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Text categorization is the problem of automatically assigning text documents into one or more
categories. Typically, an amount of labelled data, positive and negative examples for a category, is
available for training automatic classifiers. We are particularly concerned with text classification
when the training data is highly imbalanced, i.e., the number of positive examples is very small.
We show that the linear support vector machine (SVM) learning algorithm is adversely affected by
imbalance in the training data. While the resulting hyperplane has a reasonable orientation, the
proposed score threshold (parameter b) is too conservative. In our experiments we demonstrate
that the SVM-specific cost-learning approach is not effective in dealing with imbalanced classes.
We obtained better results with methods that directly modify the score threshold. We propose a
method based on the conditional class distributions for SVM scores that works well when very few
training examples is available to the learner.
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1 Introduction

Text categorization involves a predefined set of cat-
egories and a set of documents that need to be clas-
sified using that categorization scheme. Each docu-
ment can be assigned one or multiple categories (or
perhaps none at all). We address the multi-class cate-
gorization problem as a set of binary problems where,
for each category, the set of positive examples con-
sists of documents belonging to the category while
all other documents are considered negative exam-
ples. Labelled documents are used as input to various
learning algorithms to train classifiers and automat-
ically categorize new unlabelled documents.

Traditionally, machine learning research has as-
sumed that the class distribution in the training data
is reasonably balanced. More recently it has been rec-
ognized that this is often not the case with realistic
data sets where many more negative examples than
positive ones are available. The question then arises
how best to utilize the available labelled data.

It has been observed that a disproportional abun-
dance of negative examples decreases the perfor-
mance of learning algorithms such as naive Bayes and
decision trees [KM97]. Thus, research has been con-
ducted into balancing the training set by duplicat-
ing positive examples (oversampling) or discarding
negative ones (downsizing) [Jap00]. When discard-
ing negative examples, the emphasis has sometimes
been on those that are close to positive ones. In this
way, one reduces the chance that the learning method
might produce a classifier that would misclassify pos-
itive examples as negatives [KM97]. An alternative
approach has been explored in [CS98]. It involves
training several classifiers on different balanced data
subsets, each constructed to include all positive train-
ing examples and a sample of negative examples of a
comparable size. The predictions of these classifiers
are then combined through stacking.

On the other hand, systematic experiments by
[WPO01] indicate that neither natural nor balanced
distributions are necessarily best for training. It is
evident that having a majority of positive examples
in the training set is important. However, the pro-
portion of positive and negative examples that leads
to best classifiers generally depends on the data set.

Implications of rebalancing the training set by modi-
fying the number of negative examples have also been
explored analytically in [Elk01]. Most of this work
has been done on symbolic domains. However, dis-
carding negative examples has also been used in text
categorization [NGL97] in conjunction with the per-
ceptron as the learning algorithm.

In this paper we investigate the problem of text
categorization with the linear SVM classifier when
very few positive examples are available for training.
In order to investigate this issue systematically, we
vary the number of positive examples in the training
set and apply the resulting classifiers to test data
with a natural distribution of positive and negative
documents. We are particularly interested in highly
imbalanced distributions with the ratio of positive to
negative documents ranging from less than 0.1 % up
to 10 %.

The linear SVM learner produces an optimal hy-
perplane wTx = b that separates the positive exam-
ple from negative ones in the high-dimensional space
of features that represent documents. The optimiza-
tion problem involves determining the trade-off be-
tween the error margin and misclassification cost for
the examples in the training data. The resulting hy-
perplane is then used to classify the new, unlabeled
data.

Our results, presented in Section 6, show that im-
balanced class distributions negatively affect the per-
formance of the SVM classifiers. This appears to be
mostly due to the poor estimation of the parameter
b, also referred to as the score threshold since the
documents with the score w’'x above the threshold
b are assigned the positive label. The value of b ob-
tained by the original learner is too high, resulting
in a too conservative assignment of positive labels to
test documents. In addition, our experiments with
cost-based adjustment of the dividing hyperplane,
through modification of the optimization function,
have shown that the learner achieves improved per-
formance mostly through the change in the parameter
b. Thus, we investigate several methods for altering
the score threshold directly.

In Section 6 we show that this approach is very
successful in dealing with highly imbalanced train-
ing data. Cross-validation over the training data en-



ables us to set the threshold successfully even when
the training data contains less than 0.01 % of pos-
itive examples: the macroaveraged F} performance
over the test data is increased from 0.0166 to 0.3603.
This improvement is also a considerable step towards
the optimal F) performance achievable through the
modification of b: F; = 0.4724.

We structured our paper in the following way. First
we provide a brief overview of the SVM learning
method, discussing its cost-based learning and score
thresholding aspects. Then we describe the exper-
imental set-up and results of the experiments that
explore each of these two aspects in detail. We con-
clude with summary of our findings and discussion of
future work.

2 Support vector machines

The support vector machine (SVM) [CV95] is a rela-
tively recent machine learning algorithm proven to be
very successful in a variety of domains. It is currently
considered the state-of-the-art algorithm in text cat-
egorization.

SVM treats learning as an optimization problem.
Training and test examples are represented as d-
dimensional real vectors in the space of features de-
scribing the data. Given a category, each example be-
longs to one of two classes referred to as positive and
negative class, respectively. Thus, the training set
consists of pairs (x;,v;), i = 1,...,l, where x; € R?
is the i-th training vector and y; € {+1,—1} is the
class label of this instance.

The learner attempts to separate positive from
negative instances using a hyperplane of the form
wl x = b. Here, w is the “normal” of the hyper-
plane, i.e., a vector perpendicular to it, which defines
the orientation of the plane. The constant b defines
the position of the plane in space. To choose w and
b, SVM minimizes the following criterion function:

f(w,b) = gllw|]> + C 3, &
subject to  Vi:y;(wix; —b)>1-¢&, & >0.
The space between the planes w’x = b+ 1 is called
the “margin” and its width can be expressed as a
function of w: 2/||w||. The above criterion function

causes the learner to look for a trade-off between min-
imizing the term ||w||?, which is equivalent to max-
imizing the width of the margin, on one hand, and
minimizing the classification errors over the training
data, expressed by the term containing ). &;. The
constant C, chosen before learning, defines the rela-
tive importance of these two terms. The associated
inequality constraints require each training example
to lie on the correct side of the hyperplane and suf-
ficiently far from it. Otherwise the slack variable &;
becomes positive and decreases the value of the above
criterion function for the hyperplane under consider-
ation.

