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ABSTRACT 
Wide-area application level multicasting (ALM) has been an 
active research area lately and practical algorithms have been 
derived to deliver QoS results for small to medium group size, 
covering a good range of cases when such requirements are 
warranted. These algorithms all assume that the resulting tree is 
comprised of the members in the session only. However, in a 
large and collaborative environment, active sessions are likely to 
consume only a fraction of the total resources. Moreover, some 
nodes with large capacity can contribute to multiple sessions. 
While it is intuitive to explore such spare resources, the 
challenges are 1) how to organize all the available resources into 
a resource pool and 2) how to discover and subsequently utilize 
the spare resources to benefit the active sessions.  

In this paper, we describe SOMO (Self-Organizing Metadata 
Overlay) which is an in-system monitoring service that 
effectively creates an illusion of a single resource pool made up 
by machines organized using P2P technologies. Using SOMO, 
we show practical solutions utilizing spare resources can 
substantially optimize active ALM sessions. Furthermore, 
sessions with different priorities occupy resources accordingly. 
All these are achieved using a hybrid model that combines in-
time global knowledge and individual competition without the 
need of central coordination. 

1. INTRODUCTION 
Application-level multicasting (ALM) is one of the most 
interesting applications of overlay network. It happens to 
present many challenges as well: for scenarios such as 
video-conferencing, guaranteeing certain QoS metrics is of 
paramount importance.  

Many algorithms have been proposed to address these 
problems, all assuming that the only resources available 
are those in the ALM session. In a collaborative 
environment, many other stand-by resources could be 
otherwise included for a more optimal solution. For 
example, Microsoft Research has five branches across the 
globe, and has many thousands of machines that are 
geographically distributed. At a given hour, however, 
number of active sessions is likely to be only a handful, 
and each session may have a small number of participants 
(say less than 20). Thus, a strong case can be made to 

orchestrate all the resources together so that active sessions 
can utilize spare resources when beneficial. 

While this idea is rather intuitive, the challenges are many. 
There are two critical building blocks: 1) how to organize 
a resource pool and 2) how to schedule sessions by 
recruiting spare resources, and do so in a completely 
distributed manner. 

To this end, we make a few novel contributions in this 
paper: 

• We use the latest P2P technologies to self-organize 
potentially very large amount of resources. In particular, 
we employ P2P DHT (Distributed Hash Table) to pool 
resources together. However, pooling resources does not 
automatically yield a resource pool, yet.  

• Extending our early work of [20], we demonstrate the 
feasibility of an infrastructure embedded in arbitrary 
P2P DHT that provides a highly efficient, robust and 
scalable monitoring service. This infrastructure SOMO 
(Self-Organized Metadata Overlay) is fault-resilient and 
can gather and disseminate system information in 
O(logN) time. In essence, SOMO builds a dynamic 
system status database which is available internally to 
system participants. This database is being continuously 
updated and creates an illusion of a single, large 
resource pool. 

• We then demonstrate, step by step, how ALM sessions 
can be optimized by finding spare resources in the pool. 
We first show how this can be done assuming only a 
single session is of interest, and validate that up to 30% 
improvement can be made for small-to-medium group 
size. All data necessary for making scheduling decision 
are gathered through SOMO and then subsequently 
queried at the time of scheduling. We then extend the 
base algorithm to schedule multiple, simultaneous 
sessions each may of different priorities. To ensure 
scalability, we take cues from sociology and adopt a 
simple model in which individual, credential-based 
competition is combined with on-time global knowledge 
available through SOMO. Our results show that, as 
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expected, sessions of higher priority are given higher 
share of resources, resulting better performance 

While our work is targeted at optimizing ALM sessions, 
the core technology is a lot more generic: we show how a 
resource pool can be efficiently built, with no 
administration overhead; and the philosophy and model of 
distributed job scheduling – borrowing ideas from time-
tested practice in society, can be applied to other 
distributed applications. 

The rest of the paper is organized as follows. How to 
construct the resource is the focus of Section 2. Scheduling 
multiple ALM sessions in the resource pool created by 
SOMO is extensively studied in Section-4. We discuss 
related work in Section-4 and conclude in Section-5.  

2. BUILDING P2P RESOURCE POOL 
The foundation of our resource pool proposal is the so-
called structured peer-to-peer systems, and in particular 
the distributed hash table (DHT). We assume that the 
readers are reasonably familiar with the concept of DHT, 
and for the sake of brevity will only go through the basics. 

In DHT, a very large logical space (e.g. 160-bits) is 
assumed. Nodes join this space with random IDs and thus 
partition the spaced uniformly. The ID can be, for instance, 
MD5 over a node’s IP address. An ordered set of nodes, in 
turn, allows a node’s responsible zone to be strictly 
defined. Let p and q be a node x’s predecessor and 
successor, respectively. One definition of a node’s zone is 
simply the space between the ID of its immediate 
predecessor ID (non-inclusive) and its own ID. In other 
words: zone(x) ≡ (ID(p), ID(x)]. This is essentially how 
consistent hashing assigns zones to DHT nodes [16] 
(Figure 1). This base ring (also called as leaf-set, as in 
Pastry[13]) is the simplest P2P DHT. To harden the ring 
against system dynamism, each node records r neighbors 
to each side. These states are the basic routing table, and 
are updated to keep the invariant when node join/leave 
events occur. 

 
Figure 1: the simplest P2P DHT – a ring, the zone and the 
basic routing table that records r neighbors to each side. 

If one imagines the zone being a hash bucket in an 
ordinary hash table, then the ring is a distributed hash 
table. Given a key in the space, one can always resolve 
which node being responsible. The lookup performance is 
O(N) in this simple ring structure. 

Elaborate algorithms built upon the above concept so that 
they achieve O(logN) performance with either O(logN) or 
even constant states (i.e. the routing table entries). 
Representative systems including Chord[16], CAN[10], 
Pastry[13] and Tapestry[22]. 

The most interesting aspect of a DHT is that the whole 
system is self-organizing with very low overhead – 
typically in the order of O(logN). The second significant 
attribute is the virtualization of a space where both 
resources and other entities (such as documents stored in 
DHT) live together; this feature is what we explore the 
most in this paper. 

