Sparsity analysis of term weighting schemes:
Application to Feature Selection

Natasa Milic-Frayling
Dunja Mladenic

Janez Brank

Marko Grobelnik

29 April 2003
Technical Report

MSR-TR-2003-35
Microsoft Research

Microsoft Corporation

One Microsoft Way

Redmond, WA 98052

Sparsity analysis of term weighting schemes: Application to Feature Selection
Natasa Milic-Frayling

Microsoft Research
7 JJ Thomson Avenue
Cambridge CB3 0FB, UK
natasamf@microsoft.com
Janez Brank

Jozef Stefan Institute
Jamova 39

1000 Ljubljana, Slovenia
Janez.Brank@ijs.si

Dunja Mladenic

Jozef Stefan Institute
Jamova 39

1000 Ljubljana, Slovenia
Dunja.Mladenic@ijs.si
Marko Grobelnik

Jozef Stefan Institute
Jamova 39

1000 Ljubljana, Slovenia
Marko.Grobelnik@ijs.si
ABSTRACT
In this paper we revisit the practice of using feature selection for dimensionality and noise reduction. Commonly we score features according to some weighting scheme and then specify that the top N ranked features or top N percents of scored features are to be used for further processing. In text classification, such a selection criteria lead to significantly different sizes of (unique) feature sets across various weighting schemes, if a particular level of performance is to be achieved, for a given learning method. On the other hand the number and the type of features determine the sparsity characteristics of the training and test documents, i.e., the average number of features per document vector. We show that specifying sparsity level, instead of pre-defined number of features per category as the selection criteria, produces comparable average performance over the set of categories. At the same time it has an obvious advantage of providing the means for control of the consumption of computing memory resources. Furthermore, we show that observing sparsity characteristics of selected feature sets, in form of sparsity curves, can be useful in understanding the nature of the feature weighting scheme itself. In particular, we begin to understand the level at which feature specificity, or commonly called ‘rarity’ is incorporated into the term weighting scheme and accounted for in the learning algorithm.

INTRODUCTION

Feature selection, when representing text documents, has been widely used and studied as a method for reducing dimensionality of the feature space and reducing noise in the data in order to improve performance of classification, relevance feedback, routing, adaptive filtering, and similar systems [8]

 REF _Ref31827629 \r \h
[18]. It typically involves two phases: first, assigning a weight to each feature, i.e., a score that reflects the importance or usefulness of the feature for a particular task, and second, specifying the criteria for selecting the features from the list. The latter is commonly achieved by deciding on the number or percentage of features to be retained or, yet, specifying the threshold on the weights above which the features would be included for further processing.

In this paper we focus on the criteria for feature selection and their implications on the performance of machine learning methods for classification of textual data. However, the discussion is applicable to related learning tasks in information retrieval research such as relevance feedback [14]

 REF _Ref31827823 \r \h
[19] or adaptive filtering systems [17]

 REF _Ref31788516 \r \h
[16]

 REF _Ref31788519 \r \h
[15].

We observe that research has been, to a large extent, focused on interactions between various feature weighting and learning algorithms. The change in classification performance is typically explored with respect to the varying number of features, more or less systematically. In some studies this has been done for the whole spectrum of cut-off levels while in others for just a few specified cut-offs, either for the number of features or percentage of total features per category [8]

 REF _Ref31788603 \r \h
[1]

 REF _Ref31827629 \r \h
[18].

Here we reflect upon an important issue that arises when performing comparative analysis of feature weighting methods. Given a classification method, selecting a particular number of features or percentage of features per category, in order to meet a desired classification performance level, yields a dramatically different number of unique features across weighting schemes, as we noted in our previous work [20]. We present details of our observations across a number of term weighting schemes.
We further point out that looking at the ‘higher order’ parameter, the sparsity of vectors obtained by retaining a set of features, provides additional insights in the nature of the feature weighting scheme. We define sparsity as the average number of features present in a document under as a result of a particular data representation approach, such as feature selection. More technically it might be said that sparsity is the average number of nonzero components in the vectors that represent documents. The average is taken over a pre-defined set of documents, e.g., the training set.
We promote the use of sparsity curves to analyze the feature weighting properties. The sparsity curves capture the relationship between the number of features selected and the sparsity of document vectors that this feature set induces. This is, in turn, directly related to the distribution of the selected features in the corpus.