Once w and b are calculated, the classifier uses
the following criterion to predict class labels of new
documents:

prediction(x) := sgn(w’x — b).

For that reason, the parameter b is referred to as the
score threshold. Documents x with the score w’x
above the value b are assigned the positive label.
This basic formulation has also been extended to
accommodate various classification types and address
issues such multiple classes and use of nonlinear clas-

sifiers.

2.1 Cost-based learning

One important extension of the SVM model is aimed
at highly imbalanced training data where the ratio of
positive examples to negative examples is very small.
It allows us to treat classification errors on positive
training examples more seriously than those on nega-
tive training examples. The general criterion function
takes the form

Fw b= Sl 40 &+ 0¥ 6 ()

iy =+1 LY =—

this enables one to set the cost of misclassifying pos-
itive examples j times higher than in the original
formulation. This is, in fact, equivalent to over-
sampling, i.e., simulating the situation in which j
copies of each positive training example is used in
the original optimization problem.



Based on the definition of the optimization prob-
lem we expect that the SVM learner will be rather
robust with respect to the large number of negative
examples. The negative examples that lie below the
margin (i.e., wI'x; < b — 1) do not have an influ-
ence on the learning process. However, the negative
examples that are close to the positives, or even in-
terspersed among them, could still be relatively detri-
mental to the learning process, given that the posi-
tives are not so numerous.

2.2 Thresholding strategies

Modifying the score threshold in order to improve the
SVM classification performance has been explored
by Platt [Pla99], who assumed that the probabil-
ity that a document with the score w’x is posi-
tive, P(y = +1lw’x), can be described by a sig-
moid function of the score w”x. The parameters of
the sigmoid are chosen using a validation set and a
new threshold is placed where the sigmoid function
achieved the value of 1/2. This, in effect, aims at
predicting the class with the maximum a posteriori
probability. However, the separation of positive and
negative examples is not perfect and such a thresh-
old could cause a non-negligible number of positive
examples to be misclassified as negative. In case of
imbalanced classes, where there were few positive ex-
amples to begin with, this can lead to a poor recall
and, consequently, poor Fj-measure.

Chakrabarti et al. [CRS02] have also observed that
the F| performance of an SVM classifier can be im-
proved by tuning the threshold with the aid of a
validation set. They investigated this issue only
briefly, without systematic consideration of imbal-
anced training data.

Methods for setting score thresholds are com-
monly considered in the area of information retrieval
[Yang01] which also comprises various text catego-
rization tasks. Among them is the proportional as-
signment of positive labels, also known as “PCut”.
First, the test documents are ranked based on the
score which estimates the likelihood that a document
is positive. A number of top ranked documents is
then assigned the positive label so that the percent-
age of positive predictions on the test set matches

the percentage of positive documents in the training
set. However, such a technique is less suitable when
one needs to model classification of individual docu-
ments rather than a collection of documents at once.
Other thresholding strategies mentioned in [Yang01]
can be used in such situations, however. In particu-
lar, “SCut” consists of selecting a separate threshold
for each category using a separate validation set of
documents. “RCut” assigns each document to a fixed
number of categories that appear to be the most likely
for this document.

3 Design of the experiments

We designed our experiments to examine cost based
and threshold based improvements of the SVM learn-
ing algorithm for highly imbalanced classes. We con-
trolled the proportion of positive documents in the
training data but evaluated the methods on the test
data with the natural class distributions.

We used documents from the Reuters Corpus, Vol-
ume 1 [Reu00] that consists of 806,791 Reuters arti-
cles dated 20 August 1996 through 19 August 1997.
Out of those, we chose 302,323 documents dated later
than 14 April 1997 for the test set. For training, we
randomly selected document sets from those dated
14 April 1997 or earlier. To ensure that the train-
ing data contains a particular number or percentage
of positive examples we used a different training set
for each category. Thus, we treated classification of
each category completely independently of the clas-
sification of the others. For each category C' we built
training sets Tr(C, P, N) with a predefined number
P of positive examples, i.e., documents belonging to
category C, and a number N of negative examples,
i.e., documents not belonging to C'. In all our exper-
iments, we fix N = 10,000 and vary the values of P
from 8 to 1024. The training sets for different values
of P are nested in the sense that P < P’ implies that
positive examples in Tr(C, P, N) are a subset of those
in Tr(C, P’, N). The negative examples are the same
in both.

We used the familiar bag-of-words model to repre-
sent the documents, eliminating stopwords and words
occurring in less than four training documents. Each



document was represented by a vector of features
weighted by the standard TF-IDF score and was nor-
malized to the Euclidean length of 1.

The original Reuters classification scheme involves
103 categories. In our experiments we used a subset
of 16 categories: c13, c15, c185, ¢313, e121, el3, el32,
el42, e21, ghea, gobit, godd, gpol, gspo, m14, m143,
which were chosen on the basis of preliminary exper-
iments with the full set of categories. We observed
the performance of the SVM classifier on a smaller set
of training and test data and selected the categories
that cover a range of category sizes and classification
difficulty, as measured by the breakeven point. The
same set of categories has been already been used in
our earlier work [BGMMO02].

To quantify the classifier performance we calcu-
lated the F} measure, a function of the precision p
and recall r, F} := 2pr/(p + r), where p is the pro-
portion of correct predictions among documents that
were predicted to be positive, and r is the proportion
of correct predictions among the documents that were
truly positive.