Many DHT systems are designed with a storage-centric 
mindset. We found it more interesting simply to take 
advantage of DHT’s capability of stringing together large 
amount of resources without administration oversight. 
However, pooling resources together does not 
automatically yield a resource pool. A resource pool exists 
so that resource sharing at the time of scheduling tasks 
(e.g. application-level multicast sessions) is possible. This 
requires two more pieces: 

1. An efficient way to know the running states of the 
resources in the pool. And, 

2. Based on 1), a methodology to schedule an 
incoming task. 

Therefore, embedded inside the system itself, there must 
be a robust, highly efficient and scalable monitoring utility 
that can gather and disseminate global knowledge as 
accurately as possible. This is so because for a large 
system, it is impractical to rely on external monitoring 
service. 

 
Figure 2: the resource pool is comprised of the machines 
pooled together via DHT. SOMO, a self-organizing hierarchy 
using data overlay that efficiently aggregates resource status 
in a scalable way, is an in-system monitoring utility. 
Combining DHT’s capability of pooling resource with SOMO 
collectively makes the resource pool.  

This in-system monitoring utility is called self-organizing 
metadata overlay (SOMO), and will be introduced in 
Section 2.2. SOMO is built using a generic technology, 
data overlay, which can construct arbitrary distributed 
data structure over a DHT. The relationship of these 
concepts is described in Figure 2. 

Gathering reports 

Generating reports 
Resource pool 

SOMO 

Root report 

Report 

DHT Internet 

x 

p q 
zone(x)=(ID(p), ID(x)] 

R0(x) 

2r+1 
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2.1 Data Overlay 
We observe that hash-table is only one of the fundamental 
data structures. Sorted list, binary trees and queues etc. all 
have their significant utilities. One way would be to 
investigate how to make each of them self-organizing (i.e., 
P2P sorted list). Another is to build on top of a hash table 
that already has such self-organizing property (i.e. P2P 
DHT). This second approach, which we call data overlay, 
is what we take in this paper. 

Any object of a data structure can be considered as a 
document. Therefore, as long as it has a key, that object 
can be deposited into and retrieved from a P2P DHT. 
Objects relate to each other via pointers, so to traverse to 
object b pointed to by a.foo, a.foo must now store b’s key 
instead.  More formally, the following two are the 
necessary and sufficient conditions: 

• Each object must have a key, obtained at its birth 

• If an attribute of an object, a.foo, is a pointer, it is 
expanded into a structure of two fields: a.foo.key and 
a.foo.host. The first substitutes the hard-wired address of 
pointer, and the second field is a soft state containing the 
last known hosting DHT node of the object a.foo points 
to and serves as a routing shortcut. 

It is possible to control the generation of object’s key to 
explore data locality in a DHT. For instance, if the keys of 
a and b are close enough, it’s likely that they will be 
hosted on one machine in DHT.  

We call a data structure distributed in a hosting DHT a 
data overlay. It differs from traditional sense of overlay in 
that traversing (or routing) from one entity to another uses 
the free service of the underlying P2P DHT. 

 

Figure 3: implement arbitrary data structure in DHT . 

Figure 3 contrasts a data structure in local machine versus 
that on a P2P DHT. Important primitives that manipulate a 
pointer in a data structure, including setref, deref 
(dereferencing) and delete, are outlined in Figure 4. Here, 
we assume that both DHT_lookup and DHT_insert will, as 
a side effect, always return the node in DHT that currently 
hosts the target object. DHT_direct bypasses normal 
DHT_lookup routing and directly seeks to the node that 
hosting an object given its key. 

The interesting aspect is that it is now possible to host any 
arbitrary data structure on a P2P DHT, and in a transparent 

way. The host routing shortcut makes the performance 
insensitive to the underlying DHT. 

 
Figure 4: pointer manipulate primitives in data-overlay 

A data overlay on top of a bare-bone P2P DHT with no 
internal reliability support can be used to implement 
distributed data structure that is soft-state in nature (i.e,, 
data is periodically refreshed and consumed thereafter 
without ill side-effect). This is adequate to monitor the 
running state of resource pool as a whole, and is what we 
employ for SOMO.  

2.2 SOMO: Self-Organized Metadata 
Overlay 
We now describe the data overlay SOMO (Self-Organized 
Metadata Overlay), a generic information gathering and 
disseminating infrastructure on top of any P2P DHT. In a 
way, SOMO can be thought as a responsive “news 
broadcast” whose construction and processing are shared 
by all the nodes. The on-time “news” is what creates the 
illusion of the resource pool. 

Such an infrastructure must satisfy a few key properties:  
self-organizing at the same scale as the hosting DHT, fully 
distributed and self-healing, and be as accurate as possible 
of the metadata gathered and disseminated.  

Such metadata overlay can take a number of topologies. 
For the sake of resource pool, one of the most important 
functionalities is aggregation. Therefore, our implemented 
SOMO is a tree of k degree whose leaves are planted in 
each DHT node. Information is gathered from the bottom 
and propagates towards the root, and disseminated by 
trickling downwards. Thus, one can think of SOMO as 
doing converge cast from the leaves to the root, and then 
(optionally) broadcast back down to the leaves again. Both 
the gathering and dissemination phases are O(logkN) 

setref(a.foo, b) { // initially a.foo==null; b is the object 
  // to which a.foo will points to 
  a.foo.key=b.key 
  a.foo.host= DHT_insert(b.key, b) 
} 
deref(a.foo) { // return the object pointed to by a.foo 
  if  (a.foo≠null) { 

obj=DHT_direct(a.foo.host, a.foo.key) 
if  obj==null { // object has moved 
  obj=DHT_lookup(a.foo.key) 
  a.foo.host = node returned 
} 
return  obj 
else return  “non-existed” 

  } 
} 
delete(a.foo) { // delete the object pointed to by a.foo 
  DHT_delete(a.foo.key) 
  a.foo=null 
}  
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bounded, where N is total number of entities. Each 
operation in SOMO involves no more than k+1 
interactions, making it fully distributed. We deal with 
robustness using the principle of soft-state, so that data can 
be regenerated in O(logkN) time. The SOMO tree self-
organizes and self-heals in the same time bound.  