Most of the weighting schemes rely to a certain degree on feature distributions in the given corpus, i.e., specificity or rarity of features. The corresponding sparsity curves reveal how strong the influence of feature specificity is on the resulting feature scores. This is particularly useful when the feature weighting schemes is not based on an explicit analytic formula, e.g., the feature weighting using linear classifiers [20]. Furthermore, text classifiers also rely on the specificity of features. Thus, it is beneficial to understand their performance as a function of sparsity rather than just a function of the number of retained features.

Based on our experiment analyses, we propose the use of sparsity as an equally useful parameter for feature selection criteria that yields comparable performance averages across category sets. One additional practical advantage of this approach is the ability to have direct control over the consumption of memory resources for data representation. While this aspect is not the focus of this discussion, we point to [20] for illustration how the trade-off can be achieved for feature weights originating from linear classifiers, more precisely linear Support Vector Machines (SVM).
This paper is structured in the following way. First we provide a brief description of the feature weighting methods used in the experiments and comment on related research in which they were explored. We follow by the description of our experiment set-up, analysis of the sparsity curves, and discussion of classification experiments. We conclude with the summary of our work and suggestions for future work.

FEATURE WEIGHTING AND CLASSIFICATION METHODS

Feature Weighting Schemes

Feature selection (FS) in text categorization is typically performed by sorting linguistic features according to some feature weighting measure and then setting up a threshold on the weights or simply specifying a number or percentage of highly scored features to be retained. Features with lower weights are discarded as having less significance for the classification task. Experiments then typically evaluate the effect that feature selection has on the classification performance.

Numerous feature scoring measures have been proposed, e.g., Information Gain, odds ratio, (2, term strength, etc. Even the simple document frequency (DF) has been found to perform well in conjunction with the k Nearest Neighbor method, as measured by the 11-point average precision [8]

 REF _Ref31789134 \r \h
 * MERGEFORMAT [6].

It is important to note that feature weighting and selection can be more or less coordinated with the classification model, in the sense that they may be governed by the same or distinct theoretical models. It has been a common practice to explore effects of various FS methods in combination with different classification methods. For example, an approach based on SVM has been proposed in [2], where SVM with a special kernel were applied to learn weights of features for use with a Naive Bayes classifier. On the other hand, there were conscious attempts to create FS methods that are compatible with the feature scoring of a particular classifier. In that respect feature scoring using odds ratio is seen as a good match for the Naive Bayes classifier and has been shown to improve its performance [4]. In our comparative study we use the following feature weighting schemes.

1.1.1 Odds Ratio

The odds ratio score of a term t is calculated as follows:

OR = log[odds(t|pos)/odds(t|neg)]

where odds(t|c) = P(t|c)/(1–P(t|c)), c denotes a class and pos and neg refer to the number of positive and negative examples in the training data, respectively.

This measure gives a high score to features typical of positive documents and a low score to those typical of negative documents. One possible disadvantage of this scoring method is that features which occur in very few positive documents get very high scores as long as they do not occur in any negative documents. In this manner rare rather than representative features of the positive documents obtain high scores.

Odds ratio was used as a feature selection method (in combination with Naive Bayes as the training algorithm) for categorizing web pages in a collection specially built for profiling web usage [4] and for classifying Yahoo data into Yahoo categories [6]. In the latter case, an increase in the F2 measure (from 0.13 to 0.6) was reported when only 0.2% and 5% of the original features were kept.

1.1.2 Information Gain
Here the class membership is inter​preted as a random variable C with two values, positive and negative, and a word is likewise seen as a random variable T with two values, present and absent. Then using the information-theoretic definition of mutual infor​mation we may define

IG(t) = H(C) – H(C|T)
 = ((,c P(C=c,T=() ln[P(C=c,T=()/P(C=c)P(T=()].

Here, (ranges over {present, absent} and c ranges over {c+, c–}. In effect, this is the amount of information about C (the class label) gained by knowing T (the presence or absence of a given word).

1.1.3 (2 Statistic (CHI)

The (2 statistic measures a lack of independence between the feature t and the class c by incorporating statistics from the two way contingency table for t and c. Let N be the number of documents and A, B, C, and D defined as the number of documents in which t and c appear together or independently, as given in Table 1.

Table 1
	A
	t and c co-occur

	B
	t occurs without c

	C
	c occurs without t

	D
	neither c nor t occurs.

