
1

Optimizing Wide-Area Application Level Multicasting using P2P Resource Pool

Zheng Zhang

Xing Xie

Shi-Ding Lin

Bo-Ying Lu

May 16, 2003

Technical Report

MSR-TR-2003-36

Microsoft Research

Microsoft Corporation

One Microsoft Way

Redmond, WA 98052

2

Optimizing Wide-Area Application Level Multicasting
using P2P Resource Pool

Zheng Zhang, Xing Xie, Shi-Ding Lin, Bo-Ying Lu
Microsoft Research Asia

5F, Sigma building, No.49, Zhichun Road
Beijing, 100080, P.R.China

{zzhang, xingx, i-slin, t-bylu}@microsoft.com
ABSTRACT
Wide-area application level multicasting (ALM) has been an
active research area lately and practical algorithms have been
derived to deliver QoS results for small to medium group size,
covering a good range of cases when such requirements are
warranted. These algorithms all assume that the resulting tree is
comprised of the members in the session only. However, in a
large and collaborative environment, active sessions are likely to
consume only a fraction of the total resources. Moreover, some
nodes with large capacity can contribute to multiple sessions.
While it is intuitive to explore such spare resources, the
challenges are 1) how to organize all the available resources into
a resource pool and 2) how to discover and subsequently utilize
the spare resources to benefit the active sessions.

In this paper, we describe SOMO (Self-Organizing Metadata
Overlay) which is an in-system monitoring service that
effectively creates an illusion of a single resource pool made up
by machines organized using P2P technologies. Using SOMO,
we show practical solutions utilizing spare resources can
substantially optimize active ALM sessions. Furthermore,
sessions with different priorities occupy resources accordingly.
All these are achieved using a hybrid model that combines in-
time global knowledge and individual competition without the
need of central coordination.

1. INTRODUCTION
Application-level multicasting (ALM) is one of the most
interesting applications of overlay network. It happens to
present many challenges as well: for scenarios such as
video-conferencing, guaranteeing certain QoS metrics is of
paramount importance.

Many algorithms have been proposed to address these
problems, all assuming that the only resources available
are those in the ALM session. In a collaborative
environment, many other stand-by resources could be
otherwise included for a more optimal solution. For
example, Microsoft Research has five branches across the
globe, and has many thousands of machines that are
geographically distributed. At a given hour, however,
number of active sessions is likely to be only a handful,
and each session may have a small number of participants
(say less than 20). Thus, a strong case can be made to

orchestrate all the resources together so that active sessions
can utilize spare resources when beneficial.

While this idea is rather intuitive, the challenges are many.
There are two critical building blocks: 1) how to organize
a resource pool and 2) how to schedule sessions by
recruiting spare resources, and do so in a completely
distributed manner.

To this end, we make a few novel contributions in this
paper:

• We use the latest P2P technologies to self-organize
potentially very large amount of resources. In particular,
we employ P2P DHT (Distributed Hash Table) to pool
resources together. However, pooling resources does not
automatically yield a resource pool, yet.

• Extending our early work of [20], we demonstrate the
feasibility of an infrastructure embedded in arbitrary
P2P DHT that provides a highly efficient, robust and
scalable monitoring service. This infrastructure SOMO
(Self-Organized Metadata Overlay) is fault-resilient and
can gather and disseminate system information in
O(logN) time. In essence, SOMO builds a dynamic
system status database which is available internally to
system participants. This database is being continuously
updated and creates an illusion of a single, large
resource pool.

• We then demonstrate, step by step, how ALM sessions
can be optimized by finding spare resources in the pool.
We first show how this can be done assuming only a
single session is of interest, and validate that up to 30%
improvement can be made for small-to-medium group
size. All data necessary for making scheduling decision
are gathered through SOMO and then subsequently
queried at the time of scheduling. We then extend the
base algorithm to schedule multiple, simultaneous
sessions each may of different priorities. To ensure
scalability, we take cues from sociology and adopt a
simple model in which individual, credential-based
competition is combined with on-time global knowledge
available through SOMO. Our results show that, as

3

expected, sessions of higher priority are given higher
share of resources, resulting better performance

While our work is targeted at optimizing ALM sessions,
the core technology is a lot more generic: we show how a
resource pool can be efficiently built, with no
administration overhead; and the philosophy and model of
distributed job scheduling – borrowing ideas from time-
tested practice in society, can be applied to other
distributed applications.

The rest of the paper is organized as follows. How to
construct the resource is the focus of Section 2. Scheduling
multiple ALM sessions in the resource pool created by
SOMO is extensively studied in Section-4. We discuss
related work in Section-4 and conclude in Section-5.

2. BUILDING P2P RESOURCE POOL
The foundation of our resource pool proposal is the so-
called structured peer-to-peer systems, and in particular
the distributed hash table (DHT). We assume that the
readers are reasonably familiar with the concept of DHT,
and for the sake of brevity will only go through the basics.

In DHT, a very large logical space (e.g. 160-bits) is
assumed. Nodes join this space with random IDs and thus
partition the spaced uniformly. The ID can be, for instance,
MD5 over a node’s IP address. An ordered set of nodes, in
turn, allows a node’s responsible zone to be strictly
defined. Let p and q be a node x’s predecessor and
successor, respectively. One definition of a node’s zone is
simply the space between the ID of its immediate
predecessor ID (non-inclusive) and its own ID. In other
words: zone(x) ≡ (ID(p), ID(x)]. This is essentially how
consistent hashing assigns zones to DHT nodes [16]
(Figure 1). This base ring (also called as leaf-set, as in
Pastry[13]) is the simplest P2P DHT. To harden the ring
against system dynamism, each node records r neighbors
to each side. These states are the basic routing table, and
are updated to keep the invariant when node join/leave
events occur.

Figure 1: the simplest P2P DHT – a ring, the zone and the
basic routing table that records r neighbors to each side.

If one imagines the zone being a hash bucket in an
ordinary hash table, then the ring is a distributed hash
table. Given a key in the space, one can always resolve
which node being responsible. The lookup performance is
O(N) in this simple ring structure.

Elaborate algorithms built upon the above concept so that
they achieve O(logN) performance with either O(logN) or
even constant states (i.e. the routing table entries).
Representative systems including Chord[16], CAN[10],
Pastry[13] and Tapestry[22].