Since SOMO is a tree, we call its node the SOMO node. 
To avoid confusion, we denote the DHT nodes as simply 
the DHT node. At this point, it is worth to emphasize that 
SOMO is a data overlay and as such is a distributed data 
structure spread onto the DHT. A SOMO node is an object 
as in object-oriented programming language, and its 
member functions will be carried out by its hosting DHT 
node (i.e., the machine). 

2.2.1 Building SOMO 
A DHT node that hosts a SOMO node s, is referred to as 
DHT_host(s).  

 
Figure 5: SOMO node data structure 

The basic structure of the type SOMO_node is described in 
Figure 5. The member Z indicates the region that this 
node’s report member covers. Here, the region is simply a 
portion of the total logical space of the DHT. The root 
SOMO node covers the entire logical space. The key is 
produced by a deterministic function of a SOMO node’s 
region Z. Examples of such functions include the center of 
the region, or a hash of the region coordinates (see Figure 
6). Therefore, a SOMO node s will be hosted by a DHT 
node that covers s.key (e.g. the center of s.Z). This allows a 
SOMO node to be retrieved deterministically – exactly the 
same as any other documents stored in DHT, as long as we 
know its responsible region, and is particularly useful 
when we want to query system status in a given key-space 
range. A SOMO node’s responsible region is further 
divided by a factor of k, each taken by one of its k 
children, which are pointers in the SOMO data structure. A 
SOMO node s’s i-th child will cover the i-th fraction of 
region s.Z. This continues recursively until a termination 
condition is met (discussed shortly). Since a DHT node 
will own a piece of the logical space, it is therefore 
guaranteed a SOMO node will be planted in it. 

Initially, when the system contains only one DHT node, 
there is only the SOMO root. As the DHT system grows, 
SOMO builds its hierarchy along. This is done by letting 
each DHT node periodically execute the routine 
SOMO_grow shown in Figure 6, for any SOMO nodes that 
are in its custody. 

 
Figure 6: SOMO_grow procedure and the SOMO_loc 
procedure which deterministically calculates a SOMO node’s 
key given the region it covers. The procedure is executed by 
the hosting DHT machine. 

We test first if the SOMO node’s responsible zone is 
smaller or equal to that of the hosting DHT node, if the test 
comes out to be true, then this SOMO node is already a 
leaf planted in the right DHT node and there is no point to 
grow any more children. Otherwise, we attempt to grow. 
Note that after a new SOMO node is initialized, we call the 
setref primitive (See Figure 4) to install the pointer; this 
last step is where DHT operation is involved. This way, 
new SOMO nodes covering smaller regions are installed 
into the DHT. 

 
Figure 7: SOMO tree on top of P2P DHT. Circles are SOMO 
nodes. SOMO nodes are mapped onto DHT nodes according 
to their keys. A DHT node may own multiple SOMO nodes 
and will execute their SOMO_grow routines periodically. 

As this procedure is executed over all SOMO nodes, the 
SOMO tree will grow as the hosting DHT grows, and the 
SOMO tree is taller in logical space regions where DHT 
nodes are denser. This is illustrated in Figure 7. Note that 
SOMO nodes fall on to DHT nodes according to their 
keys. As such a DHT node may own more than one SOMO 
node, but has at least one SOMO node planted into it. 

The SOMO_grow procedure is done in a top down fashion, 
and is executed periodically. A bottom-up version can be 
similarly derived. When the system shrinks, SOMO tree 
will prune itself accordingly by deleting redundant 

struct SOMO_node { 
  string key 
  struct SOMO_node *child[1..k] 
  DHT_zone_type Z 
  SOMO_op op 
  Report_type report 
}  

SOMO_grow(SOMO_node s) { 
 // check if any children is necessary 
  if  (s.Z⊆DHT_host(s).Z) return  
  for  i= 1 to k 

if  (s.child[i]==NULL && 
     the i-th sub-space of s.Z ⊄ host(s).Z) { 
    t = new(type SOMO_node) 
    t.Z = the i-th sub-space of s.Z 
    t.key = SOMO_loc(t.Z) 
    setref(s.child[i], t) // inject into DHT 
} 

} 
SOMO_loc(DHT_zone_type Z) { 
  return  center of Z 
  // optionally 
  // return  hash_of (Z) 
} 

Total logical space SOMO node 

reportlastreportthis __ ∩=∆

DHT node 
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children. For an N-node system where nodes populate the 
total logical space evenly, there will be 2N SOMO-nodes 
when the SOMO fan-out k is 2. 

The crash of a DHT node will take away the SOMO nodes 
it is hosting. However, the crashing node’s zone will be 
taken over by another DHT node after repair. 
Consequently, the periodical checking of all children 
SOMO nodes ensures that the tree can be completely 
reconstructed in O(logkN) time. Because the SOMO root is 
always hosted by the DHT node that owns one 
deterministic point of the total space, that node ensures the 
existence of the SOMO root and invokes the SOMO_grow 
routine on the SOMO root.  

2.2.2 Gathering and Disseminate Information with 
SOMO 
To gather system metadata, for instance loads and 
capacities, a SOMO node periodically requests report – 
executed by DHT node that holds it from its children. The 
leaf SOMO nodes simply get the required info from their 
hosting DHT nodes. As a side-effect, the procedure will 
also re-start a child SOMO node if it has disappeared 
because the hosting DHT node’s crash. Figure 8 illustrates 
the procedure.  

 
Figure 8: SOMO gathering procedure, executed by DHT 
nodes responsible for a SOMO node. 

The routine is periodically executed at an interval of T. 
Thus, information is gathered from the SOMO leaves and 
flows to its root with a maximum delay of logkN⋅T. This 
bound is derived when flow between hierarchies of SOMO 
is completely unsynchronized. If upper SOMO nodes’ call 
for reports immediately triggers the similar actions of their 
children, then the latency can be reduced to T+thop⋅logkN, 
where thop is average latency of a trip in the hosting DHT. 
The unsynchronized flow has latency bound of logkN⋅T, 
whereas the synchronized version will be bounded by T in 
practice (e.g., 5 minutes). Note that O(thop ⋅logkN) is the 
absolute lower bound. For 2M nodes and with k=8 and a 
typical latency of 200ms per DHT hop, the SOMO root 
will have a global view with a lag of 1.6s. 