The (2 statistic measure is then calculated as :

[image: image1.wmf])

(

)

(

)

(

)

(

)

(

)

,

(

2

2

D

C

B

A

D

B

C

A

CB

AD

N

c

t

+

´

+

´

+

´

+

-

´

=

c

.

Thus it assumes the value of zero if t and c are independent. Various term weights for features selection based on the (2 statistic measures have been explored in [8].

1.1.4 Feature weights from linear classifiers

Both SVM and perceptron, as linear classifiers, output predictions of the form: prediction(x) = sgn(wTx + b) = sgn((j wjxj + b). Thus, a feature j with the weight wj close to 0 has a smaller effect on the prediction than features with large absolute values of wj. The weight vector w can also be seen as the normal to the hyperplane determined by the classifier to separate positive from negative instances. One speculates that since features with small |wj| are not important for categoriza​tion they may also not be impor​tant for learning and, therefore, are good candidates for removal. This has been explored in detail for linear SVM in [20].

A theoretical justification for retaining the highest weighted features in the normal has been independently derived in a somewhat different context in [21]. The idea is to consider the feature important if it significantly influences the width of the margin of the resulting hyper-plane; this margin is inversely proportional to ||w||, the length of w. Since w = (i αi xi for a linear SVM model, one can regard ||w||2 as a function of the training vectors x1,...,xl, where xi = (xi1,...,xid), and thus evaluate the influence of feature j on ||w||2 by looking at absolute values of partial derivatives of ||w||2 with respect to xij. (Of course this disregards the fact that if the training vectors change, the values of the multipliers αi would also change, but the approach nevertheless seems appealing.) For the linear kernel, it turns out that

(i |(||w||2/(xij| = k |wj|

where the sum is over support vectors and k is a constant independent of j. Thus the features with higher |wj| are more influential in determining the width of the margin. The same reasoning applies when a non-linear kernel is used because ||w||2 can still be expressed using only the training vectors xi and the kernel function.

Note that the normal-based approach to feature weighting and selection involves an important issue: the selection of a set of instances over which one trains the normal w in order to arrive at the feature weights. Since training an SVM model requires a considerable amount of CPU time, and practically requires all the training vectors to be present in main memory all the time, it is desirable to use a subset of the training data in order to facilitate features selection and then retrain the classifier
, within the reduce feature space, over the full data set [20].

1.1.5 Distribution based weights

Use of simple feature distribution (DF) in the corpus for feature selection has been already explored in a number of comparative studies pointing its beneficial effect on the classifier performance [8]. For us, DF and the inverse document frequency (IDF) are of interest from the perspective of vector sparsity analysis. Namely, these two measures have most explicit relation to the sparsity concept and can be used as reference points for characterizing sparsity implications of other weighting schemes.

1.1.6 Probabilistic feature weighting

We consider the Robertson/Sparck Jones probabilistic model of information retrieval [22] as the basis for ranking features using the probability of relevance weights. In the retrieval model, these weights are, in principle, updated whenever a document relevant to a topic or a class has been identified.
If documents are labeled as relevant or non-relevant, i.e., belonging or not belonging to a class, the probability of relevance weight for the feature t (RSJ weight) is defined as:

[image: image2.wmf]÷

÷

ø

ö

ç

ç

è

æ

+

-

+

+

-

-

×

+

-

+

=

)

5

.

0

(

)

5

.

0

(

)

5

.

0

(

)

5

.

0

(

log

r

n

r

R

n

N

r

R

r

w

t

where n is the number of documents containing term t, R is the number of relevant documents, and r is the number of relevant documents containing term t.

Classification Algorithms

1.1.7 Naïve Bayes

We use the multinomial model as described by McCallum and Nigam [23]. The predicted class for document d is the one that maximizes the posterior proba​bi​lity P(c|d), which is proportional to P(c)(wP(t|c)tf(t,d), where P(c) is the prior probability that a document be​longs to class c, P(t|c) is the probability that a word w, chosen randomly in a document from class c equals t, and tf(t, d) is the “term frequency”, or the number of occur​ren​ces of word t in a document d. Where there are only two classes, say c+ and c–, maximizing P(c|d) is equi​valent to taking the sign of ln P(c+|d)/P(c–|d), which is a linear combination of tf(w, d). Thus the Naïve Bayes classifier can be seen as a linear classifier as well. The training consists simply of estimating the probabilities P(t|c) and P(c) from the training documents.