We describe the performance in terms of the
macroaveraged Fj values over the set of categories.
More precisely, given a particular value of P and
a particular thresholding strategy, we train a classi-
fier for each category, using Tr(C, P, N) as a training
set. The classifier is then applied to the test data
and its F; performance on the test set is recorded.
The macroaveraged Fj is then simply the average of
Fy values across all 16 categories. Thus the influ-
ence of smaller categories on this performance mea-
sure is probably smaller than it would be if macroav-
eraged F; were computed over all Reuters cate-
gories (where the smaller categories would predomi-
nate more strongly). At the same time, the influence
of the smaller categories is probably larger than it
would be if microaveraged performance values were
used.

We also observe the precision-recall breakeven
point (BEP) [Lew91, p. 105] for individual classifiers
and the macroaverage across the classifiers. As the
threshold is gradually decreased, more documents are
assigned positive labels, resulting in increased recall
but, generally, a decreased precision. At some point
the precision and recall become equal and this value

of precision and recall is defined as the breakeven
point (BEP). Thus, by definition, BEP does not de-
pend upon a particular choice of a threshold but only
on the ranking of document scores w’x. Therefore,
it is particularly useful for evaluating the quality of
the hyperplane orientation w determined by the SVM
learner.

We used Thorsten Joachims’ SVM!"* program
[Joa99] to train the SVM models. We conducted
three sets of experiments. The first set explores the
effect that the cost parameter j has on the perfor-
mance of the classifier. The second set investigates
strategies for setting the score threshold value b. Fi-
nally, in the third set we experiment with the combi-
nation of varying 7 and b simultaneously.

4 Experiments with
cost-based learning

In this section we explore the effects of cost adjust-
ment in the SVM optimization problem by varying
the value of j (see Section 2.1). We gradually in-
crease j starting with the default value j = 1. This is
expected to increase the assignment level of positive
labels to documents, thus leading to an increase in
recall at the expense of decrease in precision. The
results of our experiments are presented in Figure 1.

As it can be seen, the j parameter has a relatively
small effect on the categorization of test data. This
effect is adverse if the training set contains a suffi-
ciently large ratio of positive examples (in this case
10%, i.e., 1024 documents). Then the gain in recall
is outweighed by the loss of precision and, as a result,
the F} measure decreases.

We also observe that most significant changes oc-
cur as j increases from its default value of 1 to j = 2.
The effect of further increasing j is rather small. It
quickly reaches the value for which no misclassifica-
tions of positive examples in the training set occur.
Given that j only affects errors on positive examples,’

1Strictly speaking, it influences all the positive training ex-
amples that have ; > 0. They need not actually be misclassi-
fied; they might also lie within the margin (i.e., on the correct
side of the separating hyperplane but not far enough from it).
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Figure 1: The dependence of macroaveraged performance measures on the cost of false negatives (the j
parameter). Number of positive training examples: top row, 11 (0.1 %); middle row, 128 (1 %) bottom row,
1024 (10%). Charts in the left column show precision and recall, and those in the right column show F; and
the break-even point. Precision and recall behave similarly on both the training and the test set: precision
decreases and recall increases with increasing values of j. F} increases with j, except when there are many
positive training examples. Interestingly, the breakeven point hardly changes with the increase of j.



increases in j beyond that value does not influence
the learning process.

The BEP hardly changes with the increase of j.
On the training set it remains practically unchanged.
On the test set it remains almost unchanged for small
number of positive examples but shows decrease in
performance for larger number of positive examples.
Since BEP is only affected by the orientation of the
dividing hyperplane, this suggests that the parame-
ter j is not effective in adjusting the orientation of
the hyperplane in order to improve the classification
performance. As an illustration, in experiments with
11 positive examples, increasing j does change the
orientation of the normal by 13,6° on average (aver-
age over the 16 categories, that is). Thus, the main
effect of j on the precision, recall, and F} is through
the change in the score threshold b.

The following sections provide detailed analysis of
the effect that j has on the classifier performance for
P = 11, 128, and 1,024 positive documents in the
training corpus, which correspond to 0.1 %, 1%, and
10 % of the training data. (Figure 1.)

Influence of j for very few positive examples
(P =11, i.e., 0.1% of the training set). Recall
at j = 1 is quite low even when applied to the train-
ing set (49.3 %), and extremely low (1.0 %) on the test
set. In other words, the scarcity of positive training
examples yields a very conservative classifier; on the
test set, with the natural distribution of positive ex-
amples, it hardly labels any document as belonging
to the positive class. However, increasing the values
of j quickly improves recall over the training data,
reaching recall of 97.9% at j = 2 and 100 % at j = 5.
Note that from that point on there are no misclassi-
fied positive examples and thus increasing j further
does not seriously affect the learning process. In fact,
the data shows that the separating hyperplane itself
typically does not change from j = 8 onwards.
Increase in recall on the test set is much less dra-
matic, reaching 5.8 % at j = 2 and 8.1 % at 5 = 5. At
the same time, precision for j = 1 is 100 % for both
the training and the test set as the classifier is very
conservative. It decreases to 99.1 % on the training
set and 86.5% on the test set as j is increased. The

net result is, in some respect, captured by Fj. It in-
creases from 50.3 % to 99.1 % on the training set and
from 1.6 % to 12.9% on the test set.

It is also instructive to observe the precision-recall
breakeven point (BEP), which helps us analyze the ef-
fect of j on the orientation of the hyperplane (w) as it
is independent of the threshold b. BEP on the train-
ing data remains completely unchanged (at 66.3 %),
and decreases on the test data from 46.0 % to 45.4 %.
It is, thus, clear that most of the classification per-
formance change, captured by other measures, is due
to the adjustment of the score threshold.