If the SOMO report is composed of information pertain to 
building the resource pool, such as load and network 
condition of the machine, then by continuing to gather 
fresh report from the SOMO leaves (and thus every 
machines in the pool), SOMO root will have periodical 
snapshots of the whole system. Such snapshot’s may 

contain information whose freshness is O(logN) bounded, 
and is adequate for scheduling coarse-grained jobs such as 
application-level multicasting which usually last much 
longer than the collection period.  

Dissemination using SOMO is essentially the reverse: data 
trickles down through the SOMO hierarchy towards the 
leaves. Performance thus is similar as gathering. The other 
alternative is to query the SOMO root. This is what we 
used in scheduling ALM sessions, since number of 
sessions is relatively small and the query is not made very 
often.  

Operations in either gathering or disseminating phases 
involve one interaction with the parent, and then with k 
children. Thus, the overhead in a SOMO operation is a 
constant. The entities involved are the DHT nodes that 
host the SOMO tree. SOMO nodes are scattered among 
DHT nodes and therefore SOMO processing is distributed 
and scales with the system.  

It seems that towards the SOMO root the hosting DHT 
nodes need to have increasingly higher bandwidth and 
stability. As discussed earlier, stability is not a concern 
because the whole SOMO hierarchy can be recovered in 
O(logkN) time. As for bandwidth, most of the time one 
needs only to submit delta between reports (Figure 8). 
Combining with compression will further bring down 
message size. Finally, it is always possible to locate an 
appropriate DHT node through SOMO. This node can 
swap with the one who is hosting the SOMO root 
currently. That is to say, SOMO can be completely self-
optimizing as well. 

The power of SOMO lies in its simplicity and flexibility: it 
specifies neither the type of information it should gather 
and/or disseminate, nor the operation invoked to process 
them.  That is to say, SOMO operations are programmable 
and active. For this reason, in the pseudo-code we have 
used op as a generic notation for operation used. Using the 
abstraction of data overlay, its performance is also 
insensitive to the hosting DHT. SOMO processing is fully 
distributed, and it is both self-organizing and self-healing. 

We have implemented a SOMO-based global performance 
monitor with which we monitor the servers in our lab on a 
daily basis. This tool employs SOMO built over a very 
simple ring-like DHT, and SOMO gathers data from 
various performance counter on each machine. The 
complete system status is obtained by querying the SOMO 
root report through a unified UI interface. We tested the 
SOMO stability by unplugging cables of servers being 
monitored, and each time the global view is regenerated 
after a short jitter. Using the data overlay abstraction, the 
SOMO layer is implemented much like any local 
procedures, with only a few hundred lines of code. 

get_report (SOMO_node s) { 
  Report_type rep[1..k] 
  for  i∈[1..k] 

if  (s.child[i] ≠ NULL) // retrieving via DHT 
  rep[i] = deref(s.child[ i]).report 

  s.report = s.op(rep[]) 
}  
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2.3 DHT+SOMO ŁŁŁŁ  P2P Resource Pool 
To summarize, our P2P resource pool is composed of two 
ingredients: 

• DHT . A DHT is used not in the sense of sharing 
contents, but rather as an efficient way to pool 
together a very large amount of resources, with 
zero administration overhead and no scalability 
bottleneck. 

• SOMO. Utilizing the fact that arbitrary 
distributed data structure can be built in the 
virtual space and then mapped on to various 
resources, SOMO is a self-organizing “news 
broadcast” hierarchy. Aggregating resource status 
in O(logN) time then creates the illusion of a 
single resource pool. 

3. SCHEDULING ALM SESSIONS 
WITHIN THE P2P RESOURCE POOL 
As discussed in Section-2.2, built upon DHT, SOMO can 
create the image of a single resource pool. Given that, the 
interesting question is how job scheduling can be 
performed over this resource pool, in a completely 
distributed fashion with the goal of maximizing resource 
utilization and satisfying QoS requirements per 
application.  

For the particular problem of application level multicasting 
(ALM), the end goal is for active sessions to achieve 
optimal performance with available resources in the pool. 
Session’s performance metrics is determined by certain 
QoS definitions. Moreover, higher priority sessions should 
proportionally acquire more shares of resources. 

We will give our QoS definition and then describe our 
approaches in steps. First, we will show how additional 
resources are recruited assuming only one single session is 
active. Next, we will present our approach of how multiple 
sessions with different priorities are optimized. 

Unless otherwise specified, our experiments simulate a 
two-layer Transit Stub topology [18] with 600 routers. The 
network consists of 24 transit routers and 576 stub routers. 
We assign link latencies of 100ms for intra-transit domain 
links, 25ms for stub-transit links and 10ms for intra-stub 
domain links. We also append 1200 end systems to the 
stub routers randomly and set the last hop latency to a 
random value between 3ms and 8ms. The resource pool 
contains all the 1200 end nodes in the network. Similar to 
many previous works [14][15][19], each node has a bound 
on the number of communication sessions it can handle, 
which we call degree. This may due to the limited access 
bandwidth or workload of end systems. The degree bound 
for all the nodes lie within 2 and 9, and follows the 
distribution 2-i for degree i-1.  Thus, half of the nodes in 
the system have degree 2 and the population for higher 
degree decreases exponentially. These nodes are organized 

using a DHT and runs SOMO on top. The details of 
SOMO report for scheduling ALM will be presented later. 

3.1 ALM QoS Definition 
Each multicasting session assumes static membership, i.e., 
M(s) is known a priori. We believe this covers a good 
portion of ALM applications where QoS is desired, for 
instance pre-scheduled video-conferencing.  

For ALM, there exist several different criteria for 
optimization, like bandwidth bottleneck, maximal latency 
or variance of latencies. In this paper, we choose maximal 
latency of all members as the main objective of tree 
building algorithms since it can greatly affect the 
perception of end users. Our definition of QoS for one 
given session is the same as proposed in AMCast [15] and 
can be formally stated as follows: 

Definition 1. Degree-bounded, minimal height tree 
problem (DB-MHT).  Given an undirected complete graph 
G(V,E), a degree bound dbound(v) for each v∈V, a latency 
function l(e) for each edge e∈E. Find a spanning tree T of 
G such that for each v∈T, degree of v satisfies d(v) � 
dbound(v) and the height of T (measured as aggregated 
latency from the root) is minimized. 