1.1.8 Rocchio

The Rocchio classification method [19] represents each document by a vector (we use the TF-IDF representation) and computes the centroid of the set of positive training documents, m+, and the centroid of the negative training documents, m–. The prediction is performed by comparing each document vector x to a linear combination (m+ – (m–; we used (= 4 and (= 1, which is a typical setting that emphasizes positive documents more than negative ones. We use the cosine measure for the comparison of the vector and the category model. The output of Rocchio is a ranking of documents from those more likely to be positive to those that are less likely positive. This can then be combined with a thresholding heuristic to obtain actual predictions for a document with respect to the two classes (positive and negative). Alternatively, the breakeven point can be used to evaluate the ranking without dealing with the issue of thresholding.

EXPERIMENTS

Experiments were performed using the Naïve Bayes and Rocchio classifiers, trained to model each category independently. The data was split into training and testing documents and different feature weighting scheme were used to facilitate feature selection.
Data

1.1.9 Document corpus

For experimentation we used the Reuters-2000 collection [11], which includes a total of 806,791 documents, with news stories covering the period from 20 Aug 1996 through 19 Aug 1997. We divided this time interval into the training period, which includes all the 504,468 documents dated 14 April 1997 or earlier, and the test period, consisting of the remaining 302,323 documents.

We used the documents from the entire test period as test data but for training we constructed a subset of 118,924, documents referred to as Train-1600, in the following way: for each Reuters category that contains 1600 or more documents in the training period (i.e., positive training examples), we randomly selected exactly 1600 documents. For categories with fewer than 1600 positive examples in the training period we took all such documents. This set turned out to be a good representative sample of the whole data set as the comparison of category distributions in the Train-1600 sample and the whole corpus shows.

Training classifiers for all 103 Reuters categories over relatively large sets would be a time consuming and process intensive task. Therefore we restricted our study to a sample of 16 categories. These categories were selected based on the results of a preliminary experiment that involved training the SVM over a smaller training set Train-200 for the complete set of Reuters categories and a smaller test set Test-100 of 9,596 test documents.

The selection process was based on two characteristics of the categories: the distribution of positive examples in the whole corpus and the break-even point (BEP) achieved for the category by SVM, with Train-200 and Test-100. In order to obtain a sample representative of the whole set of categories, we created a 2-D histogram (with the log scale for the document distribution and 0.2 interval partition of the BEP range) and selected a subset that follows approximately the statistical distribution of the 103
category set. The 16 categories chosen include: godd, c313, gpol, ghea, c15, e121, gobit, m14, m143, gspo, e132, e13, c183, e21, e142, and c13 (see Figure 1).

We represent documents using the bag-of-words approach, applying a stop-word filter (from a standard set of 523 stop-words) and ignoring the case of the word surface form. Features that occur less than 4 times in Train-1600 are removed.

[image: image3.wmf]0

0.1

0.2

0.3

0.4

0.5

0.6

1

10

100

1000

10000

100000

Number of features

Macroaveraged BEP

Most common

first (DF)

Chi squared

(CHI)

Information

gain (IG)

SVM weights,

1/2 training set

SVM weights

(SVM)

Perceptron

weights (PC)

Odds ratio

(OR)

RSJ weights

(RSJ)

Rarest first

(IDF)

DF

IG

CHI

PC

SVM

RSJ

SVM

1/2

IDF

OR

For experiments with the linear SVM classifier we used the SvmLight program (version 3.50) by Thorsten Joachims for SVM training and classification [3].

Experiment Design and Results

1.1.10 Feature selection criteria

In order to compare classification performance of several feature selection methods, it seems natural to observe how the performance changes as we vary the number of fea​tures retained in the training phase. However, taking the number of features as a varying parameter puts different feature selection methods on a very differ​ent footing.

As an illustration, in Figure 2 we show how retaining different number of features affects the performance of the Naïve Bayes classifier. For each of the following 9 feature weighing methods: IDF, DF, SVM weights obtained from the full and the half of training data, Perceptron based weights, Information Gain, Odds Ratio, and RSJ weights, we run experiments by training the Naïve Bayes classifier over Train-1600 for all 16 categories. We use macroaverage F1 measure and macroaverage break-even point (BEP) for precision and recall to describe the performance of the classifiers. We observe, for example, that Naïve Bayes requires tens of thousands of features per category selected based on Odds Ratio and RSJ weights in order to achieve the same macroaverage F1 performance of 0.45 that less than 100 features per category can achieve if selected based on SVM weighting.

