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ABSTRACT

Wide-area application level multicasting (ALM) hagen an
active research area lately and practical algosthrave been
derived to deliver QoS results for small to medigroup size,
covering a good range of cases when such requitsnae
warranted. These algorithms all assume that thdtireg tree is
comprised of the members in the sessimty. However, in a
large and collaborative environment, active sessare likely to
consume only a fraction of the total resources. édwer, some
nodes with large capacity can contribute to mudtisessions.
While it is intuitive to explore such spare res@sic the
challenges are 1) how to organize all the availagd®urces into
a resource pool and 2) how to discover and subsdgudtilize

the spare resources to benefit the active sessions.

In this paper, we describe SOM@g[f-Organizing Metadata

Overlay) which is an in-system monitoring service that

effectively creates an illusion of a single reseupool made up
by machines organized using P2P technologies. USibyIO,

we show practical solutions utilizing spare researccan
substantially optimize active ALM sessions. Furthere,

sessions with different priorities occupy resouraesordingly.
All these are achieved using a hybrid model thahlboes in-
time global knowledge and individual competitiontivaiut the
need of central coordination.

1. INTRODUCTION

Application-level multicasting (ALM) is one of thenost
interesting applications afverlay network It happens to
present many challenges as well: for scenarios sisch
video-conferencing, guaranteeing certain QoS neisiof
paramount importance.

Many algorithms have been proposed to address these

problems, all assuming that the only resourceslablai

are those in the ALM session. In a collaborative
environment, many other stand-by resources could be
otherwise included for a more optimal solution. For

example, Microsoft Research has five branches adtaes

globe, and has many thousands of machines that are

geographically distributed. At a given hour, howeve
number of active sessions is likely to be only adfal,
and each session may have a small number of memtits

(say less than 20). Thus, a strong case can be toade

orchestrate all the resources together so thateastissions
can utilize spare resources when beneficial.

While this idea is rather intuitive, the challenges many.
There are two critical building blocks: 1) how toganize

a resource pooland 2) how to schedule sessions by
recruiting spare resources, and do so in a coniplete
distributedmanner.

To this end, we make a few novel contributions his t
paper:

« We use the latest P2P technologies to self-organize
potentially very large amount of resources. Inipatar,
we employ P2P DHT (Distributed Hash Table) to pool
resources together. However, pooling resources noies
automatically yield a resource pool, yet.

« Extending our early work of [20], we demonstrate th
feasibility of an infrastructure embedded in awduir
P2P DHT that provides a highly efficient, robusdan
scalable monitoring service. This infrastructureMsD
(Self-Organized Metadata Overlaig fault-resilientand
can gather and disseminate system information in
O(logN) time. In essence, SOMO builds a dynamic
system status database which is available intgrnall
system participants. This database is being coutisiy
updated and creates an illusion of a single, large
resource pool.

* We then demonstrate, step by step, how ALM sessions
can be optimized by finding spare resources irptia.
We first show how this can be done assuming only a
single session is of interest, and validate thatoup0%
improvement can be made for small-to-medium group
size. All data necessary for making scheduling sleoi
are gathered through SOMO and then subsequently
queried at the time of scheduling. We then extdra t
base algorithm to schedule multiplesimultaneous
sessions each may of different priorities. To easur
scalability, we take cues from sociology and adapt
simple model in which individual, credential-based
competition is combined with on-time global knowgded
available through SOMO. Our results show that, as



expected, sessions of higher priority are giverhdig
share of resources, resulting better performance

While our work is targeted at optimizing ALM sessio

the core technology is a lot more generic: we show a
resource pool can be efficiently built, with no
administration overhead; and the philosophy andehotl
distributed job scheduling — borrowing ideas frame-
tested practice in society, can be applied to other
distributed applications.

The rest of the paper is organized as follows. How
construct the resource is the focus of SectiorcBe8uling
multiple ALM sessions in the resource pool crealsd
SOMO is extensively studied in Section-4. We discus
related work in Section-4 and conclude in Section-5

2. BUILDING P2P RESOURCE POOL

The foundation of our resource pool proposal is she
called structured peer-to-peer systems, and in particular
the distributed hash tabldDHT). We assume that the
readers are reasonably familiar with the conced@T,
and for the sake of brevity will only go througletbasics.

In DHT, a very large logical space (e.g. 160-bits)
assumed. Nodes join this space with random IDstlnsl
partition the spaced uniformly. The ID can be,ifstance,
MDS5 over a node’s IP address. An ordered set oégapith
turn, allows a node’s responsiblone to be strictly
defined. Letp and q be a nodex's predecessor and
successor, respectively. One definition of a nodelse is
simply the space between the ID of its immediate
predecessor ID (non-inclusive) and its own ID. thev
words: zonéx) = (ID(p), ID(X)]. This is essentially how
consistent hashing assigns zones to DHT nodes [16]
(Figure 1). This base ring (also called laaf-set as in
Pastry[13]) is the simplest P2P DHT. To hardenrihg
against system dynamism, each node recordsighbors

to each side. These states are the basic routig, tand
are updated to keep the invariant when node jainde
events occur.

zonek)=(ID(p), ID(X)]

2r+1

Figure 1: the simplest P2P DHT — a ring, thezone and the
basic routing table that recordsr neighbors to each side.

If one imagines the zone being a hash bucket in an
ordinary hash table, then the ring isdistributed hash
table Given a key in the space, one can always resolve
which node being responsible. The lookup perforraasc
O(N) in this simple ring structure.

Elaborate algorithms built upon the above concepthat
they achieve O(Idy) performance with either O(Idf or
even constant states (i.e. the routing table es)trie
Representative systems including Chord[16], CAN|10]
Pastry[13] and Tapestry[22].

The most interesting aspect of a DHT is that thelah
system is self-organizing with very low overhead -
typically in the order of O(loy). The second significant
attribute is the virtualization of a space wherethbo
resources and other entities (such as documernsdsio
DHT) live together; this feature is what we expldhe
most in this paper.