The most interesting aspect of a DHT is that the whole
system is self-organizing with very low overhead –
typically in the order of O(logN). The second significant
attribute is the virtualization of a space where both
resources and other entities (such as documents stored in
DHT) live together; this feature is what we explore the
most in this paper.

Many DHT systems are designed with a storage-centric
mindset. We found it more interesting simply to take
advantage of DHT’s capability of stringing together large
amount of resources without administration oversight.
However, pooling resources together does not
automatically yield a resource pool. A resource pool exists
so that resource sharing at the time of scheduling tasks
(e.g. application-level multicast sessions) is possible. This
requires two more pieces:

1. An efficient way to know the running states of the
resources in the pool. And,

2. Based on 1), a methodology to schedule an
incoming task.

Therefore, embedded inside the system itself, there must
be a robust, highly efficient and scalable monitoring utility
that can gather and disseminate global knowledge as
accurately as possible. This is so because for a large
system, it is impractical to rely on external monitoring
service.

Figure 2: the resource pool is comprised of the machines
pooled together via DHT. SOMO, a self-organizing hierarchy
using data overlay that efficiently aggregates resource status
in a scalable way, is an in-system monitoring utility.
Combining DHT’s capability of pooling resource with SOMO
collectively makes the resource pool.

This in-system monitoring utility is called self-organizing
metadata overlay (SOMO), and will be introduced in
Section 2.2. SOMO is built using a generic technology,
data overlay, which can construct arbitrary distributed
data structure over a DHT. The relationship of these
concepts is described in Figure 2.

Gathering reports

Generating reports
Resource pool

SOMO

Root report

Report

DHT Internet

x

p q
zone(x)=(ID(p), ID(x)]

R0(x)

2r+1

4

2.1 Data Overlay
We observe that hash-table is only one of the fundamental
data structures. Sorted list, binary trees and queues etc. all
have their significant utilities. One way would be to
investigate how to make each of them self-organizing (i.e.,
P2P sorted list). Another is to build on top of a hash table
that already has such self-organizing property (i.e. P2P
DHT). This second approach, which we call data overlay,
is what we take in this paper.

Any object of a data structure can be considered as a
document. Therefore, as long as it has a key, that object
can be deposited into and retrieved from a P2P DHT.
Objects relate to each other via pointers, so to traverse to
object b pointed to by a.foo, a.foo must now store b’s key
instead. More formally, the following two are the
necessary and sufficient conditions:

• Each object must have a key, obtained at its birth

• If an attribute of an object, a.foo, is a pointer, it is
expanded into a structure of two fields: a.foo.key and
a.foo.host. The first substitutes the hard-wired address of
pointer, and the second field is a soft state containing the
last known hosting DHT node of the object a.foo points
to and serves as a routing shortcut.

It is possible to control the generation of object’s key to
explore data locality in a DHT. For instance, if the keys of
a and b are close enough, it’s likely that they will be
hosted on one machine in DHT.

We call a data structure distributed in a hosting DHT a
data overlay. It differs from traditional sense of overlay in
that traversing (or routing) from one entity to another uses
the free service of the underlying P2P DHT.

Figure 3: implement arbitrary data structure in DHT .

Figure 3 contrasts a data structure in local machine versus
that on a P2P DHT. Important primitives that manipulate a
pointer in a data structure, including setref, deref
(dereferencing) and delete, are outlined in Figure 4. Here,
we assume that both DHT_lookup and DHT_insert will, as
a side effect, always return the node in DHT that currently
hosts the target object. DHT_direct bypasses normal
DHT_lookup routing and directly seeks to the node that
hosting an object given its key.

The interesting aspect is that it is now possible to host any
arbitrary data structure on a P2P DHT, and in a transparent

way. The host routing shortcut makes the performance
insensitive to the underlying DHT.

Figure 4: pointer manipulate primitives in data-overlay

A data overlay on top of a bare-bone P2P DHT with no
internal reliability support can be used to implement
distributed data structure that is soft-state in nature (i.e,,
data is periodically refreshed and consumed thereafter
without ill side-effect). This is adequate to monitor the
running state of resource pool as a whole, and is what we
employ for SOMO.

2.2 SOMO: Self-Organized Metadata
Overlay
We now describe the data overlay SOMO (Self-Organized
Metadata Overlay), a generic information gathering and
disseminating infrastructure on top of any P2P DHT. In a
way, SOMO can be thought as a responsive “news
broadcast” whose construction and processing are shared
by all the nodes. The on-time “news” is what creates the
illusion of the resource pool.

Such an infrastructure must satisfy a few key properties:
self-organizing at the same scale as the hosting DHT, fully
distributed and self-healing, and be as accurate as possible
of the metadata gathered and disseminated.

Such metadata overlay can take a number of topologies.
For the sake of resource pool, one of the most important
functionalities is aggregation. Therefore, our implemented
SOMO is a tree of k degree whose leaves are planted in
each DHT node. Information is gathered from the bottom
and propagates towards the root, and disseminated by
trickling downwards. Thus, one can think of SOMO as
doing converge cast from the leaves to the root, and then
(optionally) broadcast back down to the leaves again. Both
the gathering and dissemination phases are O(logkN)

setref(a.foo, b) { // initially a.foo==null; b is the object
 // to which a.foo will points to
 a.foo.key=b.key
 a.foo.host= DHT_insert(b.key, b)
}
deref(a.foo) { // return the object pointed to by a.foo
 if (a.foo≠null) {

obj=DHT_direct(a.foo.host, a.foo.key)
if obj==null { // object has moved
 obj=DHT_lookup(a.foo.key)
 a.foo.host = node returned
}
return obj
else return “non-existed”

 }
}
delete(a.foo) { // delete the object pointed to by a.foo
 DHT_delete(a.foo.key)
 a.foo=null
}

5

bounded, where N is total number of entities. Each
operation in SOMO involves no more than k+1
interactions, making it fully distributed. We deal with
robustness using the principle of soft-state, so that data can
be regenerated in O(logkN) time. The SOMO tree self-
organizes and self-heals in the same time bound.

Since SOMO is a tree, we call its node the SOMO node.
To avoid confusion, we denote the DHT nodes as simply
the DHT node. At this point, it is worth to emphasize that
SOMO is a data overlay and as such is a distributed data
structure spread onto the DHT. A SOMO node is an object
as in object-oriented programming language, and its
member functions will be carried out by its hosting DHT
node (i.e., the machine).