Using the resource pool, the above definition is slightly 
extended. An extended set of helper nodes H is added to 
the graph, and our objective is to achieve the best solution 
relative to an optimal plan derived without using H, by 
adding the least amount of helper nodes. 

 

 
Figure 9: (a) an optimal plan for an ALM. (b) an even better 
plan using helper nodes in the resource pool. Circles are 
members belong to M(s), and the square is an available node 
with a large degree. 

Figure 9 depicts this graphically. Suppose P0 is the optimal 
plan by some algorithm, f, which involves the initial 
member set M(s) only. Running a modified algorithm f’  
which not only uses M(s) but also recruits available and 
nearby large degree nodes, the tree height – which 
corresponds to the maximal latency of the session, can be 
substantially reduced.  

When the group size is very small (e.g., |M(s)|≤10), finding 
P0 by enumerating all possibilities can be done in 
reasonable time: for an eight-node group this is less than 
three seconds on a 1.4GMHz Pentium IV PC with 256M 
memory. Even with this globally optimal plan, it is 
interesting to see that one helper node will still be able to 
shorten the tree. For instance, adding a helper node close 

(a) (b) 

h 

h 
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to the root with a degree bound greater than 4 brings about 
14.2% average latency reduction. This validates our basic 
premise; the challenge is how to extend it for larger 
groups. 

3.2 Scheduling a Single Session 
We assume the root of the tree is where the planning and 
scheduling is performed. In other word, the root is the task 
manager of the session. 

 
Figure 10: the AMCast algorithm that is O(N3) (without the 
lines in the dashed box) and the critical-node algorithm that 
utilizes additional helper node.   

There are many proposals to optimize DB-MHT, which is 
generally known as NP-complete. Our goal is not to 
propose new algorithms. Instead, we will select from a few 
well-known ones and investigate how much performance 
benefits we can achieve when the resource pool is utilized. 

Our base algorithm uses the one proposed in [15], with 
O(N3) performance bound. This algorithm can generate a 
solution for hundred of nodes in less than one second 
(Figure 10, without the code in the dashed box). This 
algorithm, which we refer to as “AMCast,” is a typical 
greedy algorithm. It starts first with the root and adds it to 
a set of the current solution. Next, the minimum heights of 
the rest of the nodes are calculated by finding their closest 
potential parents in the solution set, subject to degree 
constraints. This loops back by absorbing the node with 
the lowest height into the solution. The process continues 
until all nodes are finally included in the resulting tree.To 

ensure that we get the best possible tree to start with, we 
augment this algorithm with further tuning (line 21). 

A known technique to approximate globally optimal 
algorithm is to adjust the tree with a set of heuristic moves. 
These moves are graphically depicted in Figure 11, The 
adjustments include the followings: (a) find a new parent 
for the highest node; (b) swap the highest node with 
another leaf node; (c) swap the sub-tree whose root is the 
parent of the highest node with another sub-tree. These 
optimizations are local adjustment after the tree is 
generated using the AMCast algorithm, and will be 
referred to as adjust. In our experiments, we test how 
helper nodes affect the algorithm both with and without 
this improvement. 

 
Figure 11: Adjustment heuristics for DB-MHT. From top to 
bottom: find a new parent for the highest node; swap the 
highest node with another leaf node; swap the sub-tree whose 
root is the parent of the highest node with another sub-tree. 

Our algorithm searching for beneficial helper nodes 
include two considerations: the time to trigger the search 
and the criteria to judge an addition. The general 
mechanism is described by the pseudo-code in the dash-
box of Figure 10. Let u be the node that the AMCast 
algorithm is about to add and parent(u) be its parent. 
When parent(u)’s free degree is reduced to one, we trigger 
the search for an additional node h. If such h exists in the 
resource pool, then h becomes u’s parent instead and 
replaces u to be the child of the original parent(u).  
Different versions vary only on the selection criteria of h 
but we refer to this class of optimization the critical node 
algorithm. “Critical” here means that, for a particular node, 
this is the last opportunity to improve upon the original 
greedy algorithm. 

We have experimented with different algorithm to search 
for h. The first variation is simply to find an additional 
node closest to the parent node and with an adequate 

ALM( r, V) { // V==M(s), r is the root 
  for all v∈V // initialization 
    height(v)=l(r, v); parent(v)=r 
  T = (W={ r}, Link={}) 

 
  while (W<V) { // loop until finish 
    find u∈{ V-W} s.t. height(u) is minimum 
    if (d(parent(u))==dbound(parent(u)-1) 
      h=find_helper(u) 
    if h≠NULL { // integrate the helper node 
      W+={h}; Link+={h, parent(u)}; 
      W+={u}; Link+={u, h}; 
    } else   
      W+={u}; Link+={u, parent(u)}; 

 
    for all v∈{ V-W} {  // re-adjust the height 
      height(r)=∞ 
      for all w∈W 
        if d(w)<dbound(w) && height(v)>height(w)+l(w, v) 
          height(v)=height(w)+l(w, v); parent(v)=w 
    } 
  } 
  adjust(T) 
  return  T 
}  

 

v 
v 

 
 

v 
v 

u 

u 
 

 

v 
v 

u 

u 
p 

p 
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degree (we use 4). Let l(a, b) be latency between two 
arbitrary nodes a and b. We find the following heuristic 
yields even better results: 

Here, v maybe one of u’s siblings. The idea here is that 
since all such v will potentially be h’s future children, l(h, 
parent(u)) + max (l(h, v)) is most likely to affect the 
potential tree height after h’s joining (condition 1). Such 
helper node should have adequate degree (condition 2). 
Finally, to avoid “junk” nodes that are far away even 
though their degrees are high, we impose a radius R: h 
must lie within R away from parent(u) (condition 3). 

We found that R between 50~150 yields satisfactory 
results for the topology parameters we chose. The tradeoff 
here is that a small R will reduce the choice of candidates, 
whereas a larger R will introduce links of long latency in 
the tree. That the setting of radius to be medium range 
gives good result isn’t a surprise. Recall that we have 100, 
25, and 10 for intra-transit, stub-transit and intra-stub links 
respectively. Thus, a radius of 50-150 will avoid all nodes 
from another stub. 