Many DHT systems are designed with a storage-eentri
mindset. We found it more interesting simply to eéak
advantage of DHT’s capability of stringing togettarge
amount of resourcesvithout administration oversight.
However, pooling resources together does not
automatically yield a resource pool. A resourcel @ists

so that resource sharing at the time of schedutslis
(e.g. application-level multicast sessions) is fass This
requires two more pieces:

1. An efficient way to know the running states of the
resources in the pool. And,

2. Based on 1), a methodology to schedule an
incoming task.

Therefore, embedded inside the system itself, thaust

be a robust, highly efficient and scalable monitgrutility

that can gather and disseminate global knowledge as
accurately as possible. This is so because forrge la
system, it is impractical to rely on external moriitg
service.

Gathering reports - »

Resource pool
Root report

Generating reports: = ==
Report

Internet

Figure 2: the resource pool is comprised of the mames
pooled together via DHT. SOMO, a self-organizing f@rarchy
using data overlay that efficiently aggregates resmce status
in a scalable way, is an in-system monitoring utiy.
Combining DHT's capability of pooling resource with SOMO
collectively makes the resource pool.

This in-system monitoring utility is calleself-organizing
metadata overlay(SOMO), and will be introduced in
Section 2.2. SOMO is built using a generic techgglo
data overlay which can constructrbitrary distributed
data structure over a DHT. The relationship of ¢hes
concepts is described figure 2



2.1 Data Overlay

We observe that hash-table is only one of the fomeshal
data structures. Sorted list, binary trees and egietc. all
have their significant utilities. One way would le
investigate how to make each of them self-orgagifire.,
P2P sorted list). Another is to build on top ofask table
that already has such self-organizing property. (P8P
DHT). This second approach, which we adlta overlay
is what we take in this paper.

Any object of a data structure can be consideredh as
document. Therefore, as long as it has a key, dbpdct
can be deposited into and retrieved from a P2P DHT.
Obijects relate to each other via pointers, sodwetrse to
objectb pointed to bya.fog a.foo must now storé’s key
instead.  More formally, the following two are the
necessary and sufficient conditions:

» Each object must have a key, obtained at its birth

« If an attribute of an objecta.foq is a pointer, it is
expanded into a structure of two fieldsfoo.keyand
a.foo.hostThe first substitutes the hard-wired address of
pointer, and the second field is a soft state Gointg the
last known hosting DHT node of the objectoo points
to and serves as a routing shortcut.

It is possible to control the generation of objedtey to
explore data locality in a DHT. For instance, i tkeys of

a and b are close enough, it's likely that they will be
hosted on one machine in DHT.

We call a data structure distributed in a hostingTDa
data overlay It differs from traditional sense of overlay in
that traversing (or routing) from one entity to Hrer uses
the free service of the underlying P2P DHT.

Ini

b.foo

node x

EI H

DHT_lookup(a.foo.key)

[a] key

a.foo

afoo.key
a.foo.hostf -

Local machine

P2P DHT

Figure 3: implement arbitrary data structure in DHT .

Figure 3 contrasts a data structure in local mackiersus
that on a P2P DHT. Important primitives that matapaia
pointer in a data structure, includingetref deref
(dereferencing) andelete are outlined in Figure 4. Here,
we assume that both DHT_lookup and DHT _insert \ail,

a side effect, always return the node in DHT thatently
hosts the target object. DHT_direct bypasses normal
DHT_lookup routing and directly seeks to the noldat t
hosting an object given its key.

The interesting aspect is that it is now possiblédst any
arbitrary data structure on a P2P DHT, and in msparent

way. The host routing shortcut makes the performance
insensitive to the underlying DHT.

setref@.foo, B {

[l initially a.foo==null; b is the object
/I to whicha.foowill points to
a.foo.keyb.key

a.foo.host=DHT _insertb.key, b

}
deref@.foo {
if (a.foatnull) {
obj=DHT_direct@.foo.hosta.foo.key
if obj==null { // object has moved
obj=DHT_lookupé@.foo.key
a.foo.host node returned
}
return obj
elsereturn “non-existed”

}

}

delete@.foo { /I delete the object pointed to lyfoo
DHT_deleted.foo.key
a.fooe=null

/I return the object pointed to layfoo

Figure 4: pointer manipulate primitives in data-ovelay

A data overlay on top of a bare-bone P2P DHT with n
internal reliability support can be used to implame
distributed data structure that is soft-state iturea(i.e,,
data is periodically refreshed and consumed theneaf
without ill side-effect). This is adequate to monithe
running state of resource pool as a whole, andhist we
employ for SOMO.

2.2 SOMO: Self-Organized Metadata

Overlay

We now describe the data overlay SOM&&If-Organized
Metadata Overlay, a generic information gathering and
disseminating infrastructure on top of any P2P DHiTa
way, SOMO can be thought as a responsive “news
broadcast” whose construction and processing aaesgh
by all the nodes. The on-time “news” is what credtee
illusion of the resource pool.

Such an infrastructure must satisfy a few key prige
self-organizingat the same scale as the hosting DHT, fully
distributedandself-healing and be aaccurateas possible
of the metadata gathered and disseminated.

Such metadata overlay can take a number of topesogi
For the sake of resource pool, one of the most itapb
functionalities is aggregation. Therefore, our iempénted
SOMO is a tree ok degree whose leaves are planted in
each DHT node. Information is gathered from thedsot
and propagates towards the root, and disseminayed b
trickling downwards. Thus, one can think of SOMO as
doing converge casfrom the leaves to the root, and then
(optionally)broadcastback down to the leaves again. Both
the gathering and dissemination phases are @D{jog



bounded, whereN is total number of entities. Each
operation in SOMO involves no more thakt+l
interactions, making it fully distributed. We dewifth
robustness using the principle of soft-state, s data can
be regenerated in O(Idd) time. The SOMO tree self-
organizes and self-heals in the same time bound.