2.2.1 Building SOMO
A DHT node that hosts a SOMO node s, is referred to as
DHT_host(s).

Figure 5: SOMO node data structure

The basic structure of the type SOMO_node is described in
Figure 5. The member Z indicates the region that this
node’s report member covers. Here, the region is simply a
portion of the total logical space of the DHT. The root
SOMO node covers the entire logical space. The key is
produced by a deterministic function of a SOMO node’s
region Z. Examples of such functions include the center of
the region, or a hash of the region coordinates (see Figure
6). Therefore, a SOMO node s will be hosted by a DHT
node that covers s.key (e.g. the center of s.Z). This allows a
SOMO node to be retrieved deterministically – exactly the
same as any other documents stored in DHT, as long as we
know its responsible region, and is particularly useful
when we want to query system status in a given key-space
range. A SOMO node’s responsible region is further
divided by a factor of k, each taken by one of its k
children, which are pointers in the SOMO data structure. A
SOMO node s’s i-th child will cover the i-th fraction of
region s.Z. This continues recursively until a termination
condition is met (discussed shortly). Since a DHT node
will own a piece of the logical space, it is therefore
guaranteed a SOMO node will be planted in it.

Initially, when the system contains only one DHT node,
there is only the SOMO root. As the DHT system grows,
SOMO builds its hierarchy along. This is done by letting
each DHT node periodically execute the routine
SOMO_grow shown in Figure 6, for any SOMO nodes that
are in its custody.

Figure 6: SOMO_grow procedure and the SOMO_loc
procedure which deterministically calculates a SOMO node’s
key given the region it covers. The procedure is executed by
the hosting DHT machine.

We test first if the SOMO node’s responsible zone is
smaller or equal to that of the hosting DHT node, if the test
comes out to be true, then this SOMO node is already a
leaf planted in the right DHT node and there is no point to
grow any more children. Otherwise, we attempt to grow.
Note that after a new SOMO node is initialized, we call the
setref primitive (See Figure 4) to install the pointer; this
last step is where DHT operation is involved. This way,
new SOMO nodes covering smaller regions are installed
into the DHT.

Figure 7: SOMO tree on top of P2P DHT. Circles are SOMO
nodes. SOMO nodes are mapped onto DHT nodes according
to their keys. A DHT node may own multiple SOMO nodes
and will execute their SOMO_grow routines periodically.

As this procedure is executed over all SOMO nodes, the
SOMO tree will grow as the hosting DHT grows, and the
SOMO tree is taller in logical space regions where DHT
nodes are denser. This is illustrated in Figure 7. Note that
SOMO nodes fall on to DHT nodes according to their
keys. As such a DHT node may own more than one SOMO
node, but has at least one SOMO node planted into it.

The SOMO_grow procedure is done in a top down fashion,
and is executed periodically. A bottom-up version can be
similarly derived. When the system shrinks, SOMO tree
will prune itself accordingly by deleting redundant

struct SOMO_node {
 string key
 struct SOMO_node *child[1..k]
 DHT_zone_type Z
 SOMO_op op
 Report_type report
}

SOMO_grow(SOMO_node s) {
 // check if any children is necessary
 if (s.Z⊆DHT_host(s).Z) return
 for i= 1 to k

if (s.child[i]==NULL &&
 the i-th sub-space of s.Z ⊄ host(s).Z) {
 t = new(type SOMO_node)
 t.Z = the i-th sub-space of s.Z
 t.key = SOMO_loc(t.Z)
 setref(s.child[i], t) // inject into DHT
}

}
SOMO_loc(DHT_zone_type Z) {
 return center of Z
 // optionally
 // return hash_of (Z)
}

Total logical space SOMO node

reportlastreportthis __ ∩=∆

DHT node

6

children. For an N-node system where nodes populate the
total logical space evenly, there will be 2N SOMO-nodes
when the SOMO fan-out k is 2.

The crash of a DHT node will take away the SOMO nodes
it is hosting. However, the crashing node’s zone will be
taken over by another DHT node after repair.
Consequently, the periodical checking of all children
SOMO nodes ensures that the tree can be completely
reconstructed in O(logkN) time. Because the SOMO root is
always hosted by the DHT node that owns one
deterministic point of the total space, that node ensures the
existence of the SOMO root and invokes the SOMO_grow
routine on the SOMO root.

2.2.2 Gathering and Disseminate Information with
SOMO
To gather system metadata, for instance loads and
capacities, a SOMO node periodically requests report –
executed by DHT node that holds it from its children. The
leaf SOMO nodes simply get the required info from their
hosting DHT nodes. As a side-effect, the procedure will
also re-start a child SOMO node if it has disappeared
because the hosting DHT node’s crash. Figure 8 illustrates
the procedure.

Figure 8: SOMO gathering procedure, executed by DHT
nodes responsible for a SOMO node.

The routine is periodically executed at an interval of T.
Thus, information is gathered from the SOMO leaves and
flows to its root with a maximum delay of logkN⋅T. This
bound is derived when flow between hierarchies of SOMO
is completely unsynchronized. If upper SOMO nodes’ call
for reports immediately triggers the similar actions of their
children, then the latency can be reduced to T+thop⋅logkN,
where thop is average latency of a trip in the hosting DHT.
The unsynchronized flow has latency bound of logkN⋅T,
whereas the synchronized version will be bounded by T in
practice (e.g., 5 minutes). Note that O(thop ⋅logkN) is the
absolute lower bound. For 2M nodes and with k=8 and a
typical latency of 200ms per DHT hop, the SOMO root
will have a global view with a lag of 1.6s.

If the SOMO report is composed of information pertain to
building the resource pool, such as load and network
condition of the machine, then by continuing to gather
fresh report from the SOMO leaves (and thus every
machines in the pool), SOMO root will have periodical
snapshots of the whole system. Such snapshot’s may

contain information whose freshness is O(logN) bounded,
and is adequate for scheduling coarse-grained jobs such as
application-level multicasting which usually last much
longer than the collection period.

Dissemination using SOMO is essentially the reverse: data
trickles down through the SOMO hierarchy towards the
leaves. Performance thus is similar as gathering. The other
alternative is to query the SOMO root. This is what we
used in scheduling ALM sessions, since number of
sessions is relatively small and the query is not made very
often.

Operations in either gathering or disseminating phases
involve one interaction with the parent, and then with k
children. Thus, the overhead in a SOMO operation is a
constant. The entities involved are the DHT nodes that
host the SOMO tree. SOMO nodes are scattered among
DHT nodes and therefore SOMO processing is distributed
and scales with the system.