1.1.11 Sparsity Curves

For each feature weighting scheme we generate sparsity curves that depict the relationship between the number of retained features and the average sparsity of the resulting vector representations of documents. More precisely, for a given set of training data and a given category we calculate the feature scores according to the specified weighting scheme. The score imposes the ranking of the features. At each rank we calculate the corresponding sparsity. In order to obtain the sparsity curve for the whole set of categories, we average the sparsity at each rank across the categories.

Figure 3 shows the sparsity curves for the nine feature weighting methods over Train-1600. As we move along the x-axis to the right, we retain more of the top ranking features and observe the degree at which addition of these features affects the sparsity. If added features are very frequent, i.e., common across documents, their influence on sparsity is rather significant (the curve slopes upwards). If however, the added features are rare across documents, the sparsity curve slope does not change significantly (the curve is rather flat). Ultimately all the features are added and the average sparsity for the full feature set is achieved. However, this is done at different rate by different weighting schemes. We observe that there are two natural reference curves. They correspond to the document
[image: image4.wmf]0

0.1

0.2

0.3

0.4

0.5

0.6

0.1

1

10

100

Sparsity

Macroaveraged BEP

Most common

first (DF)

Chi squared

(CHI)

Information

gain (IG)

SVM weights,

1/2 training set

SVM weights

(SVM)

Perceptron

weights (PC)

Odds ratio

(OR)

RSJ weights

(RSJ)

Rarest first

(IDF)

IG

CHI

DF

SVM

OR

IDF

PC

RSJ

SVM

1/2

frequency DF and inverse document frequency IDF. The other curves are in between these two extremes. The next fastest growing, for up to several thousands of features per category, is Information Gain. Based on its definition, it ranks highly those relatively common features whose presence or absence correlates well with the category membership. It ranks low the features that are equally common to both members and non-members of a category; thus assigns low score to potentially many common features. The (2 ranking has the sparsity curve similar to the one for Information Gain, except that it grows more slowly. This is expected because the P(t) P(not t) terms in the denominator of the (2 formula encourage rare features to be ranked higher. The Information Gain curve is followed by those of the SVM and Perceptron weighting schemes. A much slower growing scheme is Odds ratio which, in accordance to its formula, does prefer features characteristic of positive documents, despite the fact that they might be rare in the corpus. Finally, the RSJ weighting behaves very similarly to IDF. This is expected based on the RSJ formula which is essentially IDF modified with relevance statistics.

[image: image5.wmf]0

10

20

30

40

50

60

70

80

90

1

10

100

1000

10000

100000

Number of features

Sparsity (average across

all categories)

Most common

first (DF)

Chi

squared(CHI)

Information

gain (IG)

SVM weights,

1/2 training set

SVM weights

(SVM)

Perceptron

weights (PC)

Odds ratio

(OR)

RSJ weights

(RSJ)

Rarest first

(IDF)

IDF

OR

RSJ

DF

PC

CHI

IG

SVM

1/2

SVM

 It is interesting to observe the relationship between the sparsity curves of different feature weightings and their categorization performance with Naïve Bayes. There is some hint of correlation between the similarity of sparsity curves and similarity in performance. However, these are only qualitative observations that require more rigorous investigation and formalism for comparing sparsity curve. Nevertheless, we wish to point out, for example, that according to Figure 2, Information Gain and (2 have very similar performance practically throughout the full range of sparsities; at the same time, they have similarly shaped sparsity curves (see Figure 3). On the other hand, while SVM and SVM1/2 have similar sparsity curves and performance curves, the Perceptron does not follow the same trend. Perceptron and SMV sparsity curves closely follow each other but the Perceptron performance curve shows that Perceptron weight ranking is much less effective when used with Naïve Bayes than SVM. Finally, Odds ratio and RSJ have similar performance curves and sparsity curves that exhibit similar trends but with rather different growth rate. Thus, for a method like Naïve Bayes, which is not explicitly linked with the IDF statistics, we naturally expect that sparsity as the parameter for describing or predicting the performance is of limited effect.