Since SOMO is a tree, we call its node 8®MO node

To avoid confusion, we denote the DHT nodes as Igimp
the DHT node At this point, it is worth to emphasize that
SOMO is adata overlayand as such is a distributed data
structure spread onto the DHT. A SOMO node is gaabb

as in object-oriented programming language, and its
member functions will be carried out by its hostiDBIT
node (i.e., the machine).

2.2.1 Building SOMO
A DHT node that hosts a SOMO nosgleis referred to as
DHT_hos(s).
struct SOMO_node {
stringkey
struct SOMO_nodéchild[1..K]
DHT_zone_typ&
SOMO_opop
Report_typeeport

Figure 5: SOMO node data structure

The basic structure of the ty@®MO_nodés described in
Figure 5. The membeZ indicates the region that this
node’sreport member covers. Here, the region is simply a
portion of the total logical space of the DHThe root
SOMO node covers the entire logical space. Kégis
produced by a deterministic function of a SOMO risde
regionZ. Examples of such functions include the center of
the region, or a hash of the region coordinates [sgure

6). Therefore, a SOMO nodewill be hosted by a DHT
node that covers.key(e.g. the center &.2. This allows a
SOMO node to be retrieved deterministically — elyaitte
same as any other documents stored in DHT, asdsge
know its responsible region, and is particularlyefus
when we want to query system status in a givensiagce
range. A SOMO node’s responsible region is further
divided by a factor ofk, each taken by one of its
children, which are pointers in the SOMO data stmec A
SOMO nodes's i-th child will cover thei-th fraction of
regions.Z. This continues recursively until a termination
condition is met (discussed shortly). Since a DHden
will own a piece of the logical space, it is theref
guaranteed a SOMO node will be planted in it.

Initially, when the system contains only one DHTdap
there is only the SOMO root. As the DHT system grow
SOMO builds its hierarchy along. This is done biirlg
each DHT node periodically execute the routine
SOMO_growshown in Figure 6, for any SOMO nodes that
are in its custody.

SOMO_grow(SOMO_nods) {
/I check if any children is necessary
if (s.ZLDHT_host§).Z) return
for i=1 tok
if (s.childi]==NULL &&
thei-th sub-space f.Z[ host§).Z) {
t = newtype SOMO_node)
t.Z = thei-th sub-space of.Z
t.key= SOMO _loc{.2)
setrefs.childi], t)
}

}
SOMO_loc(DHT_zone_typ#) {

return center oz

[/l optionally

/Ireturn hash_ofZ)
}

Figure 6: SOMO_grow procedure and the SOMO_loc
procedure which deterministically calculates a SOMOnode’s
key given the region it covers. The procedure is exuted by
the hosting DHT machine.

We test first if the SOMO node’s responsible zoee i
smaller or equal to that of the hosting DHT nodi¢he test
comes out to be true, then this SOMO node is ajread
leaf planted in the right DHT node and there igpont to
grow any more children. Otherwise, we attempt towgr
Note that after a new SOMO node is initialized,cad the
setref primitive (See Figure 4) to install the pointehnjst
last step is where DHT operation is involved. Ty,
new SOMO nodes covering smaller regions are irstall
into the DHT.

/l'inject into DHT

Total logical space ,——— SOMO node
0.

A =this_reportn last_report

DHT node

Figure 7: SOMO tree on top of P2P DHT. Circles arecsSOMO
nodes. SOMO nodes are mapped onto DHT nodes accardi
to their keys. A DHT node may own multiple SOMO noés
and will execute theirSOMO_grow routines periodically.

As this procedure is executed over all SOMO notiss,
SOMO tree will grow as the hosting DHT grows, ahd t
SOMO tree is taller in logical space regions wheidT
nodes are denser. This is illustrated=igure 7 Note that
SOMO nodes fall on to DHT nodes according to their
keys. As such a DHT node may own more than one SOMO
node, but has at least one SOMO node plantedtinto i

TheSOMO_growprocedure is done in a top down fashion,
and is executed periodically. A bottom-up versiam de
similarly derived. When the system shrinks, SOM@&etr
will prune itself accordingly by deleting redundant



children. For arN-node system where nodes populate the
total logical space evenly, there will b& ZOMO-nodes
when the SOMO fan-oltis 2.

The crash of a DHT node will take away the SOMOewd

it is hosting. However, the crashing node’s zon#é be
taken over by another DHT node after repair.
Consequently, the periodical checking of all clalr
SOMO nodes ensures that the tree can be completely
reconstructed in O(Iqlyl) time. Because the SOMO root is
always hosted by the DHT node that owns one
deterministic point of the total space, that nodsuees the
existence of the SOMO root and invokes the SOMOwgro
routine on the SOMO root.

2.2.2 Gathering and Disseminate Information with
SOMO

To gather system metadata, for instance loads and
capacities, a SOMO node periodically requests tepor
executed by DHT node that holds it from its childr&he

leaf SOMO nodes simply get the required info frdmait
hosting DHT nodes. As a side-effect, the proceduitk
also re-start a child SOMO node if it has disappéar
because the hosting DHT node’s crash. Figure 8tilites

the procedure

get_report (SOMO_nod® {
Report_typeep[1. K]
for i0[1.K]
if (s.childi] # NULL) /l retrieving via DHT
rep[i] = derefs.childi]).report
s.report=s.ofrep[])
}

Figure 8: SOMO gathering procedure, executed by DHT
nodes responsible for a SOMO node.

The routine is periodically executed at an interg&lT.
Thus, information is gathered from the SOMO leazed
flows to its root with a maximum delay of Id¢§T. This
bound is derived when flow between hierarchies©OM®

is completely unsynchronized. If upper SOMO nodws!
for reports immediately triggers the similar actasf their
children, then the latency can be reduced t,,JIbgiN,
wherety,, is average latency of a trip in the hosting DHT.
The unsynchronized flow has latency bound of/\,
whereas the synchronized version will be bounded by
practice (e.g., 5 minutes). Note thatt IbgiN) is the
absolute lower bound. For 2M nodes and witt8 and a
typical latency of 200ms per DHT hop, the SOMO root
will have a global view with a lag of 1.6s.