So far we have described the algorithm as if we not only 
knew the degrees of other nodes in the resource pool, but 
also the latencies between all pairs. While the first 
condition can be easily met by querying the SOMO 
reports, the 2nd is obviously impractical because it entails, 
virtually, that latencies between all pairs are available. To 
get around this problem, we use the well known 
“landmark” approach. In this algorithm, a few landmarks 
are chosen first. Each node then measure roundtrip times 
to these landmarks and the resulting delay vector 
approximates the coordinates of a node relative to the 
landmarks. To judge the closeness of two nodes, the 
Euclidean distances between the two delay vectors are 
computed.  

In our experiments, we chose three random landmarks. 
Each node now includes its measured delay vector and its 
degree when submitting to SOMO.  To find the closest 
helper node h to parent(u) at the time of searching, we use 
delay vector of parent(u) to query the SOMO report for 5 
nearby nodes and then select the one that fits the criteria 
the best. 

In the followings, we call the algorithm where pair-wise 
node latency is known a priori via an oracle the Critical, 
and the one used the landmark estimation for vicinity 
judgment the Landmark. 

 
Figure 12: SOMO report structure for scheduling one single 
active ALM session. 

Figure 12 gives an example of the SOMO root report and 
the detailed report submitted from individual nodes. Recall 
that each node (for instance node x and y) will continue to 
update through the SOMO hierarchy, resulting in 
continuous refreshing of the root report.  

 
Figure 13: The performance of scheduling single ALM 
session. AMCast represents the original algorithm, Critical is 
our modified “critical node” heuristic, Landmark stands for 
the landmark based approach, Bound denotes the theoretical 
upper bound. adju denotes the combination when tree 
adjustment is performed. 

We are now ready to present our results. A fair evaluation 
should compare our results against those of a globally 
optimal algorithm. Since this is not available, we report 
our results in terms of percentage of tree height 
improvement relative to the AMCast algorithm. In other 
words, if Halg is the tree height achieved using alg, then: 

 
The upper bound is the latency between the furthest node 
to the root, corresponding to the ideal performance if the 
root has degree of infinity. For the data set that we used, 
the upper bound is between 40~50%. The average 
performance of these algorithms over 20 runs is shown in 
Figure 13 for various group sizes. It is conclusive that 
resource pool is very effective for small-to-medium group 
size. For larger groups, the original AMCast has more 

Improvement = (HAMCast – Halg)/HAMCast 

l(h, parent(u))+max(l(h, v)) is minimum &&  \\ condition 1 

dbound(h) ≥ 4  &&           \\ condition 2 

 l(h, parent(u))<R;            \\ condition 3 

where v satisfies parent (v) = parent (u)         \\ condition 4 

Root report 

…
…

 

Report from node x 

…
…

 
…

…
 

Report from node y 

Report from node x 

System info: 
Load, memory, disk, … 

Network info : 
Location: landmark (153:152:452) 
Bandwidth: available degree (5) 

Report from node y 

System info: 
Load, memory, disk, … 

Network info : 
Location: landmark (454:453:053) 
Bandwidth: available degree (2) 

l(h, parent(u))+max(l(h, v)) is minimum 

where v satisfies parent (v) = parent (u)  && \\ condition 1 

dbound(h) ≥ 4  &&           \\ condition 2 

 l(h, parent(u))<R            \\ condition 3 
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rooms to optimize by using the existing members already. 
We believe that in reality, small groups are in fact more 
common. 

For instance, Landmark+adjustment, which is a practical 
algorithm, delivers more than 30% latency reduction over 
the baseline for group size of 100; for group size of twenty, 
the reduction is 35%.  Interestingly enough, tree 
adjustment, which is otherwise mediocre in shortening the 
tree (5% over baseline), is remarkably effective especially 
for Landmark. Part of the reason may be due to the 
inaccuracy introduced by using delay vectors to estimate 
node proximity. 

 
(a) 

 
(b) 

Figure 14: (a) number of additional nodes used and (b) the 
average degree used on additional nodes. 

It is also intriguing to see that using landmark instead of 
oracle the results are not substantially different. This 
demonstrates that our approach is practical. To understand 
that further, we compare the number of helper nodes and 
their average degrees in Figure 14, for Critical and the 
Landmark. It shows that both algorithms recruit about the 
same number of helper nodes. However, the quality of the 
nodes selected by the latter is not as high, especially when 
group size is small. This explains why the performance of 
Critical and Landmark converges for larger group (see 
Figure 13). 

3.3 Scheduling Multiple ALM Sessions 
The preceding section describes the stand-alone scheduling 
algorithm for one ALM session; we now discuss how 
multiple active sessions are scheduled in the system. Our 
goals are: 1) higher priority sessions are proportionally 

assigned with more resources, and 2) that the utilization of 
the resource pool as a whole is maximized. 

All the sessions may start and end at random times. Each 
session has an integer valued priority between 1 and 3. 
Priority 1 session is the highest class. The number of 
maximum simultaneous sessions varies from 10 to 60 and 
each session has non-overlapping member set of size 20. 
Thus, when there are 60 active sessions, all nodes will 
belong to at least one session. That is, the fraction of 
original members of active sessions varies from 17% to 
100%. Actual employed nodes will be greater by including 
helper nodes that lie outside the session members and, 
especially when such fraction is big, nodes with larger 
degrees may be involved in more than one session.  

The principle underlying our approach is very simple, and 
it draws insight from a well-organized society: as long as 
global, on-time and trusted knowledge is available, it may 
be best to leave each task to compete resources with their 
own credentials (i.e., the priorities). Thus, we employ a 
hybrid model that combines global, on-time knowledge 
with individual, credential-based competition. 

Setting the appropriate priorities at nodes involved in a 
session takes extra consideration. In a collaborative P2P 
environment, if a node needs to run a job which includes 
itself as a member, it is fair to have that job be of highest 
priority in that node. Therefore, for a session s with 
priority L, it has the highest priority (i.e. 1 in our 
experiment) for nodes in M(s), and L elsewhere (i.e., for 
any helper nodes lie outside M(s)). This ensures that each 
session can be run, with a lower bound corresponding to 
the AMCast+adju algorithm. The upper bound is obtained 
assuming s is the only session in the system (i.e., 
Landmark+adju).  