1.1.12 Comparison of fixed number of features and fixed sparsity as the cut-off criteria

Specifying sparsity as the cut-off level for feature selection essentially results in the category specific cut-off level on the number of features. Indeed, for a given sparsity we select, for each category, the number of features to meet the sparsity criteria. The question arises whether the sparsity based criteria in any way affects the average performance of the classifier over the number of categories. In particular, are the performance statistics like F1 and breakeven point higher or lower in comparison to those obtained when a uniform number of features is specified for all the categories.
In order to investigate this, we collected in Table 2 the statistics for the best runs with the number of feature cut-off and the sparsity cut-off for each of the term weighting schemes. Experiments with the Naïve Bayesian classifier show that, for a given feature weighting, cutoff based on sparsity gives slightly better results in both F1 and breakeven point for most of the feature weighting schemes. For the Rocchio classification both cut-off methods lead to comparative results. Therefore, sparsity seems to be a good alternative to cut-offs based on the fixed number of features across categories.

1.1.13 Classification performance

Comparing the performance of different feature weightings, we observe that the weighting based on an SVM normal outperforms the others, followed by Odds ratio, RSJ, and finally Information Gain.

[image: image6.emf]Size and Difficulty of the Reuters-2000 Categories

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10000 100000 1000000

Number of documents

Breakeven point in

preliminary experiments

All Categories Categories selected for further experiments

Comparing the performance between RSJ and Odds Ratio, we observe that RSJ weighting has an even greater preference for rare features than Odds ratio, even though the two have a very similar formula. This difference is obvious from the sparsity curves and seems to correlate with the performance. RJS requires many more features per category to achieve good performance (e.g., 17,000 features for best F1, as opposed to 9,500 in the case of Odds ratio).
We believe that is due to the +0.5 smoothing terms added to the frequencies in the formula for RSJ. Namely, the same constant is added to both positive and negative term frequency while the number of positive documents is much smaller. Thus the odds(t|pos) increases faster than odds(t|neg), the score increases and the term appears more desirable. This effect is greater on rare terms where the frequencies were originally small and 0.5 is not negligible in comparison to the frequency. Thus the RSJ shows preference for rare terms even in the middle ranks where Odds ratio already includes useful, more common terms. For instance, see the sparsity curves at around 10,000 features in Figure 3.

From Table 2 we see that, in case of Naïve Bayes, the sparsity is more stable over different feature weightings in the sense that the sparsity which yields best results (figures in parentheses) varies less from one weighting to another than the number of features which yields the best results. The fact that the best performance for RSJ was achieved at the sparsity of 57 might seem to contradict this claim but, in fact, nearly the same performance is achieved at much lower sparsities: F1 = 0.3996 at sparsity 2.4, while the best performance of F1 = 0.4040is achieved at sparsity 57.
Experiments with the Rocchio classifier show that Rocchio tends not to benefit from feature selection; performance keeps on growing as we add more features. However, it is rather striking to see the ‘dip’ in performance for sparsity between 1 and 10 across all the term weighting schemes except DF and IDF. Namely, the Rocchio classifier and the corresponding class prediction algorithm used here, the cosine distance measure, directly use IDF statistics in the scoring.
Thus, the gradual selection of features with increasing DF, i.e., decreasing IDF, correlates nicely with the Rocchio classification performance. In particular, the “rarest first” (IDF) weighting outperforms all other feature rankings considered here across a wide range of sparsities (from about 2.4 to about 18; that is, from 40,000 to 70.000 of the rarest features; see Figure 4). The second most successful Rocchio classifier along this range is the one based on Perceptron weights, which also has a considerable preference for rare features (cf. its sparsity curve on Figure 3).

It is also interesting that no other weighting methods lead to improvement of the Rocchio performance as the sparsity decreases (density grows to 100) but DF and IDF, where pruning of features from 100,000 to 4,000 most frequent features results in a BEP of 0.4693, as opposed to 0.4401 for the full set of features.
In combination with the feature weightings tested, the per​formance of Rocchio is in general lower than that of the Naïve Bayes classifier.

SUMMARY

In this paper we introduced the sparsity measure to complement or replace the standard cut-off criteria for feature selection, i.e., the predefined number of features per category.