If the SOMO report is composed of information piert@
building the resource pool, such as load and nd&twor
condition of the machine, then by continuing tohgat
fresh report from the SOMO leaves (and thesery
machines in the pool), SOMO root will have periadic
shapshots of the whole system. Such snapshot's may

contain information whose freshness is Olpdpounded,
and is adequate for scheduling coarse-grainedgobis as
application-level multicasting which usually lastuch
longer than the collection period.

Dissemination using SOMO is essentially the reveds¢a
trickles down through the SOMO hierarchy towards th
leaves. Performance thus is similar as gatherihg. ather
alternative is to query the SOMO root. This is winat
used in scheduling ALM sessions, since number of
sessions is relatively small and the query is natienvery
often.

Operations in either gathering or disseminating spha
involve one interaction with the parent, and thethwk
children. Thus, the overhead in a SOMO operatioa is
constant. The entities involved are the DHT nodes t
host the SOMO tree. SOMO nodes are scattered among
DHT nodes and therefore SOMO processing is didtibu
and scales with the system.

It seems that towards the SOMO root the hosting DHT
nodes need to have increasingly higher bandwidith an
stability. As discussed earlier, stability is notcancern
because the whole SOMO hierarchy can be recovered i
O(logN) time. As for bandwidth, most of the time one
needs only to submit delta between reports (Figi)ce
Combining with compression will further bring down
message size. Finally, it is always possible tatecan
appropriate DHT node through SOMO. This node can
swap with the one who is hosting the SOMO root
currently. That is to say, SOMO can be completel§- s
optimizing as well.

The power of SOMO lies in its simplicity and fledity: it
specifies neither the type of information it shoglather
and/or disseminate, nor the operation invoked tcess
them. That is to say, SOMO operations are prograiohen
and active For this reason, in the pseudo-code we have
usedop as a generic notation for operation used. Usieg th
abstraction of data overlay, its performance iso als
insensitive to the hosting DHT. SOMO processinfully
distributed, and it is both self-organizing and-belaling.

We have implemented a SOMO-based global performance
monitor with which we monitor the servers in oub lan a
daily basis. This tool employs SOMO built over aywe
simple ring-like DHT, and SOMO gathers data from
various performance counter on each machine. The
complete system status is obtained by queryingsthMO

root report through a unified Ul interface. We ¢esthe
SOMO stability by unplugging cables of servers bein
monitored, and each time the global view is regeteer
after a short jitter. Using the data overlay aluiioa, the
SOMO layer is implemented much like any local
procedures, with only a few hundred lines of code.



2.3 DHT+SOMO £ P2P Resource Pool
To summarize, our P2P resource pool is composégaf
ingredients:

« DHT. A DHT is used not in the sense of sharing
contents, but rather as an efficient way to pool
together a very large amount of resources, with
zero administration overhead and no scalability
bottleneck.

e SOMO. Utilizing the fact that arbitrary
distributed data structure can be built in the
virtual space and then mapped on to various
resources, SOMO is a self-organizing “news
broadcast” hierarchy. Aggregating resource status
in O(logN) time then creates the illusion of a
single resource pool.

3. SCHEDULING ALM SESSIONS

WITHIN THE P2P RESOURCE POOL

As discussed in Section-2.2, built upon DHT, SOM#D ¢
create the image of a single resource pool. Giliaty the
interesting question is how job scheduling can be
performed over this resource pool, in a completely
distributed fashion with the goal of maximizing sasce
utilization and satisfying QoS requirements per
application.

For the particular problem of application level traasting
(ALM), the end goal is for active sessions to achie
optimal performance with available resources in fibel.
Session’s performance metrics is determined byairert
QoS definitions. Moreover, higher priority sessi@hsuld
proportionally acquire more shares of resources.

We will give our QoS definition and then describer o
approaches in steps. First, we will show how addli
resources are recruited assuming only one singkiseis
active. Next, we will present our approach of houltiple
sessions with different priorities are optimized.

Unless otherwise specified, our experiments siraukat
two-layer Transit Stub topology [18] with 600 rotgeThe
network consists of 24 transit routers and 576 sbuibers.
We assign link latencies of 100ms for intra-tram&itain
links, 25ms for stub-transit links and 10ms foraastub
domain links. We also append 1200 end systemsdo th
stub routers randomly and set the last hop lat¢ncs
random value between 3ms and 8ms. The resource pool
contains all the 1200 end nodes in the network.il&irno
many previous works [14][15][19], each node hasarl

on the number of communication sessions it can lband
which we calldegree This may due to the limited access
bandwidth or workload of end systems. The degrasto
for all the nodes lie within 2 and 9, and followset
distribution 2 for degreei-1. Thus, half of the nodes in
the system have degree 2 and the population fdrehig
degree decreases exponentially. These nodes aeized

using a DHT and runs SOMO on top. The details of
SOMO report for scheduling ALM will be presentetela

3.1 ALM QoS Definition

Each multicasting session assumes static membeiship
M(s) is known a priori. We believe this covers a good
portion of ALM applications where QoS is desiredry f
instance pre-scheduled video-conferencing.

For ALM, there exist several different criteria for
optimization, like bandwidth bottleneck, maximatelacy
or variance of latencies. In this paper, we chaoagimal
latency of all members as the main objective ok tre
building algorithms since it can greatly affect the
perception of end users. Our definition of QoS dore
given session is the same as proposed in AMCagtafid
can be formally stated as follows:

Definition 1. Degree-bounded, minimal height tree
problem (DB-MHT). Given an undirected complete graph
G(V,B), a degree bound,oundV) for eachv/V, a latency
functionl(e) for each edgelE. Find a spanning trek of

G such that for eaclw/T, degree of v satisfied(v) <
dooundV) and the height off (measured as aggregated
latency from the root) is minimized.

