q/A pairs

Num. of
data for

generation

Num. of
data for
ranking

Discoverer 31 1280 97312
Invention 112 2412 184209
Inventor 112 2412 93960
Invention

year
71 1154 57185

The name of a person can appear in data in

various ways. For example, �McCormick’ can
appear as ‘Cyrus Hall McCormick’, ‘Cyrus
McCormick’, and ‘Cyrus’. In the experiment,
we normalized the names of persons (e.g., nor-
malized the above names to ‘McCormick’). We
also assumed that any 3 or 4 digitals can be the
expression of a year.

We performed pattern learning and extrac-
tion experiments using the data through 10-fold
cross-validation. The results obtained thus were
averaged over ten trials.

We evaluated the results using the ‘mean
reciprocal rank (MRR)’ measure (Voorhees,
2001), which was also used in (Ravichandran
and Hovy, 2002). If the correct answer appears
in the top 5 extracted answers, ‘reciprocal rank’
is defined as the reciprocal of the rank of the
first correct answer; otherwise, ‘reciprocal rank’
is defined as zero. MRR is the mean of the re-
2 We used Google (http://www.google.com).

Table 2: Highest F-Measure (%)
 NCP NDC NIC CP

Company A 60.45 57.97 59.49 59.09
Company D 47.83 47.68 43.78 24.16
Company I 54.14 51.32 52.26 48.43

Company M 61.12 60.98 58.91 56.67
Company N 42.96 44.12 50.52 18.97

as zero. MRR is the mean of the reciprocal ranks
of all the questions.

We note that precision-recall is suitable for
the evaluation in the first experiment and MRR
is suitable for the evaluation in the second ex-
periment. In the first experiment, extraction was
performed in order to find all the information
from a closed data set; while in the second ex-
periment, extraction was performed so that
whenever an answer was found, the search of an
answer would be no longer needed.

From Table 4, we see that NCP performs

significantly better than CP with respect to ‘dis-
coverer’, ‘invention’ and ‘inventor’, and it per-
forms as well as CP with respect to ‘invention
year’.
<Discovery> was discovered by <Discoverer> in
<Discovery> {\w +9} was discovered by <Discoverer>.
<Discovery> {\w +8} discovered by <Discoverer> on
<Discovery> {\w +15} discovered by <Discoverer> in
<Discovery> {\w +10} discovered by <Discoverer> (
<Discovery> {\w +6} discovered in {\w +4} Sir <Discov-
erer>.
<Discovery> was discovered {\w +5} Sir <Discoverer>,

Figure 12: NCP Patterns
with respect to Discoverer

Figure 12 shows the example patterns ob-

tained by applying NCP to the ‘discoverer’ data.

6 Conclusion

This paper has presented a new algorithm for
learning non-consecutive patterns with con-
straints for information extraction. The pattern
generation step of the algorithm is an extension
of the apriori algorithm.

We believe that the use of non-consecutive
patterns is necessary, when it is to extract in-
formation concerning with complex expressions
(note that flexibility or non-consecutiveness is
the nature of language).

The main contributions of this paper, we
think, are (a) the designing of the learning algo-
rithm which can accurately and efficiently ac-
quire non-consecutive patterns, (b) the proposal
of using the constraints necessary for accurate
and efficient information extraction, and (c) the

empirical verification of the necessity of the use
of non-consecutive patterns in information
extraction.

References

H. Ahonen, O. Heinonen and M. Klemettinen, 1998.
Applying Data Mining Techniques for Descrip-
tive Phrase Extraction in Digital Document Col-
lections. In Proceedings of Advances in Digital
Libraries Conference.

R. Agrawal and R. Srikant, 1994. Mining Sequential
Patterns. In Proceedings of the 20th International
Conference on Very Large Databases.

S. Brin, 1998. Extracting Patterns and Relations from
the World Wide Web. In Proceedings of the
WebDB Workshop at 6th International Conference
on Extending Database Technology.

S. Huffman, 1995. Learning Information Extraction
Patterns from Examples. In Proceedings of
IJCAI-95 Workshop on New Approaches to
Learning for Natural Language Processing

B. Lent, R. Agrawal and R. Srikant, 1997. Discover-
ing Trends in Text Databases. In Proceedingsof
the 3rd International Conference on Knowledge
Discovery and Data Mining.

D. Lin and P. Pantel. 2001. DIRT - Discovery of In-
ference Rules from Text. In Proceedings of ACM
SIGKDD Conference on Knowledge Discovery
and Data Mining 2001.

H. Mannila and H. Toivonen, 1996. Discovering
Generalized Episodes Using Minimal Occur-
rences. In Proceedings of the 2nd International
Conference on Knowledge Discovery and Data
Mining.

D. Ravichandran and E. Hovy. Learning Surface
Text Patterns for a Question Answering System.
In Proceedings of the 40th Annual Meeting of the
Association for Computational Linguistics.

E. Riloff, 1996. Automatically Generating Extraction
Patterns from Untagged Text. In Proceedings of
the 13th National Conference on Artificial Intelli-
gence.

S. Soderland, D. Fisher, J. Aseltine, and W. Lehnert,
1995. Crystal: Inducing a Conceptual Dictionary.
In Proceedings of the 14th International Joint
Conference on Artificial Intelligence.

R. Srikant and R. Agrawal, 1996. Mining Sequential
Patterns: Generalizations and Performance Im-
provements. In Proceedings of the 5th Interna-
tional Conference on Extending Database Tech-
nology, EDBT.

K. Sudo, S. Sekine and R. Grishman, 2001. Auto-
matic Pattern Acquisition for Japanese Informa-
tion Extraction. In Proceedings of Human Lan-
guage Technologies, 2001.

E. Voorhees, 2001. Overview of the Question An-
swering Track. In Proceedings of the TREC-10
Conference. NIST, Gaithersburg, MD, 157–165.

Table 4: MRR Scores
Q/A type NCP CP

Discoverer 0.776 0.709
Invention 0.375 0.305
Inventor 0.407 0.360

Invention year 0.390 0. 395