A closer look at the data shows that changing the
j parameter caused the orientation of the hyperplane
to be adjusted by 13.6° on average but without a
positive effect. On the other hand, the average score
threshold value for 16 categories increased from 1.08
to 1.23 and the average ||w|| increased from 3.06 to
7.36. This implies that the learner has been willing
to accept a narrower margin (which is always 2/||w||
units wide) as j increased. It turns out that the hy-
perplane has moved closer towards the origin of the
coordinate system by 0.192 units on average (which
is reasonable, because it makes the classifier more lib-
eral as the threshold b was positive). This is, in fact, a
rather modest shift in the hyperplane position when
compared with those observed in the threshold ad-
justment experiments presented further in the paper.
Holding the hyperplane normal fixed (as learned for
j = 1) and tuning b to maximize F; over the test data
moves the plane by 0.302 units on average. Setting
the value of b using cross-validation on the training
set moves the plane by 0.287 units on average while
choosing b to be the score value where BEP occurs
on the training set moves the plane by 0.232 units on
average.

Thus we conclude that incrementing j has not suc-
ceeded in finding a better orientation of the hyper-
plane nor modifying the score threshold b appropri-
ately to produce an effective SVM classifier.

Furthermore, comparing the weights of individual
features in the resulting normals for j = 1 (say w)
and j = 8 (say w) shows high overlap in features with
nonzero weights in the two vectors. Indeed, hardly
any new features have been introduced into the nor-
mal by changing j: w has 4,829 nonzero components



on average while w has 5,097. Furthermore, if the
newly-introduced features are discarded from w, the
angle /(w,w) hardly changes.

A more detailed analysis of the normals shows that
practically all positive features in w remain positive
in w. The features that were dropped (i.e., are zero
in W but not in w) were all negative and almost all of
the newly introduced features have negative weights.
Furthermore, hardly any weights have changed their
sign: on average 10 from negative to positive, and
12 from positive to negative. The absolute values
of the weights in w and W probably shouldn’t be
compared directly as length of the vector w is about
2.4 times larger, on average (because of the narrower
margin). However, if we normalize both normals to
unit length, we observe that the number of weights
with large absolute values has not changed by much,
but that w has more smaller weights.

The error analysis shows that for j = 1 there were
on average 8.625 false negative classifications per cat-
egory for the training set. Thus, most of the 11
positive training examples have been misclassified as
negative. For j = 8 there are no false negatives on
the training set. This suggests that the weights of
positive support vectors (i.e., the corresponding «;
coefficients) have increased considerably. Generally,
this could cause too many false positive classifica-
tions and, in order to prevent that, the SVM learner
includes features with negative weights into w, as it
has been observed above.

Moderate number of positive examples (P =
128, i.e., 1% of the training set). When the
number of positive examples in the training set is
P = 128 we observe that for j = 1 the recall is better
and precision worse when compared with the perfor-
mance for P = 11. Thus, having 1 % instead of 0.1 %
of positive examples in the training data produces
SVM classifiers that are less conservative in assigning
the positive class label to documents. The recall on
the training set now increases from 72.9% for j = 1
t0 99.9 % for j = 4 (note that it takes values of j be-
tween 10 and 30 to reach 100 % recall). On the test
set it increases from 42.0 % to 52.7%. At the same
time, test precision drops from 80.0 % to 67.6 %, while

Fy grows from 47.8 % to 53.6 % on the test set. As
before, most of these changes occurs between j = 1
and j = 2.

Abundance of positive examples (P =
1,024,i.e., 10% of the training set). For P =
1,024 the performance for j = 1 is already relatively
good with 92.1% recall on the training and 76.6 %
on the test set. Thus, the number of positive exam-
ples is sufficiently large to ensure training of effective
classifiers. Increasing j to 4 yields further increase in
recall, to 99.9 % on the training set and to 82.3% on
the test set. Precision on the test set decreased from
59.2% to 50.5 % causing Fy to decrease from 62.4 %
to 58.3%. Note that this is in contrast with the per-
formance for small P where increasing j improved
recall noticeably at the expense of precision but F}
was nevertheless increased, despite the precision loss.
This is consistent with the fact that the value of F}
tends to reflect the lesser of precision and recall. For
example, for small P, the recall on the test set was
rather low while the precision was very high. In-
creasing j improved recall noticeably at the expense
of precision but F; was nevertheless increased despite
the loss in precision. For large P, the recall is not suf-
ficiently low to begin with and the increase in recall
was not sufficient to counterbalance the decrease in
precision.

The fact that we are not gaining anything by in-
creasing j in this situation is confirmed by the BEP
values, which grow slightly on the training set, from
96.6 % — 99.0% but decrease on the test set from
67.0% — 64.9%.

5 Score distributions and class
probabilites

In the previous section, we have seen that increment-
ing the j parameter affects the classification perfor-
mance through modifying the score threshold value b.
However, we also observed that this modification was
not adequate. Thus, we focus our effort on adjusting
the score threshold directly. This calls for an analy-
sis of score distributions w’ x of positive and negative



examples, both in the training and test data sets.

In this section we first investigate the score distri-
bution of positive and negative examples with respect
to the default threshold obtained by SVM over the
training data. Then we estimate the class probabili-
ties, i.e., the probability that a document with a par-
ticular score belongs to a class. Based on the findings
we propose a thresholding heuristic based on class
probability distributions over the training data given
the SVM normal w in addition to the more obvious
ones such as the threshold that leads to maximum
F} measure over the training data or the threshold
recommended by cross validation over the training
data.

5.1 Analysis of score distributions

In order to study the distribution of values b(x) :=
w!x for a given normal w and documents x from the
training and test sets, we discretized the distribution
by dividing the range [min, w’x, max, w’x] into 50
subintervals of equal width. We recorded the num-
ber of positive and negative examples in each score
interval. Figure 2 shows the resulting distributions
(C183).

We are particularly interested in score distribution
obtained by the SVM learner with j = 1 over the
training data and the score value b* that corresponds
to the maximum F; measure performance over the
test data. The objective of our thresholding methods
is to adjust by automatically to values close to b*.

Of interest are also the score values of by — 1 and
bo + 1 where we expect concentration of support vec-
tors.

From Figure 2 we observe that, for P = 1024 and
128 positive documents in the training data, SVM
scores of positive and negative documents lead to
similar distributions over the positive and negative
documents. The distributions are not necessarily
separable but the consistency in distributions pro-
vides solid foundation for performance prediction us-
ing score thresholds.