It seems that towards the SOMO root the hosting DHT
nodes need to have increasingly higher bandwidth and
stability. As discussed earlier, stability is not a concern
because the whole SOMO hierarchy can be recovered in
O(logkN) time. As for bandwidth, most of the time one
needs only to submit delta between reports (Figure 8).
Combining with compression will further bring down
message size. Finally, it is always possible to locate an
appropriate DHT node through SOMO. This node can
swap with the one who is hosting the SOMO root
currently. That is to say, SOMO can be completely self-
optimizing as well.

The power of SOMO lies in its simplicity and flexibility: it
specifies neither the type of information it should gather
and/or disseminate, nor the operation invoked to process
them. That is to say, SOMO operations are programmable
and active. For this reason, in the pseudo-code we have
used op as a generic notation for operation used. Using the
abstraction of data overlay, its performance is also
insensitive to the hosting DHT. SOMO processing is fully
distributed, and it is both self-organizing and self-healing.

We have implemented a SOMO-based global performance
monitor with which we monitor the servers in our lab on a
daily basis. This tool employs SOMO built over a very
simple ring-like DHT, and SOMO gathers data from
various performance counter on each machine. The
complete system status is obtained by querying the SOMO
root report through a unified UI interface. We tested the
SOMO stability by unplugging cables of servers being
monitored, and each time the global view is regenerated
after a short jitter. Using the data overlay abstraction, the
SOMO layer is implemented much like any local
procedures, with only a few hundred lines of code.

get_report (SOMO_node s) {
 Report_type rep[1..k]
 for i∈[1..k]

if (s.child[i] ≠ NULL) // retrieving via DHT
 rep[i] = deref(s.child[i]).report

 s.report = s.op(rep[])
}

7

2.3 DHT+SOMO ŁŁŁŁ P2P Resource Pool
To summarize, our P2P resource pool is composed of two
ingredients:

• DHT . A DHT is used not in the sense of sharing
contents, but rather as an efficient way to pool
together a very large amount of resources, with
zero administration overhead and no scalability
bottleneck.

• SOMO. Utilizing the fact that arbitrary
distributed data structure can be built in the
virtual space and then mapped on to various
resources, SOMO is a self-organizing “news
broadcast” hierarchy. Aggregating resource status
in O(logN) time then creates the illusion of a
single resource pool.

3. SCHEDULING ALM SESSIONS
WITHIN THE P2P RESOURCE POOL
As discussed in Section-2.2, built upon DHT, SOMO can
create the image of a single resource pool. Given that, the
interesting question is how job scheduling can be
performed over this resource pool, in a completely
distributed fashion with the goal of maximizing resource
utilization and satisfying QoS requirements per
application.

For the particular problem of application level multicasting
(ALM), the end goal is for active sessions to achieve
optimal performance with available resources in the pool.
Session’s performance metrics is determined by certain
QoS definitions. Moreover, higher priority sessions should
proportionally acquire more shares of resources.

We will give our QoS definition and then describe our
approaches in steps. First, we will show how additional
resources are recruited assuming only one single session is
active. Next, we will present our approach of how multiple
sessions with different priorities are optimized.

Unless otherwise specified, our experiments simulate a
two-layer Transit Stub topology [18] with 600 routers. The
network consists of 24 transit routers and 576 stub routers.
We assign link latencies of 100ms for intra-transit domain
links, 25ms for stub-transit links and 10ms for intra-stub
domain links. We also append 1200 end systems to the
stub routers randomly and set the last hop latency to a
random value between 3ms and 8ms. The resource pool
contains all the 1200 end nodes in the network. Similar to
many previous works [14][15][19], each node has a bound
on the number of communication sessions it can handle,
which we call degree. This may due to the limited access
bandwidth or workload of end systems. The degree bound
for all the nodes lie within 2 and 9, and follows the
distribution 2-i for degree i-1. Thus, half of the nodes in
the system have degree 2 and the population for higher
degree decreases exponentially. These nodes are organized

using a DHT and runs SOMO on top. The details of
SOMO report for scheduling ALM will be presented later.

3.1 ALM QoS Definition
Each multicasting session assumes static membership, i.e.,
M(s) is known a priori. We believe this covers a good
portion of ALM applications where QoS is desired, for
instance pre-scheduled video-conferencing.

For ALM, there exist several different criteria for
optimization, like bandwidth bottleneck, maximal latency
or variance of latencies. In this paper, we choose maximal
latency of all members as the main objective of tree
building algorithms since it can greatly affect the
perception of end users. Our definition of QoS for one
given session is the same as proposed in AMCast [15] and
can be formally stated as follows:

Definition 1. Degree-bounded, minimal height tree
problem (DB-MHT). Given an undirected complete graph
G(V,E), a degree bound dbound(v) for each v∈V, a latency
function l(e) for each edge e∈E. Find a spanning tree T of
G such that for each v∈T, degree of v satisfies d(v) �
dbound(v) and the height of T (measured as aggregated
latency from the root) is minimized.

Using the resource pool, the above definition is slightly
extended. An extended set of helper nodes H is added to
the graph, and our objective is to achieve the best solution
relative to an optimal plan derived without using H, by
adding the least amount of helper nodes.

Figure 9: (a) an optimal plan for an ALM. (b) an even better
plan using helper nodes in the resource pool. Circles are
members belong to M(s), and the square is an available node
with a large degree.

Figure 9 depicts this graphically. Suppose P0 is the optimal
plan by some algorithm, f, which involves the initial
member set M(s) only. Running a modified algorithm f’
which not only uses M(s) but also recruits available and
nearby large degree nodes, the tree height – which
corresponds to the maximal latency of the session, can be
substantially reduced.

When the group size is very small (e.g., |M(s)|≤10), finding
P0 by enumerating all possibilities can be done in
reasonable time: for an eight-node group this is less than
three seconds on a 1.4GMHz Pentium IV PC with 256M
memory. Even with this globally optimal plan, it is
interesting to see that one helper node will still be able to
shorten the tree. For instance, adding a helper node close

(a) (b)

h

h

8

to the root with a degree bound greater than 4 brings about
14.2% average latency reduction. This validates our basic
premise; the challenge is how to extend it for larger
groups.

3.2 Scheduling a Single Session
We assume the root of the tree is where the planning and
scheduling is performed. In other word, the root is the task
manager of the session.

