
Abstraction-guided Test Generation: A Case Study

Thomas Ball
Testing, Verification and Measurement Research

Microsoft Research
http://www.research.microsoft.com/tvm/

November 25, 2003

Technical Report
MSR-TR-2003-86

Microsoft Research
Microsoft Corporation
One Microsoft Way

Redmond, WA 98052

This page intentionally left blank.

1

Abstraction-guided Test Generation: A Case Study

Thomas Ball
Testing, Verification and Measurement Research

Microsoft Research
http://www.research.microsoft.com/tvm/

November 25, 2003

Abstract

We define an automated behavioral approach to unit test generation for C code based on
three steps: (1) predicate abstraction of the C code generates a boolean abstraction based
on a set of observations (predicates); (2) reachability analysis of the boolean abstraction
computes an overapproximation to the set of observable states and generates a small set
of paths to cover these states; (3) SAT-based symbolic execution of the C code generates
tests to cover the paths. Our approach generalizes a variety of test generation approaches
based on covering code and deals naturally with the difficult issue of infeasible program
paths that plagues many code-based test generation strategies. We explain our approach
via a case study of generating test data for a small program and discuss its capabilities and
limitations.

1 Introduction

Automatic test generation from code usually has as its goal to cover the statements or branches
in a program. [8, 14] Our goal is to re-orient unit test generation to focus on covering important
aspects of a program’s behavior rather than its structure, and define an automated process
to achieve high behavioral coverage. Good code coverage will be achieved as a side-effect of
achieving good behavioral coverage. As we will show, our approach generalizes a variety of code
coverage approaches and deals naturally with the difficult issue of infeasible program paths that
plagues many code-based test generation strategies.

We use the reachable states of a program as a window into its behavior. A state is a mapping
from locations to values (often associated with a program point). While a program may have
an unbounded number of reachable states, at any point in time there usually are only a finite
number of observations about these states that will be interesting to test. A predicate maps a
state to a boolean value. For example, the predicate (x > 0) observes whether or not variable
x has a positive value in a given state. An observer o is a vector of n predicates. The observed
state o(s) corresponding to state s is a vector of Boolean values (paired with a program point)
constructed by applying each predicate in o to state s. Predicates are a way to observe program
behavior and bound the number of observed states, as there are a finite number of program

2

points in a program and a finite number of observations (2n) that can be made at each program
point.

We define an automatic process for creating test data to achieve high behavioral coverage of
a sequential C program P . The input to the process is a set of predicates E observing states of
P . (We will discuss later ways to select E). Our process creates concrete inputs to the program
P that will cause it to reach a high percentage of the reachable observable states (induced by
E). The process has three main steps (based on existing algorithms and tools):

• Using predicate abstraction [12], a boolean program BP (P, E) is automatically created
from a C program P and predicates E. [1] (A boolean program has all the control-flow
constructs of C but only permits variables with boolean type.) Each predicate ei in E has
a corresponding boolean variable bi in BP (P, E) that conservatively tracks the value of
ei. The boolean program is an abstraction of program P in that every feasible execution
path of P is a feasible execution path of BP (P, E).

• Reachability analysis of the boolean program using the Bebop symbolic model checker [2]
yields an overapproximation SE to the set of observable reachable states of P . We have
modified Bebop to output a small set of paths P (SE) that covers all states in SE .

• A SAT-based symbolic simulator for C [7] determines if each path ps in P (SE) is feasible
in the source program P and generates an input to cover ps if it is feasible.

All of the above three steps are completely automatic. The central problem is the selection
of the predicates E. If E is the empty set then the boolean abstraction will be imprecise and
very few paths chosen by the model checker will be feasible. Let F (SE) be the subset of paths
in P (SE) that are feasible paths in the source program P . The ratio |F (SE)|/|P (SE)| gives us
a measure of the goodness of a set of observations E. The closer the ratio is to one, the closer
the boolean abstraction BP (P,E) approximates the program P . As we will see, choosing the
set of predicates from the conditionals in a program is a good start to achieving a high coverage
ratio.

One question that the reader may ask is “why bother generating inputs at all if the sym-
bolic machinery is powerful enough to determine the feasibility of a program path?”. There are
several reasons. First, tests are a reusable asset understood by programmers and testers Pro-
grammers and testers will gain confidence in their program (and the symbolic machinery used
to generate tests) by seeing their programs run and produce results predicted by the symbolic
analysis. Second, a test generated by our analysis for a function f can be used to test alternate
implementations of the function f . Finally, in the end, testing must be done to ensure proper
end-to-end behavior of a system, despite the application of the best verification technology.

To bring these ideas into focus, we present a case study in which we apply the process to a
small example. Section 2 presents the case study. Section 3 discusses the issues, problems and
opportunities that emerge from this test generation process. Section 4 describes related work
and Section 5 concludes the paper.