Using the resource pool, the above definition ighsly

extended. An extended set of helper nodeis added to
the graph, and our objective is to achieve the sasttion
relative to an optimal plan derivedithout using H, by

adding the least amount of helper nodes.

A A
ol o‘?g ;)D 35[
O

o2 &%
o

s
O O
Figure 9: (a) an optimal plan for an ALM. (b) an ewen better
plan using helper nodes in the resource pool. Cires are
members belong toM(s), and the square is an available node
with a large degree.

Figure 9 depicts this graphically. Supp&sds the optimal
plan by some algorithmf, which involves the initial
member seM(s) only. Running a modified algorithrfi
which not only usedi(s) but also recruits available and
nearby large degree nodes, the tree height — which
corresponds to the maximal latency of the sessian,be
substantially reduced.

(b)

When the group size is very small (e.§l(g)|<10), finding

P, by enumerating all possibilities can be done in
reasonable time: for an eight-node group this $s lghan
three seconds on a 1.4GMHz Pentium IV PC with 256M
memory. Even with this globally optimal plan, it is
interesting to see that one helper node will bilable to
shorten the tree. For instance, adding a helpee rmtuke



to the root with a degree bound greater than 4gbrabout
14.2% average latency reduction. This validatesbasic
premise; the challenge is how to extend it for déarg
groups.

3.2 Scheduling a Single Session
We assume the root of the tree is where the plgnaird
scheduling is performed. In other word, the rodhistask
managerof the session.
ALM(r, V) { I/ V==M(s), r is the root

for all vV Il initialization

heightv)=I(r, v); paren(v)=r
T=W={r}, Link={})

while (W<V) {  // loop until finish
find ud{V-W} s.t. heigh(u) is minimum
7~ it (d(paremUu))==tge(parentu)-1)---""""""""7 |
i Kefind_helper() |
| ifh#NULL{ // integrate the helper node |
i W+={h}; Link+={h, parenfu)}; i
| |

W+={u}; Link+={u, h};
} else
== - We=fur tink+={o; parento);----- -0 -

for all viE{ V-W} { // re-adjust the height
heighfr)=co
for all wOW
if d(W)<dpoundW) && heigh{v)>heigh{w)+l(w, \)
heightv)=heigh{w)+l(w, V); paren{v)=w
}

}
adjustl)
return T

}

Figure 10: the AMCast algorithm that is ON®) (without the
lines in the dashed box) and the critical-node algithm that
utilizes additional helper node.

There are many proposals to optimize DB-MHT, which
generally known as NP-complete. Our goal is not to
propose new algorithms. Instead, we will seleafie few
well-known ones and investigate how much perforraanc
benefits we can achieve when the resource podilized.

Our base algorithm uses the one proposed in [1Bh w
O(N® performance bound. This algorithm can generate a
solution for hundred of nodes in less than one rs&co
(Figure 10, without the code in the dashed box)isTh
algorithm, which we refer to as “AMCast,” is a tgpl
greedy algorithm. It starts first with the root aadds it to
a set of the current solution. Next, the minimurights of
the rest of the nodes are calculated by finding ttlesest
potential parents in the solution set, subject &mrde
constraints. This loops back by absorbing the neille
the lowest height into the solution. The processtinoes
until all nodes are finally included in the resudfitree.To

ensure that we get the best possible tree to sttt we
augment this algorithm with further tuning (line)21

A known technique to approximate globally optimal
algorithm is to adjust the tree with a set of h&tizimoves.
These moves are graphically depicted in Figure Thg
adjustments include the followings: (a) find a nparent
for the highest node; (b) swap the highest nodéh wit
another leaf node; (c) swap the sub-tree whoseisotbte
parent of the highest node with another sub-trdeesg&
optimizations are local adjustment after the tree i
generated using the AMCast algorithm, and will be
referred to asadjust In our experiments, we test how
helper nodes affect the algorithm both with andhwuit

this improvement.
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Figure 11: Adjustment heuristics for DB-MHT. From top to

bottom: find a new parent for the highest node; swa the
highest node with another leaf node; swap the subee whose
root is the parent of the highest node with anothesub-tree.

Our algorithm searching for beneficial helper nodes
include two considerations: the time to trigger #earch
and the criteria to judge an addition. The general
mechanism is described by the pseudo-code in teb-da
box of Figure 10. Letu be the node that the AMCast
algorithm is about to add anparen(u) be its parent.
Whenparen{u)'s free degree is reduced to one, we trigger
the search for an additional nobelf suchh exists in the
resource pool, them becomesu’'s parent instead and
replacesu to be the child of the originaparen{u).
Different versions vary only on the selection aideof h

but we refer to this class of optimization ttritical node
algorithm. “Critical” here means that, for a pautar node,
this is the last opportunity to improve upon thégioal
greedy algorithm.

We have experimented with different algorithm tarsé
for h. The first variation is simply to find an additidna
node closest to the parent node and with an adequat



degree (we use 4). Ld{a, b be latency between two
arbitrary nodesa andb. We find the following heuristic
yields even better results:

I(h, parenfu))+max((h, V) is minimum

wherev satisfiesparent(v) = parent(u) && \\ condition 1

Opoundn) 24 &&
I(h, parenu))<R

\\ condition 2
\\ condition 3

Here,v maybe one ofirs siblings. The idea here is that
since all suchlv will potentially beh’s future children](h,
parenfu)) + max ((h, v)) is most likely to affect the
potential tree height aftérs joining (condition 1). Such
helper node should have adequate degree (condiion
Finally, to avoid “junk” nodes that are far awayeav
though their degrees are high, we impose a raRiuls
must lie withinR away fromparen{u) (condition 3).

We found thatR between 50~150 yields satisfactory
results for the topology parameters we chose. fdueoff
here is that a smalR will reduce the choice of candidates,
whereas a largeR will introduce links of long latency in
the tree. That the setting of radius to be mediamye
gives good result isn't a surprise. Recall thathage 100,
25, and 10 for intra-transit, stub-transit andargtub links
respectively. Thus, a radius of 50-150 will avoidredes
from another stub.