We note that the distribution of negative train-
ing documents tends to reach maximum around b =
bo — 1, at the location of negative support vectors. In
fact, the actual peak is typically at some b strictly be-

low by — 1. This is consistent with the SVM optimiza-
tion strategy: any data instance positioned within
the margin entails a cost, measured by the slack vari-
able &;.

Similarly, the distribution of positive training ex-
amples tends to have a spike at b = by + 1 because
of the concentration of positive support vectors at
the unit distance from the hyperplane. Interestingly,
b = by + 1 is typically the peak of the distribution
in contrast to the score distribution of negative ex-
amples. We also observe that the score distributions
of positive documents have more symmetrical shape
than that of the negative documents. In the future
we will investigate whether this characteristic of score
distributions is correlated with the relative propor-
tion of positive and negative examples in the training
set.

We note that in case of P = 128, the score distri-
bution for positive test documents is much broader
than the one for positive training documents, indi-
cating that many positive test examples are assigned
low values of w’'x and will therefore be misclassified
as negative. This is the sign of overfitting to the one
percent of positive examples.

In the case of extremely imbalanced data, e. g.,
P = 11 (the top row of Figure 2), we see that the
learner separates the positive and negative training
examples well but is much less effective in doing so on
the test data. The classifier suffers from serious over-
fitting. Furthermore, estimation of positive score dis-
tribution over the test data is unreliable with very few
data points. Thus, it is hard to modify the threshold
based on score distribution solely. However, from the
experiments we also observe that, in the case of very
few positive training examples (in this case 0.1 %),
the SVM learner typically selects a threshold so that
practically all of the positive documents are support
vectors; some actually lie within the margin, but usu-
ally none lie on the negative side of the margin (i.e.
below the plane w’/x = by — 1). This suggests an-
other strategy selecting a better threshold by using
b = by — 1 instead of bg. This simple heuristic is
to a certain degree incorporated in the method we
propose in the following section.
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Figure 2: These charts show how many documents fall at a certain distance from the plane. For illustration,
we show the analysis for two categories: CI183 is shown on the left as an example of a smaller category,
and M14 on the right as an example of a large category (charts for other categories can be found in the
appendix, pp. 21-23). Number of positive training examples: top row, 11; middle row, 128; bottom row,
1024. The two vertical lines show the original threshold obtained by training SVM and the hypothetical
best threshold calculated from the test data, just for gpmparison. The bottom two graphs show the analysis
for a very small number of positive examples (P = 11): note how the distribution of positive test examples

has hardly any relation to that of the positive training examples.



5.2 Analysis of the class probabilities

We explore the possibility of using class probabilities
to identify successful score thresholds in case of highly
imbalanced classes.

Given the orientation of the hyperplane w and
some value b we estimate the probability that a doc-
ument x assigned the score w”x belongs to the pos-
itive class as P(®[b) := Py = +1|lwlix = b). We
apply similar methods as in the previous section.
We divide the range of values w’'x into subintervals
(about three times as long as those in the analysis of
score distributions) and record the relative frequency
of positive examples among all the documents with
scores within a given interval.

The distribution curves (Figure 3) have a famil-
iar sigmoidal shape. For training examples the esti-
mated P(@|b) is 0 for low scores b and grows rapidly
towards 1, the value that is maintained for the rest of
the document scores, confirming that SVM scoring of
training examples does not introduce false positives
among highly scored documents.

On the graphs we indicate the default score thresh-
old by that SVM produces during the learning process
and the threshold b* that maximizes the F} perfor-
mance measure on the test set. We note that b* usu-
ally occurs close to the value of b where the probabil-
ity P(®|b) for the training set first begins to grow in
value, i.e., the score interval with significant number
of positive examples is encountered. This is consis-
tent with our observation about the distribution of
scores in the previous section: in case of highly im-
balanced training data it seems suitable to adjust the
default threshold to the value of by — 1 (thus moving
the separating plane to the lower edge of the original
margin area).

We, thus, suggest a simple heuristic for selecting a
new score threshold. We choose the smallest value of
b for which the probability that an instance is posi-
tive, given that its score belongs to the corresponding
interval, is above a certain small predefined thresh-
old, e.g., n = 2%. The exact value of 1 should not
be very important, considering how immediate and
large the first increase in P(®|b) appears to be on
these distribution charts for P = 11.
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6 Experiments with threshold
modification

In this section we evaluate several methods for setting
score thresholds b. We assume that the SVM learner
has provided a hyperplane w’x = by under the de-
fault setting of j = 1. We intend to modify only the
threshold (replace by by some other value b), keeping
its normal (w) unchanged. This, therefore, preserves
the orientation of the plane but influences the level
of assignment of the positive labels to the test docu-
ments; a higher (lower) threshold leads to more con-
servative (more liberal) assignment. Success of the
thresholding mechanism is measured by comparison
with the optimal value of the F} measure for the test
data.

6.1 Comparison of different thresh-
olding heuristics

Several methods for modifying the threshold are con-
sidered: selecting the score (1) that maximizes the
value of F} over the training data; (2) cross-validation
over subsets of training data, observing the F; mea-
sure on individual subsets; and (3) based on a score
that corresponds to a specified value of positive class
probability as described in Section 5.2. For the sake
of comparison, we cosider the threshold that maxi-
mizes F; over the test data which is, of course, un-
available in practice. The results of these experiments
are summarized in Figure 5 and Table 2.

We observe that although the performance of the
original threshold obtained by the SVM learner is
very poor when the number of positive training ex-
amples was low, the same model can be consider-
ably improved by choosing a different threshold. In
fact, by choosing a threshold using cross-validation
on the training set, we get to within 70% of the
optimal threshold, the one that maximizes the I}
performance measure on the test data. Additionally,
placing a threshold on the training break-even point
or using the threshold that maximizes training F}
also turns out to be a reasonably successful strategy;
it achieves about 50 % of the optimal test F}.