Figure 10: the AMCast algorithm that is O(N3) (without the
lines in the dashed box) and the critical-node algorithm that
utilizes additional helper node.

There are many proposals to optimize DB-MHT, which is
generally known as NP-complete. Our goal is not to
propose new algorithms. Instead, we will select from a few
well-known ones and investigate how much performance
benefits we can achieve when the resource pool is utilized.

Our base algorithm uses the one proposed in [15], with
O(N3) performance bound. This algorithm can generate a
solution for hundred of nodes in less than one second
(Figure 10, without the code in the dashed box). This
algorithm, which we refer to as “AMCast,” is a typical
greedy algorithm. It starts first with the root and adds it to
a set of the current solution. Next, the minimum heights of
the rest of the nodes are calculated by finding their closest
potential parents in the solution set, subject to degree
constraints. This loops back by absorbing the node with
the lowest height into the solution. The process continues
until all nodes are finally included in the resulting tree.To

ensure that we get the best possible tree to start with, we
augment this algorithm with further tuning (line 21).

A known technique to approximate globally optimal
algorithm is to adjust the tree with a set of heuristic moves.
These moves are graphically depicted in Figure 11, The
adjustments include the followings: (a) find a new parent
for the highest node; (b) swap the highest node with
another leaf node; (c) swap the sub-tree whose root is the
parent of the highest node with another sub-tree. These
optimizations are local adjustment after the tree is
generated using the AMCast algorithm, and will be
referred to as adjust. In our experiments, we test how
helper nodes affect the algorithm both with and without
this improvement.

Figure 11: Adjustment heuristics for DB-MHT. From top to
bottom: find a new parent for the highest node; swap the
highest node with another leaf node; swap the sub-tree whose
root is the parent of the highest node with another sub-tree.

Our algorithm searching for beneficial helper nodes
include two considerations: the time to trigger the search
and the criteria to judge an addition. The general
mechanism is described by the pseudo-code in the dash-
box of Figure 10. Let u be the node that the AMCast
algorithm is about to add and parent(u) be its parent.
When parent(u)’s free degree is reduced to one, we trigger
the search for an additional node h. If such h exists in the
resource pool, then h becomes u’s parent instead and
replaces u to be the child of the original parent(u).
Different versions vary only on the selection criteria of h
but we refer to this class of optimization the critical node
algorithm. “Critical” here means that, for a particular node,
this is the last opportunity to improve upon the original
greedy algorithm.

We have experimented with different algorithm to search
for h. The first variation is simply to find an additional
node closest to the parent node and with an adequate

ALM(r, V) { // V==M(s), r is the root
 for all v∈V // initialization
 height(v)=l(r, v); parent(v)=r
 T = (W={ r}, Link={})

 while (W<V) { // loop until finish
 find u∈{ V-W} s.t. height(u) is minimum
 if (d(parent(u))==dbound(parent(u)-1)
 h=find_helper(u)
 if h≠NULL { // integrate the helper node
 W+={h}; Link+={h, parent(u)};
 W+={u}; Link+={u, h};
 } else
 W+={u}; Link+={u, parent(u)};

 for all v∈{ V-W} { // re-adjust the height
 height(r)=∞
 for all w∈W
 if d(w)<dbound(w) && height(v)>height(w)+l(w, v)
 height(v)=height(w)+l(w, v); parent(v)=w
 }
 }
 adjust(T)
 return T
}

v
v

v
v

u

u

v
v

u

u
p

p

9

degree (we use 4). Let l(a, b) be latency between two
arbitrary nodes a and b. We find the following heuristic
yields even better results:

Here, v maybe one of u’s siblings. The idea here is that
since all such v will potentially be h’s future children, l(h,
parent(u)) + max (l(h, v)) is most likely to affect the
potential tree height after h’s joining (condition 1). Such
helper node should have adequate degree (condition 2).
Finally, to avoid “junk” nodes that are far away even
though their degrees are high, we impose a radius R: h
must lie within R away from parent(u) (condition 3).

We found that R between 50~150 yields satisfactory
results for the topology parameters we chose. The tradeoff
here is that a small R will reduce the choice of candidates,
whereas a larger R will introduce links of long latency in
the tree. That the setting of radius to be medium range
gives good result isn’t a surprise. Recall that we have 100,
25, and 10 for intra-transit, stub-transit and intra-stub links
respectively. Thus, a radius of 50-150 will avoid all nodes
from another stub.

So far we have described the algorithm as if we not only
knew the degrees of other nodes in the resource pool, but
also the latencies between all pairs. While the first
condition can be easily met by querying the SOMO
reports, the 2nd is obviously impractical because it entails,
virtually, that latencies between all pairs are available. To
get around this problem, we use the well known
“landmark” approach. In this algorithm, a few landmarks
are chosen first. Each node then measure roundtrip times
to these landmarks and the resulting delay vector
approximates the coordinates of a node relative to the
landmarks. To judge the closeness of two nodes, the
Euclidean distances between the two delay vectors are
computed.

In our experiments, we chose three random landmarks.
Each node now includes its measured delay vector and its
degree when submitting to SOMO. To find the closest
helper node h to parent(u) at the time of searching, we use
delay vector of parent(u) to query the SOMO report for 5
nearby nodes and then select the one that fits the criteria
the best.

In the followings, we call the algorithm where pair-wise
node latency is known a priori via an oracle the Critical,
and the one used the landmark estimation for vicinity
judgment the Landmark.

Figure 12: SOMO report structure for scheduling one single
active ALM session.

Figure 12 gives an example of the SOMO root report and
the detailed report submitted from individual nodes. Recall
that each node (for instance node x and y) will continue to
update through the SOMO hierarchy, resulting in
continuous refreshing of the root report.

Figure 13: The performance of scheduling single ALM
session. AMCast represents the original algorithm, Critical is
our modified “critical node” heuristic, Landmark stands for
the landmark based approach, Bound denotes the theoretical
upper bound. adju denotes the combination when tree
adjustment is performed.