We define sparsity as the average number of features per document vector. Our initial hypothesis was that feature selection cut-offs based on sparsity would lead more predictable macroaverage performance over different categories than cut-offs based on a fixed number of features. To test the hypothesis, we performed experiments on a large subset of the Reuters-2000 dataset using two prediction methods, Naïve Bayes and Rocchio, in combination with several feature weighting schemes: Information Gain, Odds ratio, weights from linear classifiers, Robertson-Sparck Jones weights, DF, IDF, (2.

Based on our experimental results we conclude that sparsity is a useful measure for analyzing the behaviour and performance of feature weighting methods and a good alternative to the commonly used fixed number of features criterion. Applying sparsity-based cut-off criteria leads to slightly higher performance averages in general. The sparsity-based criteria also seem to be more stable across different feature weighting schemes than the criteria based on fixing the number of features.

In our future work we will look for other “higher-order” measures that describe the characteristics of feature weighting scheme. With regards to sparsity, we intend to explore in further detail the relationship between the sparsity behaviour of feature weighting methods and the performance of various classifiers.

REFERENCES

[1] S. Dumais, J. Platt, D. Heckerman, M. Sahami: Inductive learning algorithms and representations for text categorization. Proc. of the 1998 ACM 7th Int. Conf. on Information and knowledge management (Bethesda, Maryland, USA, Nov 3–7, 1998), pp. 148–155.
[2] T. Gärtner, P. A. Flach: WBCSVM: Weighted Bayesian classification based on support vector machines. Proc. of the 18th Int. Conf. on Machine Learning (Williamstown, MA, USA, June 28–July 1, 2001), pp. 154–161.
[3] T. Joachims: Text categorization with support vector machines: learning with many relevant features. Proc. 10th European Conf. on Machine Learning (Chemnitz, Germany, April 21–23, 1998). LNCS vol. 1398, pp. 137–142.
[4] D. Mladenić: Feature subset selection in text-learning. Proc. 10th European Conf. on Machine Learning (Chemnitz, Germany, April 21–23, 1998). LNCS vol. 1398, pp. 95–100.
[5] T. Joachims: Making large-scale support vector machine learning practical. In: B. Schölkopf, C. J. C. Burges, A. J. Smola (Eds.): Advances in kernel methods: Support vector learning, The MIT Press, 1999, pp. 169–184
[6] D. Mladenić, M. Grobelnik: Feature selection for unbalanced class distribution and Naive Bayes. Proc. of the 16th Int. Conf. on Machine Learning (Bled, Slovenia, June 27–30, 1999), pp. 258–267.
Sparck Jones, K., Walker, S., and Robertson, S.E. A probabilistic model of information retrieval: development and comparative experiments. Information Processing and Management 36 (2000) 779-808, 809-840.

[7] Y. Yang, J. O. Pedersen: A comparative study on feature selection in text categorization. Proc. of the 14th Int. Conf. on Machine Learning (Nashwille, Tennessee, USA, July 8–12, 1997), pp. 412–420.
[8] Y. Yang, X. Liu: A re-examination of text categorization methods. Proc. 22nd Ann. Int. ACM SIGIR Conference (Berkeley, CA, USA, August 15–19, 1999), pp. 42–49.
[9] Y. Yang, C. Chute: A linear least squares fit method for terminology mapping. Proc. 15th Int. Conf. on Computational Linguistics (COLING 1992, Nantes, France, 23–28 July, 1992), II:447–53.
Reuters Corpus, Volume 1, English Language, 1996-08-20 to 1997-08-19. Available through http://about.reuters.com/researchandstandards/corpus/. Released in November 2000.

[10] Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning, 20(3):273–297, September 1995.
Schutze, H, Hull, D.A. and Pederson, J.O. A Comparison of Classifier and Document Representations for the Routing Problem. In Proc. 18th Int. ACM SIGIR Conference on Research and Development in Information Retrieval, 1995

Harman, D. Relevance feedback and other query modification techniques. In: Frakes, W.B., Baeza-Yates, R. (eds.), Information retrieval, data structures & algorithms, Frakes, 1992, pp. 241–263.

Robertson, S. Comparing the Performance of Adaptive Filtering and Ranked Output Systems. Information Retrieval, 5, 257-268, 2002.

Lewis, D.D. Applying Support Vector Machines to the TREC-2001 Batch Filtering and Routing Tasks. Proc. 10th Text Retrieval Conference (TREC 2001). NIST Special Publication 500-250, pp. 286–292.