The following is a detailed analysis of these results
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Figure 3: These charts show the proportion of positive documents among those that fall at a certain distance
from the plane. For illustration, we show the analysis of two categories: C183 is shown on the left as an
example of a smaller category, and M14 on the right as an example of a large category (charts for other
categories can be found in the appendix, pp. 24-26). Number of positive training examples: top row, 11;
middle row, 128; bottom row, 1024. The two vertical lines show the original threshold obtained by training
SVM and the hypothetical best threshold calculated {ffom the test data, just for comparison.
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These charts show how F; depends on the threshold b of the separating hyperplane w’x = b while
its normal (w) remains unchanged. C183 is shown on the left as an example of a smaller category, and M14
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Figure 5: A comparison of various strategies for modifying the threshold of the separation hyperplane
obtained by the SVM learner. Note that the macroaveraged test F; performance measure is shown in all
cases. The explanations in the legend refer to the thresholding strategy used to modify the threshold of the

hyperplane found by the SVM learner.

for P = 11 positive training examples. The thresh-
old as proposed by the SVM learner is usually much
too high, already for the training set but even more
so for the test set (as we can see from Figure 5; re-
call: 21.6 % on the training set, 1.7 % on the test set;
precision: 56.3% and 18.8%). It is interesting that
while many categories are linearly separable problems
and a threshold exists that would achieve 100 % ac-
curacy on the training set, the SVM prefers to choose
a much higher threshold that misclassifies most pos-
itive training examples as negative. The reason is
probably that this gives it the illusion of a much
wider margin (the misclassified positive examples are
ignored for the purposes of margin classificaton and
while their slack variables do penalize the plane a lit-
tle, this is apparently not enough to overcome the
attraction of the wide margin).?

6.1.1 Maximizing training F}

Threshold modification by choosing b to be the value
that maximizes F; on the training set improves
the macroaverage F; performance from and 1% to

2To avoid this, one might be tempted to increase the over-
all misclassification cost, i.e., the C parameter. However, Sec-
tion 8 will show that this is not helpful.
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23.2% on the test set (Figure 5; on the training set,
macroaveraged value rises to 99.7 %).

An alternative to this heuristic might be to place
the threshold at the break-even point, i.e., so that the
precision and recall on the training set are roughly
the same. It is not unreasonable to expect a good F}
performance around the break-even point, because
the Fi-measure tends to rewards circumstances where
precision and recall are similar rather than those
when one of them has been increased at the expense
of the other. It turns out that the thresholds placed
at the breakeven point are very close to those at max-
imum training F7, and the resulting performance on
the test set is very similar as well.

6.1.2 Cross-validation

We are aware that by considering the maximum F}
value over the whole training we run the risk of over-
fitting the value of b to the training data. In order
to reduce that risk we apply stratified 5-fold cross-
validation, hoping to identify a more robust score
threshold. We train the SVM classifier on 80 % of
the training examples and modify the threshold to
maximize F; on the remaining 20 % of the training
set. In the end, each of the five iterations during



cross-validation proposes a possibly different normal
w; and score threshold b;. As our final model, we
use the normal trained over the entire training set
but calculate the threshold b from the five b; param-
eters obtained from cross-validation. The average,
b= %Z?:l b;, is one obvious choice. However, we
might be concerned by the fact that b is not really
expressed in any absolute units but is relative to the
width of the margin. The role of b, as far as the
classifier is concerned, is really to define the distance
between the hyperplane and the origin of the coor-
dinate system. For the plane w’/x = b, this dis-
tance is b/||w||. Thus, we can average the distances,
d:= %Zle bi/||w;||, and set the threshold of the fi-
nal plane so as to place the plane at this distance from
the origin: b := d-||w||. It turns out that the thresh-
olds proposed by these two approaches are usually
quite similar. Averaging the values of b gives better
performance at P = 11 (F} = 36.0% compared to
33.5 % obtained from averaging the distance), while
at P = 128 and P = 1024 averaging the distance is
slightly more successful, although the differences are
small.

6.1.3 Thresholding from class probabilities

Based on the observations in section 5.2, we consider
the class probability P(@|b) that x is positive given
b = wTx, and place the score threshold at the small-
est b where this probability grows beyond some small
positive value 7. In this case we used n = 0.02.

As Figure 5 shows, this heuristic is very successful
when very few positive training examples are avail-
able. However, from P = 64 upwards, this heuris-
tic leads to relatively poorer performance, indicat-
ing that the resulting classifier is too liberal in as-
signing the positive class values. This is reasonable,
given that the probability P($|b) as a function of b
no longer has such a sudden and steep increase from
0 but instead assumes a more continuous sigmoidal
shape (see the bottom two rows of Figure 3).

If we take the “Bayesian” approach, i.e. choosing
the threshold b such that at P(®|b) = 1/2, in order to
classify each instance into the class with the greater a
posteriori probability, we see that the resulting clas-
sifier is less successful for small values of P. However,
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for higher values of P this approach improves the per-
formance and for P > 64 it matches the effectiveness
of the cross-validation method (Sec. 6.1.2).

6.1.4 Maximizing test F}

In order to put the above results into a perspective,
it is informative to look at the maximum Fj that
can be achieved on the test data just by modifying
the threshold. If the threshold is chosen optimally
for each category, the macroaveraged F; achieves
the value of 47.2% on the test set. Incidentally,
if the threshold is placed where the precision-recall
breakeven point occurs on the test set, the resulting
classifier is too conservative and its F; is on average
about 0.05 less than the optimal Fj.

6.2 Range of good thresholds

As a way of assessing how difficult it is to select a
good score threshold, we examine the distribution of
scores over the test data. We determine the range of
score thresholds that, if chosen, would lead to a spec-
ified performance over the test data, e.g. 80 % of the
optimal Fj value on the test set. The narrower this
range is, more difficult it is to choose a good thresh-
old. In other words, we are interested in the width of
the bell-shaped portion of the curves in Figure 4.