We are now ready to present our results. A fair evaluation
should compare our results against those of a globally
optimal algorithm. Since this is not available, we report
our results in terms of percentage of tree height
improvement relative to the AMCast algorithm. In other
words, if Halg is the tree height achieved using alg, then:

The upper bound is the latency between the furthest node
to the root, corresponding to the ideal performance if the
root has degree of infinity. For the data set that we used,
the upper bound is between 40~50%. The average
performance of these algorithms over 20 runs is shown in
Figure 13 for various group sizes. It is conclusive that
resource pool is very effective for small-to-medium group
size. For larger groups, the original AMCast has more

Improvement = (HAMCast – Halg)/HAMCast

l(h, parent(u))+max(l(h, v)) is minimum && \\ condition 1

dbound(h) ≥ 4 && \\ condition 2

 l(h, parent(u))<R; \\ condition 3

where v satisfies parent (v) = parent (u) \\ condition 4

Root report

…
…

Report from node x

…
…

…

…

Report from node y

Report from node x

System info:
Load, memory, disk, …

Network info :
Location: landmark (153:152:452)
Bandwidth: available degree (5)

Report from node y

System info:
Load, memory, disk, …

Network info :
Location: landmark (454:453:053)
Bandwidth: available degree (2)

l(h, parent(u))+max(l(h, v)) is minimum

where v satisfies parent (v) = parent (u) && \\ condition 1

dbound(h) ≥ 4 && \\ condition 2

 l(h, parent(u))<R \\ condition 3

10

rooms to optimize by using the existing members already.
We believe that in reality, small groups are in fact more
common.

For instance, Landmark+adjustment, which is a practical
algorithm, delivers more than 30% latency reduction over
the baseline for group size of 100; for group size of twenty,
the reduction is 35%. Interestingly enough, tree
adjustment, which is otherwise mediocre in shortening the
tree (5% over baseline), is remarkably effective especially
for Landmark. Part of the reason may be due to the
inaccuracy introduced by using delay vectors to estimate
node proximity.

(a)

(b)

Figure 14: (a) number of additional nodes used and (b) the
average degree used on additional nodes.

It is also intriguing to see that using landmark instead of
oracle the results are not substantially different. This
demonstrates that our approach is practical. To understand
that further, we compare the number of helper nodes and
their average degrees in Figure 14, for Critical and the
Landmark. It shows that both algorithms recruit about the
same number of helper nodes. However, the quality of the
nodes selected by the latter is not as high, especially when
group size is small. This explains why the performance of
Critical and Landmark converges for larger group (see
Figure 13).

3.3 Scheduling Multiple ALM Sessions
The preceding section describes the stand-alone scheduling
algorithm for one ALM session; we now discuss how
multiple active sessions are scheduled in the system. Our
goals are: 1) higher priority sessions are proportionally

assigned with more resources, and 2) that the utilization of
the resource pool as a whole is maximized.

All the sessions may start and end at random times. Each
session has an integer valued priority between 1 and 3.
Priority 1 session is the highest class. The number of
maximum simultaneous sessions varies from 10 to 60 and
each session has non-overlapping member set of size 20.
Thus, when there are 60 active sessions, all nodes will
belong to at least one session. That is, the fraction of
original members of active sessions varies from 17% to
100%. Actual employed nodes will be greater by including
helper nodes that lie outside the session members and,
especially when such fraction is big, nodes with larger
degrees may be involved in more than one session.

The principle underlying our approach is very simple, and
it draws insight from a well-organized society: as long as
global, on-time and trusted knowledge is available, it may
be best to leave each task to compete resources with their
own credentials (i.e., the priorities). Thus, we employ a
hybrid model that combines global, on-time knowledge
with individual, credential-based competition.

Setting the appropriate priorities at nodes involved in a
session takes extra consideration. In a collaborative P2P
environment, if a node needs to run a job which includes
itself as a member, it is fair to have that job be of highest
priority in that node. Therefore, for a session s with
priority L, it has the highest priority (i.e. 1 in our
experiment) for nodes in M(s), and L elsewhere (i.e., for
any helper nodes lie outside M(s)). This ensures that each
session can be run, with a lower bound corresponding to
the AMCast+adju algorithm. The upper bound is obtained
assuming s is the only session in the system (i.e.,
Landmark+adju).

As before, the root of an ALM session is the task manager,
which performs the planning and scheduling of the tree
topology. Each session uses the Landmark+adjustment
algorithm to schedule completely on its own, based on
system resource information provided by SOMO. For a
session with priority L, any resources that are occupied by
tasks with lower priorities than L are considered available
for its use. Likewise, when an active session loses a
resource in its current plan, it will need to perform
scheduling again. Each session will also rerun scheduling
periodically to examine if a better plan, using recently
freed resources, is better than the current one and switch to
it if so.

Figure 15: two example degree tables.

y’s degree table

dbound(x) 4
x.dt[1] 2(S4)
x.dt[2] 0
x.dt[3] 1(S1 2)

dbound(y) 2
y.dt[1] 2(S5)
y.dt[2] 0
y.dt[3] 0

 x’s degree table

11

To facilitate SOMO to gather and disseminate resource
information so as to aid the planning of each task manager,
each node publishes the following information in its report
to SOMO:

• Its most recent measured delay vector to the
landmarks. This part is the same as before.

• Its degree, broken down into priorities taken by
active sessions. This is summarized in the degree
table.

In Figure 15, we show the degree tables of two nodes. x’s
total degree is 4, and is taken by session s4 for 2 degrees,
and s12 by another one degree, leaving x with one free
degree. y on the other hand, has only two degrees and both
of them are taken by session s5. The degree tables are
updated whenever the scheduling happens that affect a
node’s degree partition. Degree tables, as mentioned
earlier, are gathered through SOMO and made available
for any running task to query.

The original AMCast+adjustment is the base algorithm but
is slightly extended so that resources are recruited from
elsewhere with the guideline of priorities, and that the
degree tables of nodes involved are appropriately updated.
For completeness, the pseudo-code is listed in Figure 16.
The procedure takes an integer pri as the session’s priority.
We now explain the changes:

• Line 10. Any helper node’s degree is counted
only for portions that are either free or occupied
by lower priority tasks.

• Line 29-35: when the schedule is done, we set the
degree tables of all the nodes in the plan
appropriately: 1 (the highest priority) if they
belong to the original member set, and pri
otherwise. If other sessions are affected because
their resources are taken away, their task
managers are notified.

Figure 16: The algorithm to schedule one sessions when there
are multiple active sessions. Changes are in line 10 and line
29-35.

Notification due to preemption is through the information
recorded in the degree table. Re-planning is also run
periodically when some resources are recently freed, in
search for a better plan. To minimize the impact of
rescheduling, each session is connected with a graph
generated by the AMCast+adju as the backup plan.