As before, the root of an ALM session is the task manager, 
which performs the planning and scheduling of the tree 
topology. Each session uses the Landmark+adjustment 
algorithm to schedule completely on its own, based on 
system resource information provided by SOMO. For a 
session with priority L, any resources that are occupied by 
tasks with lower priorities than L are considered available 
for its use. Likewise, when an active session loses a 
resource in its current plan, it will need to perform 
scheduling again. Each session will also rerun scheduling 
periodically to examine if a better plan, using recently 
freed resources, is better than the current one and switch to 
it if so. 

 
Figure 15: two example degree tables. 

y’s degree table 

dbound(x) 4 
x.dt[1] 2(S4) 
x.dt[2] 0 
x.dt[3] 1(S1 2) 

 

dbound(y) 2 
y.dt[1] 2(S5) 
y.dt[2] 0 
y.dt[3] 0 

 x’s degree table 
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To facilitate SOMO to gather and disseminate resource 
information so as to aid the planning of each task manager, 
each node publishes the following information in its report 
to SOMO: 

• Its most recent measured delay vector to the 
landmarks. This part is the same as before. 

• Its degree, broken down into priorities taken by 
active sessions. This is summarized in the degree 
table. 

In Figure 15, we show the degree tables of two nodes. x’s 
total degree is 4, and is taken by session s4 for 2 degrees, 
and s12 by another one degree, leaving x with one free 
degree. y on the other hand, has only two degrees and both 
of them are taken by session s5. The degree tables are 
updated whenever the scheduling happens that affect a 
node’s degree partition. Degree tables, as mentioned 
earlier, are gathered through SOMO and made available 
for any running task to query. 

The original AMCast+adjustment is the base algorithm but 
is slightly extended so that resources are recruited from 
elsewhere with the guideline of priorities, and that the 
degree tables of nodes involved are appropriately updated. 
For completeness, the pseudo-code is listed in Figure 16. 
The procedure takes an integer pri as the session’s priority. 
We now explain the changes: 

• Line 10. Any helper node’s degree is counted 
only for portions that are either free or occupied 
by lower priority tasks.  

• Line 29-35: when the schedule is done, we set the 
degree tables of all the nodes in the plan 
appropriately: 1 (the highest priority) if they 
belong to the original member set, and pri 
otherwise. If other sessions are affected because 
their resources are taken away, their task 
managers are notified. 

 
Figure 16: The algorithm to schedule one sessions when there 
are multiple active sessions. Changes are in line 10 and line 
29-35. 

Notification due to preemption is through the information 
recorded in the degree table. Re-planning is also run 
periodically when some resources are recently freed, in 
search for a better plan. To minimize the impact of 
rescheduling, each session is connected with a graph 
generated by the AMCast+adju as the backup plan.  

Ideally, the performance improvement should have a lower 
bound of AMCast+adjust where only the original member 
set is involved, and an upper bound of Landmark+adjust, 
when the session is the only active one in the resource 
pool. Therefore, performance will lie within 7%~35% 
reductions over AMCast (see data in Figure 13 when group 
size is 20).  

The result is shown in Figure 17-(a). The x-axis is the 
number of active sessions, while the y-axis is the 

1. ALM ( r, V, pri) { //V==M(s), r is the root, pri is the priority 
2.   for all v∈V   // initialization 
3.     height(v)=l(r, v); parent(v)=r 
4.   T = (W={ r}, Link={}) 
5.  
6.   while (W<V) { // loop until finish 
7.      find u∈{ V-W} s.t. height(u) is minimum 
8.      if (d(parent(u))==dbound(parent(u)-1) { // find helper node 
9.        find h in resource pool: // adjust helper’s degree 
10.         dbound(h) = dbound(h) - sum(h.dt[i]), where i�pri   
11.         dbound(h) ≥ 4  &&  l(h, parent(u))<R && 
12.         l(h, parent(u))+max(l(h, v) is minimum  
13.         where v satisfies parent (v) = parent (u)          
14.      } 
15.  
16.      if h≠NULL  // integrate the helper node 
17.        W+={h}; Link+={h, parent(u)}; W+={u}; Link+={u, h}; 
18.      else   
19.        W+={u}; Link+={u, parent(u)}; 
20.  
21.      for all v∈{ V-W} { // re-adjust the height 
22.        height(r)=∞ 
23.        for all w∈W { 
24.         if d(w)<dbound(w) && height(v)>height(w)+l(w, v) 
25.           height(v)=height(w)+l(w, v); parent(v)=w 
26.        } 
27.     }  
28.    adjust(T) 
29.    for all v∈W { // record degree in the degree table 
30.       if  v∈V    // v is in the original participant set 
31.         v.dt[1] += d(v); 
32.       else    // v is a helper node 
33.         v.dt[pri] += d(v);       
34.       notify sessions, if any, whose resources are preempted 
35.    } 
36.    return T 
37. } 
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performance improvement. To ease the comparison, the 
upper bound and lower bound are also shown. 

 
Figure 17: (a) the performance of multiple ALM sessions and 
(b) the average number of additional nodes used. 

As expected, the data perfectly drop into the interval 
between lower bound and upper bound. When there are 
more sessions and overall resource becomes scarce, 
performance decreases across the board. However, higher 
priority tasks are able to sustain much better than the lower 
ones, conforming to our predictions. Figure 17-(b) depicts 
the number of helper nodes taken, which shows that lower 
priority tasks lose more helper nodes when resource is 
under intense competition.  

We also studied three other variations: 

l  When resource is already occupied by a running task, 
the current task will choose to skip this node and moves 
on, i.e., preempting is not allowed. The problem here is 
that some nodes’ resources will be fully consumed even 
though they belong to the current task’s member set. 
This will lead to more than 50% of sessions unable to 
form a tree.  

l  When the resource is occupied by a running task and it 
is not the current task’s participant, then the current task 
will skip this node, otherwise preempting will occur. 
This turns out to be too conservative and higher priority 
tasks can hardly benefit from this approach. The reason 

being that earlier low priority sessions have occupied 
many good nodes which can be only preempted by their 
owners. 

l  Do not recycle those resources freed by a completed task 
to optimize existing, still active tasks. This is equivalent 
to artificially increasing the number of concurrent 
sessions. From Figure 17, we can see that the 
performance heavily depends on the number of live 
sessions. Therefore, this approach will make the 
performance worse unless sessions are relatively short. 