So far we have described the algorithm as if weamdy
knew the degrees of other nodes in the resourck pab
also the latencies between all pairs. While thest fir
condition can be easily met by querying the SOMO
reports, the ' is obviously impractical because it entails,
virtually, that latencies between all pairs areilabde. To
get around this problem, we use the well known
“landmark” approach. In this algorithm, a few larahks
are chosen first. Each node then measure rountitnis

to these landmarks and the resultidglay vector
approximates the coordinates of a node relativehto
landmarks. To judge the closeness of two nodes, the
Euclidean distances between the two delay vectogs a
computed.

In our experiments, we chose three random landmarks
Each node now includes its measured delay vectbritan
degree when submitting to SOMO. To find the closes
helper nodéh to paren{u) at the time of searching, we use
delay vector oparen{u) to query the SOMO report for 5
nearby nodes and then select the one that fitsriberia

the best.

In the followings, we call the algorithm where paiise
node latency is known a priori via an oracle @ritical,
and the one used the landmark estimation for \wicini
judgment thde.andmark

Root report Report from node x

System infa
Load, memory, disk, ...

Network info:
Location: landmark (153:152:452)
Bandwidth: available degree (5)

Report from node x|

Report from node y

Report from node yy

System infa
Load, memory, disk, ...

N\

Network info:
Location: landmark (454:453:053)
Bandwidth: available degree (2)

Figure 12: SOMO report structure for scheduling onesingle
active ALM session.

Figure 12gives an example of the SOMO root report and
the detailed report submitted from individual nadescall
that each node (for instance nodandy) will continue to
update through the SOMO hierarchy, resulting in
continuous refreshing of the root report.

50% ———
45% < ~— | ——AMCast
40% \ —=— AMCast+ad ju
= 35% “Tf\\%\\ —2— Landmark
230% —»— Landmark+ad ju
= 25% RN ——Critical
520% “\A\ \\x\% Critical+adju
= 15% \A\ \e/e\ —— Bound
o7 \A\ o
10% K/A\\A
I S a
5%
0% . . . . . .
20 50 100 150 200 250 300
Group size

Figure 13: The performance of scheduling single ALM
sessionAMCast represents the original algorithm,Critical is
our modified “critical node” heuristic, Landmark stands for
the landmark based approachBound denotes the theoretical
upper bound. adju denotes the combination when tree
adjustment is performed.

We are now ready to present our results. A faituaten
should compare our results against those of a tjjoba
optimal algorithm. Since this is not available, veport
our results in terms of percentage of tree height
improvement relative to the AMCast algorithm. Irhext
words, ifHgq is the tree height achieved usaig, then:

Improvement :(HAMCasI_ Halg)/HAMCast

The upper bound is the latency between the furthede

to the root, corresponding to the ideal performaifiche

root has degree of infinity. For the data set thatused,

the upper bound is between 40~50%. The average
performance of these algorithms over 20 runs isvehio
Figure 13 for various group sizes. It is conclusihat
resource pool is very effective for small-to-medignoup
size. For larger groups, the original AMCast hasrano
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rooms to optimize by using the existing membersaaly.
We believe that in reality, small groups are int famre
common.

For instancelL.andmark+adjustmentwhich is a practical
algorithm, delivers more than 30% latency reductioer
the baseline for group size of 100; for group sikéwventy,
the reduction is 35%. Interestingly enough, tree
adjustment, which is otherwise mediocre in shortgrihe
tree (5% over baseline), is remarkably effectiveeesally

for Landmark Part of the reason may be due to the
inaccuracy introduced by using delay vectors tarege
node proximity.
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Average degree used
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(b)
Figure 14: (a) number of additional nodes used an¢tb) the
average degree used on additional nodes.

It is also intriguing to see that using landmargtéad of
oracle the results are not substantially differefhis
demonstrates that our approach is practical. Tenstand
that further, we compare the number of helper naies
their average degrees in Figure 14, @ntical and the
Landmark It shows that both algorithms recruit about the
same number of helper nodes. However, the qudiitiieo
nodes selected by the latter is not as high, ealhegihen
group size is small. This explains why the perfaro®aof
Critical and Landmark converges for larger group (see
Figure 13).

3.3 Scheduling Multiple ALM Sessions

The preceding section describes the stand-alorexiatihg
algorithm for one ALM session; we now discuss how
multiple active sessions are scheduled in the sys@ur
goals are: 1) higher priority sessions are propodily

assigned with more resources, and 2) that thezaiiidin of
the resource pool as a whole is maximized.

All the sessions may start and end at random titBash
session has an integer valued priority between d. &n
Priority 1 session is the highest class. The nunddfer
maximum simultaneous sessions varies from 10 tar@D
each session has non-overlapping member set of26ize
Thus, when there are 60 active sessi@ils,nodes will
belong to at least one session. That is, the @mactf
original members of active sessions varies from 17% to
100%. Actual employed nodes will be greater byudaig
helper nodes that lie outside the session membmis a
especially when such fraction is big, nodes wittgda
degrees may be involved in more than one session.

The principle underlying our approach is very siep@nd

it draws insight from a well-organized society:lasg as
global, on-time and trusted knowledge is availatilejay
be best to leave each task to compete resourcbshweir
own credentials (i.e., the priorities). Thus, weptoy a
hybrid model that combines global, on-time knowkedg
with individual, credential-based competition.

Setting the appropriate priorities at nodes invdlve a
session takes extra consideration. In a collabarati2P
environment, if a node needs to run a job whichuihes
itself as a member, it is fair to have that jobdbenighest
priority in that node. Therefore, for a sessienwith
priority L, it has the highest priority (i.e. 1 in our
experiment) for nodes iM(s), andL elsewhere (i.e., for
any helper nodes lie outsidé(s)). This ensures that each
session can be run, with a lower bound correspgnttin
the AMCast+adjualgorithm. The upper bound is obtained
assuming s is the only session in the system (i.e.,
Landmark+adjy.