Given a hyperplane normal w, suppose that b* is
the threshold that maximizes test I} for this w. Let
a constant a specified the level of F; performance to
be achieved. We define:

by := max{b < b* : F1(w,b) < aFy(w,b*)}
by := min{b > b* : F1(w,b) < aFy(w,b*)}
and let bpin = min; W’ X;, bmax = max; WX,

where ¢ goes over all test documents. Then we can
regard Kq(w) := (by — b1)/(bmax — bmin) as an in-
dicator of the difficulty of choosing a good thresh-
old for the particular classifier under consideration.
The measure is relative to bmax — bmin to make it
easier to compare different classifiers. Alternatively,
we might convert by — b; to Euclidean distance be-
tween the hyperplanes w’x = b; and w'x = b, i.e.
kL (w) := (b2 — b1)/||w||. The values of these indi-
cators, shown in Table 1 for a = 0.8, suggest that,



Macroaveraged values Table 1: The xo.s and kg g values indicate how wide an inter-
J P Fy(b¥) Ko.8 K0.8 val of thresholds (b) around the optimal threshold b* (i.e., the
1 11 0.4724 0.1136  0.0540 threshold that maximizes F on the test set) result in F; that is
1 128 | 0.6490 0.2186 0.0650 at least 80 % of the optimal. The lower these values, the more
1 1024 | 0.6855 0.2159 0.0586 difficult it is to choose a good threshold without looking at the
test set. See the text for a formal definition of x and &’.
Macroaveraged Fj on the test set
J P At original At training Cross-validation At optimal Thr. from
threshold BEP (avg. b) (avg. dist.)  threshold  P(®|w?x) distr.
1 11 0.0166 0.2324 0.3603 0.3351 0.4724 0.3334
1 128 0.4795 0.5901 0.5889 0.5944 0.6490 0.4668
1 1024 0.6249 0.5987 0.5803 0.5958 0.6855 0.3753
100 11 0.1311 0.0916 0.3500 0.3336 0.4651 0.2997
100 128 0.5375 0.2595 0.5666 0.5853 0.6334 0.3750
100 1024 0.5841 0.5590 0.5666 0.5853 0.6661 0.6025
Table 2: The performance of classifiers based on different thresholding strategies.

indeed, it is more difficult to choose a good threshold
in situations when there were few positive training ex-
amples (i.e., small value of P), although the results,
particularly for x’, are somewhat inconclusive.

7 Using both 5 and b

In this section, we consider applying both cost-based
learning (via the j parameter) and threshold mod-
ification (the b value), using several thresholding
heuristics.

If we decide to retain the original threshold as
learned by the SVM, we saw (in Section 4) that in-
creasing the value of j improves performance if the
number of positive examples is small (e.g. P = 11 and
128) but degrades performance slightly if the number
of positive examples is large enough: at P = 1024,
F1 =62.5% for j =1 but 58.4% for j = 100.

Due to the scarcity of positive examples on the
training set, our classifiers are too conservative. The
threshold b needs to be lowered to improve the per-
formance on the test set. For j = 1, setting the
value of b to the score of the BEP for the training
data makes the classifier more liberal. For j = 100 it
actually increases the threshold and makes the clas-
sifier more conservative, leading to performance that
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is worse than that of the original threshold.

In the models obtained at j = 100, all the 11 pos-
itive training examples become unbounded support
vectors, i.e., they have 0 < a; < jC and lie on the
plane w'x = by + 1, parallel to the separating hy-
perplane w/x = bg. The negative examples all lie
below the plane w’x = by + 1; some of them are un-
bounded (i.e., lie on w'x = by—1), some are bounded
(i.e. have o; = C) and thus lie above wlx = by — 1;
some of these latter even lie above wlx = by, mean-
ing that they are misclassified by this model. None
lie above w!'x = by + 1, however.

Now suppose that the threshold of the plane is
modified from by to some new value b. For values
of b > by + 1, the preceding paragraph shows that all
the training examples would be predicted negative by
such a plane, resulting in 0% recall and (by defini-
tion) 100% precision; for b < by + 1, recall would
be 100 % as all positive examples would be predicted
positive.
old below which all the negative training examples
are located. For values of b € (bg, by + 1), all positive
examples are declared positive, so precision is still
100 %, but, as b drops below bg, more and more neg-
ative training examples are misclassified as positive

Let b := max;.,,—_1 W.x; be the lowest thresh-
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Figure 6: The dependency of F; on the threshold b
remains unchanged.

and precision begins to decrease.

Thus we see that precision and recall are both
100% for all b € (bg,bg + 1); for b > by + 1, pre-
cision is greater than recall, and for b < bg, recall is
greater than precision. If we decide to choose b so as
to maximize the F-measure on the training set, or to
place it on the precision-recall break-even point, both
criteria give the same proposal: b must lie somewhere
in (bg,bo+1), but they cannot be more specific than
that.

The results shown in Table 2 above use the middle
of the range thus proposed, i.e., b := (bg + by +1)/2.
Note that the existence of bounded negative sup-
port vectors implies that by > by — 1 and hence
b > byg. Thus our newly proposed threshold b actu-
ally makes the classifier more conservative than the
original threshold at by. (Even if C' were increased,
thereby forcing the learner to avoid placing negative
training examples above the plane w’x = by — 1, bg,
would still be > by — 1 and the new threshold pro-
posed by these heuristics would still be > by, thus
not making the classifier any more liberal.) Indeed
it is hard to expect a heuristic to propose a useful
new threshold for a hyperplane that cannot distin-
guish between different positive training examples at
all (because they are all equally distant from it, i.e.,
all on wi'x = by + 1): the new threshold can really

Threshold value (b)

while the normal w, obtained by learning at 5 = 100,

only tell how far from the positive examples should
the new hyperplane be placed, and it is not obvious
how to do this in a principled way and so as to achieve
as much as possible for performance on the test set.

If cross-validation on the training set is used to
modify the threshold, the performance is roughly the
same in both cases (for j = 1 and j = 100), and
insofar as there is a difference it is in favour of j = 1.
The same is true for the optimal threshold (i.e., the
one that maximizes the F; measure on the test set).
Both of these results suggest that the orientation of
the original plane (the one obtained for j = 1) is
actually slightly better than of the one for j = 100;
in a sense, j = 100 caused the learner to slightly
overfit the training set.