Previous results are all based on a non-uniform distribution 
of degrees. This is reasonable since most of the clients are 
bandwidth starved. However, this may not be the case 
under some special circumstances such as corporate 
networks where lease lines are used. To understand the 
robustness of our algorithm as well as its sensitivity to 
other degree distribution, we ran another set of 
experiments where node degree is a random variable 
between 2 and 6, for group size of twenty. The 
performance bound in this case is [10%, 27%].  

Figure 18 shows the result. It shows that the performance is 
quite robust in this case, i.e., it does not depend much on 
number of sessions, nor on priorities. This indicates that 
the resource competition is low. Therefore, a more 
conservative approach like the second and the third 
variation mentioned previously will be just as efficient, 
whereas overhead brought by rescheduling can be avoided. 
However, a session should still preempt other sessions that 
are running on their member set nodes, for otherwise more 
than 50% of the sessions will be unable to find valid 
solutions. 

 
Figure 18: The performance of scheduling multiple ALM 
sessions under uniform degree distribution. 

The above finding brought one interesting point, different 
scheduling algorithms might be necessary, depending on 
the degree distribution. Since through SOMO the degree 
distribution can always be discovered, adaptation of 
scheduling algorithm is possible.  

Upper bound 

Lower bound 

(a) 

(b) 
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3.4 Discussion 
For a large and dynamic system, centralized resource 
scheduling will itself be a bottleneck, both in terms of 
scalability and stability. We believe that the right principle 
to adopt is to allow individual tasks to compete with their 
own credentials based on trusted global knowledge. The 
freshness of such global knowledge is bounded by O(logN) 
and, as a result, some of the properties in traditional single 
box system can be violated. For example, if two sessions s1 
and s2 start close enough, their FIFO (First-in-first-out) 
property is hard, if not impossible, to enforce. Due to the 
distributed nature of job scheduling, the session starts later 
may reach (and thereby reserve) some resources earlier. 
However, resource allocation among tasks with different 
priorities can still be enforced – provided priority is 
authentic. What bounds and tradeoffs can such mechanism 
guarantee is an interesting future research topic. 

4. RELATED WORK 
Our work spans across a number of related fields: 
distributed data structure, scalable monitoring services, the 
concept of resource pool and its utilizations. We will 
discuss them in turn. 

4.1 Self-Configured Monitoring Service 
Data overlay relies on the key property of the P2P DHT 
that an item with unique key can be created and retrieved. 
In other words, DHT is a globally accessible and 
associative storage. In fact, the utilities of distributed hash 
table has been proposed earlier [7], but works such as 
Chord[16], Pastry[13], Tapestry[22] and CAN[10] 
emphasizes more on the self-organizing aspect. Data 
overlay has extended this property to arbitrary data 
structures.  

A pure “peer-to-peer” mindset will view hierarchy as a 
forbidden word. We believe this is misleading as important 
functionalities such as aggregation and indexing [1][8] 
inherently imply a hierarchical structure. On this, SOMO 
bears the most similarity to Astrolabe [12], a peer-to-peer 
management and data mining system. SOMO operates at 
the rudimentary data structure level while Astrolabe is on 
a virtual, hierarchical database. SOMO’s extensibility is 
much like that of active network, whereas Astrolabe uses 
SQL queries. The marked difference is that SOMO is 
designed specifically on top of P2P DHT, for two reasons: 
1) we believe P2P DHT has established a foundation over 
which many other systems can be built and thus there is a 
need for a scalable resource management and monitoring 
infrastructure and 2) by leveraging P2P DHT (in fact, data 
overlay) the design and protocols of such infrastructure 
can be much simpler. In fact, one can envision the two be 
combined in interesting ways: a high level, expressive 
query language built over a scalable and structured 
middleware which is further layered on top of DHT. 

Distributed, in-network query processing has also been 
investigated in apparently un-related fields such as sensor 
network, though the emphasis there is quite different [9]. 

4.2 Resource pool and its utilization 
Orchestrating a resource pool is a long-standing vision, 
especially in the Grid Computing arena [6]. Exploring 
heterogeneity lies therein has been articulated by [17]. 
SOMO provides a concrete example of how such resource 
pool can be realized. 

Earlier work of ALM includes Aharoni’s paper [2] and 
ESM [5]. Since then, quite a few other proposals and 
systems have emerged [3][14][15][21], including AMCast 
[15] from which our algorithm is derived. Researchers in 
P2P community quickly realized that application-level 
multicast maybe one of the showcases of P2P DHTs as 
well [4][11][23]. But both of these two approaches have 
some pitfalls: the first does not explore the potentials of a 
resource pool; and the second can not guarantee (for the 
time being) any QoS requirements, nor do they explore 
node heterogeneity. Given a resource pool, we have not 
only studied how to optimize one single ALM session, but 
also to schedule multiple simultaneous sessions with 
different priority levels, and have validated the hybrid 
model where global knowledge is combined with 
individual competition. To the best of our knowledge, this 
has been the first work along this line. 

5. CONCLUSION AND FUTURE WORK 
In this paper, we have presented our approach to optimize 
wide-area application-level multicasting in a collaborative 
resource pool. We construct the resource pool by 
combining P2P DHT’s capability of self-organizing large 
amount of resources, and an in-system, efficient, scalable 
and fault-tolerant metadata aggregation infrastructure 
SOMO. Active ALM sessions are optimized by recruiting 
any spare resources nearby, and we have proved that 
practical algorithm can give substantial performance 
improvement. Our model combines global knowledge and 
individual, credential-based competition and is completely 
distributed, and is applicable to distributed job scheduling 
in a large resource pool in general. 

We are currently building a wide-area testbed to test the 
idea of P2P resource pool, and the ALM scheduling 
algorithm is one of the experiments we plan to run. 
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