As before, the root of an ALM session is the tasiager,
which performs the planning and scheduling of tree t
topology. Each session uses thandmark+adjustment
algorithm to schedule completely on its own, based
system resource information provided by SOMO. For a
session with priority, any resources that are occupied by
tasks with lower priorities thah are considered available
for its use. Likewise, when an active session loaes
resource in its current plan, it will need to penfo
scheduling again. Each session will also rerun dulimey
periodically to examine if a better plan, using emtty
freed resources, is better than the current oneswaitdh to

it if so.

dbounc(x) 4 dbounc(y) 2
x.difl] | 2(S) ydil] | 2(S)
x.dt2] |0 y.di2] [0
x.dt3] | 1S y.dt3] |0

X's degree table y's degree table

Figure 15: two example degree tables.
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To facilitate SOMO to gather and disseminate res®ur
information so as to aid the planning of each taskager,
each node publishes the following information grigport
to SOMO:

* Its most recent measured delay vector to the
landmarks. This part is the same as before.

» Its degree, broken down into priorities taken by
active sessions. This is summarized indiegree
table

In Figure 15 we show the degree tables of two nodés.
total degree is 4, and is taken by sessipfor 2 degrees,
and s;; by another one degree, leavirgwith one free
degreey on the other hand, has only two degrees and both
of them are taken by sessi@a The degree tables are
updated whenever the scheduling happens that adfect
node’s degree partition. Degree tables, as memtione
earlier, are gathered through SOMO and made availab
for any running task to query.

The originalAMCast+adjustmenis the base algorithm but
is slightly extended so that resources are rectuitem
elsewhere with the guideline of priorities, and ttliae
degree tables of nodes involved are appropriatetiated.
For completeness, the pseudo-code is listed inr€iga6.
The procedure takes an integer as the session’s priority.
We now explain the changes:

e Line 10. Any helper node’s degree is counted
only for portions that are either free or occupied
by lower priority tasks.

* Line 29-35: when the schedule is done, we set the
degree tables of all the nodes in the plan
appropriately: 1 (the highest priority) if they
belong to the original member set, anui
otherwise. If other sessions are affected because
their resources are taken away, their task
managers are notified.

1. ALM (r,V, pri) {//V==M(9), r is the rootpri is the priority
2. for all vOV /[ initialization

3. heigh(v)=I(r, v); paren(v)=r

4.  T=MW={r}, Link={})

5.

6.  while (W<V) { /l'loop until finish

7. findud{ V-W} s.t. heigh{u) is minimum

8. if (d(paren{u))==dy,undparen{u)-1) { // find helper node
9. findh in resource pool: /I adjust helper’s degreg
10. Aboundh) = dpoundh) - sumb.d{i]), wherei<pri

11. dooundh) =24 && I(h, parenfu))<R &&

12. I(h, parenfu))+max((h, V) is minimum

13. wherey satisfieparent(v) = parent(u)

14. }

15.

16. if hZNULL Il integrate the helper node

17. W+={h}; Link+={h, parenfu)}; W+={u}; Link+={u, h};
18. else

19. W+={u}; Link+={u, parenfu)};

20.

21. for all vO{V-W} {  // re-adjust the height

22. heighfr)=co

23. for all wOW {

24. if d(w)<dpoundW) && heigh{v)>heigh{w)+l(w, V)

25. heighv)=heigh{w)+l(w, \); paren{v)=w

26. }

27. }

28. adjustl)

29. for all vOOW{ /I record degree in the degree tablg
30. if vOV /[ vis in the original participant set
31. v.diL] +=d(v);

32. else /Ivis a helper node

33. v.dfpri] +=d(v);

34. notify sessions, if any, whose resourcepeeempted
35. }

36. return T

37. }

Figure 16: The algorithm to schedule one sessionden there
are multiple active sessions. Changes are in lind Jand line
29-35.

Notification due to preemption is through the imf@tion
recorded in the degree table. Re-planning is also r
periodically when some resources are recently fréed
search for a better plan. To minimize the impact of
rescheduling, each session is connected with ahgrap
generated by thaMCast+adjuas the backup plan.

Ideally, the performance improvement should haiener
bound ofAMCast+adjustwhere only the original member
set is involved, and an upper boundLahdmark+adjust
when the session is the only active one in theureso
pool. Therefore, performance will lie within 7%~35%
reductions oveAMCast(see data in Figure 13 when group
size is 20).

The result is shown in Figure 17-(a). The x-axisthe
number of active sessions, while the y-axis is the
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performance improvement. To ease the comparisan, th
upper bound and lower bound are also shown.
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Figure 17: (a) the performance of multiple ALM ses®ns and
(b) the average number of additional nodes used.

As expected, the data perfectly drop into the irer
between lower bound and upper bound. When there are
more sessions and overall resource becomes scarce,
performance decreases across the board. Howegerhi
priority tasks are able to sustain much better tharlower
ones, conforming to our predictions. Figure 17dbpicts

the number of helper nodes taken, which shows|dier
priority tasks lose more helper nodes when resoigsce
under intense competition.

We also studied three other variations:

I When resource is already occupied by a running, task
the current task will choose to skip this node enwles
on, i.e., preempting is not allowed. The problermrehe
that some nodes’ resources will be fully consumeshe
though they belong to the current task’'s member set
This will lead to more than 50% of sessions unable
form a tree.

I When the resource is occupied by a running taskitand
is not the current task’s participant, then therentr task
will skip this node, otherwise preempting will occu
This turns out to be too conservative and highariy
tasks can hardly benefit from this approach. Tlesaa

being that earlier low priority sessions have odéedp
many good nodes which can be only preempted by thei
owners.