Voorhees, E.M., Harman, D.K. TREC9 Overview. In the Ninth Text Retrieval Conference (TREC-9). NIST, Gaithersburg, MD (NIST Special Publ. 500-249), 2002.

Ng, H.T., Goh, W.B., Low, K.L. Feature selection, perceptron learning, and a usability case study for text categorization. In Proc. of the 20th Int. ACM SIGIR Conf. (Philadelphia, Pennsylvania, USA, July 27--31, 1997), ACM Press, pp. 67-73.

Rocchio, J. Relevance feedback informarian retrieval. In Gerard Salton (ed.): The Smart Retrieval System — Experiments in Automatic Document Processing, pp. 313–323. Prentice-Hall, Englewood Cliffs, N.J., 1971.
Brank, J., Grobelnik, M., Milić-Frayling, N., Mladenić, D. Feature selection using support vector machines. In Proc. 3rd Int. Conf. on Data Mining Methods and Databases for Engineering, Finance, and Other Fields (Bologna, Italy, September 2002).
Sindhwani, V., Bhattacharya, P., Rakshit, S. Information theoretic feature crediting in multiclass Support Vector Machines. In Proceedings of the 1st SIAM Int. Conf. on Data Mining. SIAM, Philadelphia, 2001.
Robertson, S.E., Sparck Jones, K. Relevance weighting of search terms. Journal of the American Society for Information Science 27, 1976, pp. 129-146.

McCallum, A., Nigam, K. A comparison of event models for naive Bayes text classification. In: Learning from Text Categorization: Papers from the AAAI Workshop (Madison, Wisconsin, 1998), TR WS-98-05, AAAI Press, pp. 41–48.

�

�

Figure 2. Macroaverages of F1 measure for the Naïve Bayes classifier for various feature weighting methods. The graph on the top shows the performance when the number of features is used as the cut-off level. The one on bottom is based on specifying the sparsity level as the features selection criterion.

�

Figure 3. Average sparsity curves for the nine feature weighting schemes, averaged over 16 Reuters categories.

Table 2. Macroaveraged per�formance values for different cutoff criteria and different learning methods (naive Bayes and Rocchio). The cutoff criteria are: the same fixed number of features for each category (the number of features that achieves best performance is given in brackets); the same fixed sparsity for each category (the sparsity that achieves best performance is given in brackets); “optimal” refers to choosing, separately for each category, the number of features that yields the best performance for this category.

�
Naïve Bayes Classifier�
Rocchio�
�
Cutoff criterion�
Average F1�
Average BEP�
Average BEP�
�
Odds Ratio�
Num of Feat.�
0.3833 (9500)�
0.4961 (21000)�
0.4401 (76000)�
�
�
Sparsity�
0.4134 (3.4)�
0.5271 (30)�
0.4401 (89)�
�
�
Optimal�
0.4819�
0.5574�
0.4801�
�
Information Gain�
Num of Feat.�
0.3943 (70)�
0.4929 (900)�
0.4401 (76000)�
�
�
Sparsity�
0.4038 (2.4)�
0.4931 (11.5)�
0.4399 (88)�
�
�
Optimal�
0.4556�
0.5303�
0.4451�
�
Robertson –Sparck Jones (RSJ)�
Num of Feat.�
0.4267 (17000)�
0.4935 (74000)�
0.4401 (76000)�
�
�
Sparsity�
0.4040 (57)�
0.5020 (73)�
0.4401 (89)�
�
�
Optimal�
0.4769�
0.5438�
0.4780�
�
SVM normal�
Num of Feat.�
0.4592 (120)�
0.5680 (650)�
0.4402 (71000)�
�
�
Sparsity�
0.4621 (1.6)�
0.5677 (13.5)�
0.4402 (88)�
�
�
Optimal�
0.5251�
0.5861�
0.4522�
�

�

Figure 1. Scatter-plot of the break-even precision-recall points for SVM and the category size used for selection of Reuters categories.

� Training over the full data set and using the resulting normal to select the features for the second re-training phase makes sense only if the two phase approach considerably improves the performance and thus justifies the processing cost.

� The set Train-200 (19,213 documents) and Test-100 (9,596) were constructed in the similar way as Train-1600, except that only 200 and 100 random representatives of each category are taken, respectively.

PAGE

_1105515985.unknown

_1105483174.unknown