Ideally, the performance improvement should have a lower
bound of AMCast+adjust where only the original member
set is involved, and an upper bound of Landmark+adjust,
when the session is the only active one in the resource
pool. Therefore, performance will lie within 7%~35%
reductions over AMCast (see data in Figure 13 when group
size is 20).

The result is shown in Figure 17-(a). The x-axis is the
number of active sessions, while the y-axis is the

1. ALM (r, V, pri) { //V==M(s), r is the root, pri is the priority
2. for all v∈V // initialization
3. height(v)=l(r, v); parent(v)=r
4. T = (W={ r}, Link={})
5.
6. while (W<V) { // loop until finish
7. find u∈{ V-W} s.t. height(u) is minimum
8. if (d(parent(u))==dbound(parent(u)-1) { // find helper node
9. find h in resource pool: // adjust helper’s degree
10. dbound(h) = dbound(h) - sum(h.dt[i]), where i�pri
11. dbound(h) ≥ 4 && l(h, parent(u))<R &&
12. l(h, parent(u))+max(l(h, v) is minimum
13. where v satisfies parent (v) = parent (u)
14. }
15.
16. if h≠NULL // integrate the helper node
17. W+={h}; Link+={h, parent(u)}; W+={u}; Link+={u, h};
18. else
19. W+={u}; Link+={u, parent(u)};
20.
21. for all v∈{ V-W} { // re-adjust the height
22. height(r)=∞
23. for all w∈W {
24. if d(w)<dbound(w) && height(v)>height(w)+l(w, v)
25. height(v)=height(w)+l(w, v); parent(v)=w
26. }
27. }
28. adjust(T)
29. for all v∈W { // record degree in the degree table
30. if v∈V // v is in the original participant set
31. v.dt[1] += d(v);
32. else // v is a helper node
33. v.dt[pri] += d(v);
34. notify sessions, if any, whose resources are preempted
35. }
36. return T
37. }

12

performance improvement. To ease the comparison, the
upper bound and lower bound are also shown.

Figure 17: (a) the performance of multiple ALM sessions and
(b) the average number of additional nodes used.

As expected, the data perfectly drop into the interval
between lower bound and upper bound. When there are
more sessions and overall resource becomes scarce,
performance decreases across the board. However, higher
priority tasks are able to sustain much better than the lower
ones, conforming to our predictions. Figure 17-(b) depicts
the number of helper nodes taken, which shows that lower
priority tasks lose more helper nodes when resource is
under intense competition.

We also studied three other variations:

l When resource is already occupied by a running task,
the current task will choose to skip this node and moves
on, i.e., preempting is not allowed. The problem here is
that some nodes’ resources will be fully consumed even
though they belong to the current task’s member set.
This will lead to more than 50% of sessions unable to
form a tree.

l When the resource is occupied by a running task and it
is not the current task’s participant, then the current task
will skip this node, otherwise preempting will occur.
This turns out to be too conservative and higher priority
tasks can hardly benefit from this approach. The reason

being that earlier low priority sessions have occupied
many good nodes which can be only preempted by their
owners.

l Do not recycle those resources freed by a completed task
to optimize existing, still active tasks. This is equivalent
to artificially increasing the number of concurrent
sessions. From Figure 17, we can see that the
performance heavily depends on the number of live
sessions. Therefore, this approach will make the
performance worse unless sessions are relatively short.

Previous results are all based on a non-uniform distribution
of degrees. This is reasonable since most of the clients are
bandwidth starved. However, this may not be the case
under some special circumstances such as corporate
networks where lease lines are used. To understand the
robustness of our algorithm as well as its sensitivity to
other degree distribution, we ran another set of
experiments where node degree is a random variable
between 2 and 6, for group size of twenty. The
performance bound in this case is [10%, 27%].

Figure 18 shows the result. It shows that the performance is
quite robust in this case, i.e., it does not depend much on
number of sessions, nor on priorities. This indicates that
the resource competition is low. Therefore, a more
conservative approach like the second and the third
variation mentioned previously will be just as efficient,
whereas overhead brought by rescheduling can be avoided.
However, a session should still preempt other sessions that
are running on their member set nodes, for otherwise more
than 50% of the sessions will be unable to find valid
solutions.

Figure 18: The performance of scheduling multiple ALM
sessions under uniform degree distribution.

The above finding brought one interesting point, different
scheduling algorithms might be necessary, depending on
the degree distribution. Since through SOMO the degree
distribution can always be discovered, adaptation of
scheduling algorithm is possible.

Upper bound

Lower bound

(a)

(b)

13

3.4 Discussion
For a large and dynamic system, centralized resource
scheduling will itself be a bottleneck, both in terms of
scalability and stability. We believe that the right principle
to adopt is to allow individual tasks to compete with their
own credentials based on trusted global knowledge. The
freshness of such global knowledge is bounded by O(logN)
and, as a result, some of the properties in traditional single
box system can be violated. For example, if two sessions s1
and s2 start close enough, their FIFO (First-in-first-out)
property is hard, if not impossible, to enforce. Due to the
distributed nature of job scheduling, the session starts later
may reach (and thereby reserve) some resources earlier.
However, resource allocation among tasks with different
priorities can still be enforced – provided priority is
authentic. What bounds and tradeoffs can such mechanism
guarantee is an interesting future research topic.

4. RELATED WORK
Our work spans across a number of related fields:
distributed data structure, scalable monitoring services, the
concept of resource pool and its utilizations. We will
discuss them in turn.

4.1 Self-Configured Monitoring Service
Data overlay relies on the key property of the P2P DHT
that an item with unique key can be created and retrieved.
In other words, DHT is a globally accessible and
associative storage. In fact, the utilities of distributed hash
table has been proposed earlier [7], but works such as
Chord[16], Pastry[13], Tapestry[22] and CAN[10]
emphasizes more on the self-organizing aspect. Data
overlay has extended this property to arbitrary data
structures.