I Do not recycle those resources freed by a comptatd
to optimize existing, still active tasks. This iguésalent
to artificially increasing the number of concurrent
sessions. From Figure 17, we can see that the
performance heavily depends on the number of live
sessions. Therefore, this approach will make the
performance worse unless sessions are relatively. sh

Previous results are all based on a non-uniforitnilligion

of degrees. This is reasonable since most of ikatslare
bandwidth starved. However, this may not be theecas
under some special circumstances such as corporate
networks where lease lines are used. To understand
robustness of our algorithm as well as its serisitito
other degree distribution, we ran another set of
experiments where node degree is a random variable
between 2 and 6, for group size of twenty. The
performance bound in this case is [10%, 27%].

Figure 18shows the result. It shows that the performance is
quite robust in this case, i.e., it does not depmdh on
number of sessions, nor on priorities. This indisathat
the resource competition is low. Therefore, a more
conservative approach like the second and the third
variation mentioned previously will be just as effnt,
whereas overhead brought by rescheduling can hdexio
However, a session should still preempt other sasdhat

are running on their member set nodes, for otherwisre
than 50% of the sessions will be unable to findidval
solutions.

30. 00%
20 00% %ﬁ
= 20.00%
()
5}
z 15.00%
S
j=
£
10. 00% ——Priority 1
—s—Priority 2
5. 00% —a—Priority 3
0. 00% f f } } f |
10 20 30 40 50 60
No. of sessions

Figure 18: The performance of scheduling multiple AM
sessions under uniform degree distribution.

The above finding brought one interesting pointfedent
scheduling algorithms might be necessary, depending
the degree distribution. Since through SOMO thereleg
distribution can always be discovered, adaptatidn o
scheduling algorithm is possible.
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3.4 Discussion

For a large and dynamic system, centralized resourc
scheduling will itself be a bottleneck, both inntar of
scalability and stability. We believe that the tighinciple

to adopt is to allow individual tasks to competehvitheir
own credentials based on trusted global knowledge
freshness of such global knowledge is bounded hbyg®)
and, as a result, some of the properties in tauiti single
box system can be violated. For example, if twaisess;
and s, start close enough, their FIFO (First-in-firstout
property is hard, if not impossible, to enforce.exo the
distributed nature of job scheduling, the sesstartslater
may reach (and thereby reserve) some resourcesrearl
However, resource allocation among tasks with hfie
priorities can still be enforced — provided prigrits
authentic. What bounds and tradeoffs can such mésrha
guarantee is an interesting future research topic.

4. RELATED WORK

Our work spans across a number of related fields:
distributed data structure, scalable monitorinyises, the
concept of resource pool and its utilizations. Wil w
discuss them in turn.

4.1 Self-Configured Monitoring Service

Data overlay relies on the key property of the FZHPT

that an item with unique key can be created amnikved.

In other words, DHT is a globally accessible and
associative storage. In fact, the utilities of iilstted hash
table has been proposed earlier [7], but works sagh
Chord[16], Pastry[13], Tapestry[22] and CAN[10]
emphasizes more on the self-organizing aspect. Data
overlay has extended this property to arbitraryadat
structures.

A pure “peer-to-peer” mindset will view hierarchg a
forbidden word. We believe this is misleading apantant
functionalities such as aggregation and indexin}j8]1
inherently imply a hierarchical structure. On tHiBOMO
bears the most similarity to Astrolabe [12], a peepeer

Distributed, in-network query processing has alserb
investigated in apparently un-related fields sushsensor
network, though the emphasis there is quite diffef@].

4.2 Resource pool and its utilization
Orchestrating a resource pool is a long-standirgipnj
especially in the Grid Computing arena [6]. Expiori
heterogeneity lies therein has been articulated[13].
SOMO provides a concrete example of how such resour
pool can be realized.

Earlier work of ALM includes Aharoni’'s paper [2] @n
ESM [5]. Since then, quite a few other proposalsl an
systems have emerged [3][14][15][21], including ARKE
[15] from which our algorithm is derived. Reseanshi
P2P community quickly realized that applicationdev
multicast maybe one of the showcases of P2P DHTs as
well [4][11][23]. But both of these two approachesve
some pitfalls: the first does not explore the ptitds of a
resource pool; and the second can not guarantegh@o
time being) any QoS requirements, nor do they erplo
node heterogeneity. Given a resource pool, we mate
only studied how to optimize one single ALM sessibut
also to schedule multiple simultaneous sessiond wit
different priority levels, and have validated thgbiid
model where global knowledge is combined with
individual competition. To the best of our knowledghis
has been the first work along this line.

5. CONCLUSION AND FUTURE WORK

In this paper, we have presented our approachtimiag
wide-area application-level multicasting in a cbbhaative
resource pool. We construct the resource pool
combining P2P DHT'’s capability of self-organizirgrde
amount of resources, and an in-system, efficiesdlable
and fault-tolerant metadata aggregation infrastmect
SOMO. Active ALM sessions are optimized by recngti
any spare resources nearby, and we have proved that
practical algorithm can give substantial perforneanc
improvement. Our model combines global knowledga an

by

management and data mining system. SOMO operates at individual, credential-based competition and is ptately

the rudimentargata structurelevel while Astrolabe is on

a virtual, hierarchicalatabase SOMQO’s extensibility is
much like that of active network, whereas Astrolaises
SQL queries. The marked difference is that SOMO is
designed specifically on top of P2P DHT, for twasens:

1) we believe P2P DHT has established a foundatiem
which many other systems can be built and thusetisea
need for a scalable resource management and magitor
infrastructure and 2) by leveraging P2P DHT (intfaata
overlay) the design and protocols of such infragtme
can be much simpler. In fact, one can envisionttebe
combined in interesting ways: a high level, expkess
query language built over a scalable and structured
middleware which is further layered on top of DHT.

distributed, and is applicable to distributed jaeduling
in a large resource pool in general.

We are currently building a wide-area testbed i tee
idea of P2P resource pool, and the ALM scheduling
algorithm is one of the experiments we plan to run.
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