The general conclusion of this section is that it
confirms the observations of Section 4 that the hyper-
planes obtained at large values of j do not really have
a better orientation than those obtained at j = 1;
that modifying the threshold is a much more success-
ful way of improving the original classifier; and that,
if one decides to modify the threshold, the j param-
eter can be left at its original value of 1 and there is
no need to tune it.
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Comparison of different instance weighting strategies (solid: J = C = 1; dashed: J = 100, C = 1; dotted: J=1,C = 1
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Figure 7: A comparison of various strategies of increasing the influence of misclassified training examples
on the criterion function optimized by the SVM learner. C' = j = 1 is the default setting; C' = 1,5 = 100
increases the influence of positive examples by a factor of 100; C = 100,57 = 1 increases the influence of all
examples by a factor of 100. The margin maximization term of the criterion function remains the same in

all cases.

8 A comparison of weighting
strategies

Recall that the criterion function (1) optimized by
SVM during training requires the learner to seek a
tradeoff between maximizing the margin and classi-
fying the training examples correctly. The relative
importance of these two goals is determined by the C'
parameter: the greater the C, the more important it
will seem to classify the training examples correctly.
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In effect, this can be seen as a kind of noise handling,.

In Section 6, we have observed that the poor per-
formance of the classifiers obtained by SVM on a
small number of positive examples is chiefly due to
the fact that optimization leads to the maximum
margin at a low cost of placing the positive exam-
ples within the margin. Indeed, at the default value
C =1 it can afford to practically ignore most of the
positive training examples when computing the width
of the margin.

The most straightforward way of forcing the SVM



learner to take the training examples more seriously
is by increasing the C' parameter. This can be seen as
an alternative to the j parameter: instead of increas-
ing the weight of errors on positive training examples
only, C affects the weight of errors on both positive
and negative examples. The influence of the margin
maximization criterion on the learner’s choice of the
model is thus correspondingly smaller.

Our experiments show that increasing C' is not
more effective than increasing j. This is illustrated by
the chart in Figure 7. If extremely few positive train-
ing examples are available, increasing C' has practi-
cally the same effect as increasing j, whereas in all
other circumstances increasing C' is in fact slightly
less successful than increasing j (this can be seen
by comparing the dashed and dotted lines in Fig-
ure 7). Both these approaches are inferior to leaving
all the weights at their default values and adjusting
the threshold b using cross-validation on the training
set. In other words, increasing the influence of mis-
classification costs above the default values caused
SVM to produce hyperplanes of a slightly less suc-
cessful orientation.

9 Conclusions

We have explored the use of SVM for text categoriza-
tion in cases where only a small percentage of posi-
tive examples are available in the training set. Our
experiments indicate that, although the straightfor-
ward cost-based approach yields an increase in per-
formance, this improvement is of limited extent com-
pared to the effect of modifying the threshold b. For
example, the macroaveraged F} increases from 0.0157
to 0.1295 using the cost-based approach while di-
rect modification of the threshold achieves F} per-
formance of 0.3603. The increase in performance
brought about by the cost-based approach is, in fact,
due largely to threshold adjustment rather than im-
provement in the orientation of the separating hyper-
plane found by the SVM learner.

In the case of few positive training examples it is
difficult to infer the distribution of the scores of pos-
itive test examples (Section 5.1). Thus, it seems un-
likely that one can successfully make use of the prop-
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erties of score distributions to modify the threshold.
As the number of positive training examples increases
this is much easier. However, by observing the class
probabilities (Section 5.2) we find that setting the
score threshold at the point where the probability of
the positive class begins to grow beyond negligibly
small values (e.g., at P(®]b) = 0.02) is more effec-
tive for cases where very few positive training ex-
amples are available, while placing the threshold at
P(®|b) = 0.5 (a kind of maximum a posteriori pre-
dictor) is very effective for large positive classes.

The most successful thresholding technique ex-
plored in our experiments, cross-validation over the
training data, achieves more than 70% of the best
F} performance that could possibly be attained by
without changing the orientation of the SVM deter-
mined hyperplane. For example, with the hyperplane
obtained after learning with 11 positive training ex-
amples, the best threshold could achieve a macroav-
eraged Fi of 0.4724, while the threshold based on
cross-validation achieves F; = 0.3603.

Future work will extend this research to compare
our results with alternative thresholding techniques
used in information retrieval and other techniques
that deal with imbalanced class distributions, such
as discarding negative examples or training several
classifiers and combining them with stacking. In ad-
dition, it would be interesting to explore the effects
of thresholding in cases when feature selection is per-
formed before training, as is commonly done in text
categorization. And since our experiments indicate
that the hyperplane found by the SVM algorithm
when presented with very few positive training exam-
ples has a reasonably good orientation but an overly
conservative threshold, it would be interesting to ex-
plore whether the criterion function used by SVM
could be redefined so as to focus on looking for a good
orientation without regard for the threshold, with the
understanding that the threshold would be selected
afterwards (and that efforts to force SVM to choose
a good threshold by itself, e.g. via the j parameter,
tend to lead it to a hyperplane with a slightly better
threshold and a less useful normal). However, this
may be problematic because a threshold is necessary
in order to define the notion of a margin, which is
one of the key components that made SVM such a



successful learning algorithm.
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Appendix: per-category charts

These charts are like those in figures 2 and 3, except that they are given here for all 16 categories rather
than for just two.
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These charts show the proportion of positive examples
among all examples that are found at a certain distance
from the plane. The planes have been trained using 128
positive training examples. There is one chart for each
category. The vertical lines show the original threshold
obtained by the SVM, as well as the threshold that gives
the best F} performance on the test set.
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These charts show the proportion of positive examples
among all examples that are found at a certain distance
from the plane. The planes have been trained using 1024
There is one chart for each
The vertical lines show the original threshold
obtained by the SVM, as well as the threshold that gives

positive training examples.
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Threshoid value &)

the best F} performance on the test set.
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