A pure “peer-to-peer” mindset will view hierarchy as a
forbidden word. We believe this is misleading as important
functionalities such as aggregation and indexing [1][8]
inherently imply a hierarchical structure. On this, SOMO
bears the most similarity to Astrolabe [12], a peer-to-peer
management and data mining system. SOMO operates at
the rudimentary data structure level while Astrolabe is on
a virtual, hierarchical database. SOMO’s extensibility is
much like that of active network, whereas Astrolabe uses
SQL queries. The marked difference is that SOMO is
designed specifically on top of P2P DHT, for two reasons:
1) we believe P2P DHT has established a foundation over
which many other systems can be built and thus there is a
need for a scalable resource management and monitoring
infrastructure and 2) by leveraging P2P DHT (in fact, data
overlay) the design and protocols of such infrastructure
can be much simpler. In fact, one can envision the two be
combined in interesting ways: a high level, expressive
query language built over a scalable and structured
middleware which is further layered on top of DHT.

Distributed, in-network query processing has also been
investigated in apparently un-related fields such as sensor
network, though the emphasis there is quite different [9].

4.2 Resource pool and its utilization
Orchestrating a resource pool is a long-standing vision,
especially in the Grid Computing arena [6]. Exploring
heterogeneity lies therein has been articulated by [17].
SOMO provides a concrete example of how such resource
pool can be realized.

Earlier work of ALM includes Aharoni’s paper [2] and
ESM [5]. Since then, quite a few other proposals and
systems have emerged [3][14][15][21], including AMCast
[15] from which our algorithm is derived. Researchers in
P2P community quickly realized that application-level
multicast maybe one of the showcases of P2P DHTs as
well [4][11][23]. But both of these two approaches have
some pitfalls: the first does not explore the potentials of a
resource pool; and the second can not guarantee (for the
time being) any QoS requirements, nor do they explore
node heterogeneity. Given a resource pool, we have not
only studied how to optimize one single ALM session, but
also to schedule multiple simultaneous sessions with
different priority levels, and have validated the hybrid
model where global knowledge is combined with
individual competition. To the best of our knowledge, this
has been the first work along this line.

5. CONCLUSION AND FUTURE WORK
In this paper, we have presented our approach to optimize
wide-area application-level multicasting in a collaborative
resource pool. We construct the resource pool by
combining P2P DHT’s capability of self-organizing large
amount of resources, and an in-system, efficient, scalable
and fault-tolerant metadata aggregation infrastructure
SOMO. Active ALM sessions are optimized by recruiting
any spare resources nearby, and we have proved that
practical algorithm can give substantial performance
improvement. Our model combines global knowledge and
individual, credential-based competition and is completely
distributed, and is applicable to distributed job scheduling
in a large resource pool in general.

We are currently building a wide-area testbed to test the
idea of P2P resource pool, and the ALM scheduling
algorithm is one of the experiments we plan to run.

6. REFERENCES
[1] Adamic, L., Huberman, B., Lukose, R., and Puniyani, A.

Search in Power Law Networks, Physical Review.
E64(2001), 46135-46143

[2] Aharoni E. and Cohen R. Restricted Dynamic Steiner Trees
for Scalable Multicast in Datagram Networks. IEEE/ACM
Trans. on Networking, Vol. 6, No. 3, Jun. 1998

[3] Banerjee S., Bhattacharjee B., etc. Scalable Application
Layer Multicast. SigComm’02, Pittsburgh, USA, Aug. 2002

14

[4] Castro M., Druschel P., Kermarrec A., and Rowstron A.
SCRIBE: A Large-scale and Decentralized Application-
level Multicast Infrastructure. IEEE Journal on Selected
Areas in Communications, Vol. 20. No 8. Oct. 2002

[5] Chu Y., Rao S., and Zhang H. A Case for End System
Multicast. SigMetrics’00, CA, USA, Jun. 2000

[6] The Globus Project, http://www.globus.org
[7] Gribble et al. The Ninja Architecture for Robust Internet-

Scale Systems and Services. In Journal of Computer
Networks, Volume 35, Issue 4, March 2001.

[8] Lv, Qin, Ratnasamy, Sylvia and Shenker. Scott. Can
Heterogeneity Make Gnutella Scalable? In IPTPS’02.

[9] Madden, S and et al. TAG: A Tiny AGregation Service for
Ad-Hoc Sensor Networks. OSDI’02

[10] Ratnasamy, S., Francis P., Handley M., Karp R., and
Shenker S. A Scalable Content-Addressable Network.
SIGCOMM’01, San Diego, CA, USA, 2001

[11] Ratnasamy S., Handley M., Karp R., and Shenker S.
Application Level Multicast using Content Addressable
Networks, NGC’01, London, UK, Nov. 2001

[12] Renesse, V, Birman, R and Kenneth. Scalable Management
and Data Mining using Astrolabe. In IPTPS’02.

[13] Rowstron A. and Druschel P. Pastry: Scalable, Distributed
Object Location and Routing for Large-scale Peer-to-peer
Systems. Middleware’01, Heidelberg, Germany, 2001

[14] Shi S. and Turner J. Routing in Overlay Multicast Networks.
Infocom’02, New York, USA, Jun. 2002

[15] Shi. S., Turner J., and Waldvogel M. Dimensioning Server
Access Bandwidth and Multicast Routing in Overlay
Networks. NOSSDAV’01, New York, USA, Jun. 2001

[16] Stoica, I., Morris R., Karger D., etc. Chord: A Scalable
Peer-to-peer Lookup Service for Internet Applications.
SIGCOMM’01, San Diego, CA, USA, 2001

[17] Teodosiu, D et al. Hardware Fault Containment in Scalable
Shared-Memory Multiprocessors. In ISCA’97.

[18] Zegura E., Calvert K., and Bhattacharjee S. How to Model
an Internet-work. InfoCom’96 , CA, USA, May 1996

[19] Zhang B., Jamin S., and Zhang L. Host Multicast: A
Framework for Delivering Multicast to End Users.
Infocom’02, New York, USA, Jun. 2002

[20] Zhang Z., Shi S., and Zhu J. SOMO: Self-Organized
Metadata Overlay for Resource Management in P2P DHT.
In IPTPS’03.

[21] Zhao, B., and et al. Brocade, Landmark Routing on Overlay
Networks. In IPTPS’02.

[22] Zhao B.Y., Kubiatowicz J.D., and Josep A.D. Tapestry: An
Infrastructure for Fault-tolerant Wide-area Location and
Routing. Tech. Rep. UCB/CSD-01-1141, UC Berkeley,
2001

[23] Zhuang S.Q., Zhao B.Y., and Joseph A.D. Bayeux: An
Architecture for Scalable and Fault-tolerant Wide-Area
Data Dissemination, NOSSDAV’01, New York, USA