3

void partition(int a[], int n) {

int pivot = a[0];

int lo = 1;

int hi = n-1;

assume(n>2);

L0: while (lo <= hi) {

L1: ;

L2: while (a[lo] <= pivot) {

L3: lo++;

L4: ;

}

L5: while (a[hi] > pivot) {

L6: hi--;

L7: ;

}

L8: if (lo < hi) {

L9: swap(a,lo,hi);

LA: ;

}

LB: ;

}

LC: ;

}

void partition() begin

decl lt,le,al,ah;

enforce (!(lt&!le)&

!(!lt&le&((al&ah)|(!(al|ah)))));

lt,le,al,ah := T,T,*,*;

L0: while (le) do

L1: skip;

L2: while (al) do

L3: lt,le,al := ch(F,!lt),

ch(lt,!lt||!le), *;

L4: skip;

od

L5: while (ah) do

L6: lt,le,ah := ch(F,!lt),

ch(lt,!lt||!le), *;

L7: skip;

od

L8: if (lt) then

L9: al,ah := !ah,!al;

LA: skip;

fi

LB: skip;

od

LC: skip;

end

(a) (b)

Figure 1: (a) The partition function and (b) its boolean program.

2 Case Study

Figure 1(a) presents a (buggy) example of QuickSort’s partition function, a classic example
that has been used to study test generation [5] We have added various control points and labels
to the code for explanatory purposes. The goal of the function is to permute the elements of
the input array so that the resulting array has two parts: the values in the first part are less
than or equal to the chosen pivot value a[0]; the values in the second part are greater than
the pivot value. There are two array bounds check missing in the code: the check at the while
loop at label L2 should be (lo<=hi && a[lo]<=pivot); the check at the while loop at label
L5 should be (lo<=hi && a[hi]>pivot).

2.1 Observations

There are thirteen labels in the partition function (L0-LC), but an unbounded number of
paths. If we bound the number of iterations of each loop in the function to be no greater than
k, than the total number of paths is f(k) = 1 + (2(1 + k)2)k, which grows very quickly. Which
of these many paths should be tested? Which are feasible and which are infeasible? Clearly,
paths are not a very good way to approach testing of this function.

Instead of reasoning in terms of paths, we will use predicates to observe the states of

4

the partition function. Let us observe the four predicates that appear in the body of the
function: (lo<hi), (lo<=hi), (a[lo]<=pivot), and (a[hi]>pivot). An observed state thus
is a bit vector of length four (lt, le,al,ah), where lt corresponds to (lo<hi), le corresponds to
(lo<=hi), al corresponds to (a[lo]<=pivot), and ah corresponds to (a[hi]>pivot). There
only are ten feasible valuations for this vector, as six are infeasible because of correlations
between the predicates:

• If !(lo<hi)&&(lo<=hi) then (lo==hi) and so exactly one of the predicates in the set {
(a[lo]<=pivot), (a[hi]>pivot) } must be true. Thus, the two valuations FTFF and
FTTT are infeasible.

• Since (lo<hi) implies (lo<=hi), the four valuations TFFF, TFTT, TFFT and TFTF
are infeasible.

Since there are thirteen labels in the code and ten possible valuations, we have a state space of
130 observable states in the worst-case. However, as we will see in Section 2.3, the number of
reachable observable states is far less.

2.2 Boolean Abstraction

Figure 1(b) shows the boolean program abstraction of the partition function with respect
to the four observed predicates. This program can be automatically constructed using the
C2bp tool [1] in the SLAM toolkit [3]. The boolean program has one variable (lt, le, al, ah)
for each observed predicate. Statements in the boolean program conservatively update each
boolean variable to track the value of its corresponding predicate. The enforce statement in
the boolean program has the effect of putting an assume statement (with the same expression
as the enforce) before and after each statement. The expression in the enforce statement
rules out the six infeasible states listed in the previous section.

Boolean programs contain parallel assignment statements. The first such assignment in
the boolean program captures the effect of the statements before label L0 in the partition
function:

lt,le,al,ah := T,T,*,*;

This assignment statement sets the values of variables lt and le to true because the C code
before label L0 establishes the conditions n>2, lo==1, and hi==n-1, which implies that lo<hi.
The variables al and ah are non-deterministically assigned true or false (*) since the initial
values in the input array are unconstrained.

The while loop at label L0 constrains le to be true if control passes into the body of the
loop, as le is the variable corresponding to the predicate (lo<=hi). The statement lo++; at
label L3 translates to the parallel assignment statement in the boolean program:

lt,le,al := ch(F,!lt), ch(lt,!lt||!le), *;

The ch function is a built-in function of boolean programs that returns true (T) if its first
argument is true, false (F) if its first argument is false and second argument is true, and * (T
or F) otherwise. The translation of lo++ shows that:

5

TTTT TTTF FTTF FFTF TTFT FTFT FFFT TTFF FFFF FFTT
L0 x x x x x
L1 x x x x
L2 x x x x x x x x
L3 x x x x
L4 x x x x x x x x
L5 x x x x x
L6 x x x
L7 x x x x x
L8 x x
L9 x
LA x
LB x x
LC x

Figure 2: The reachable states of the boolean program.

• if the predicate (lo<hi) is false before the statement lo++ then this predicate is false
afterwards (and there is no way for this statement to make the predicate lo<hi true).

• if the predicate (lo<hi) is true before lo++ then the predicate (lo<=hi) is true after;
otherwise, if (lo<hi) is false or (lo<=hi) is false before then (lo<=hi) is false after.

• the predicate (a[lo]<=pivot) takes on an unknown value (*) as result of the execution
of lo++.

The assignment statement hi--; at label L6 is similarly translated. The effects of the call to
the swap procedure at label L9 are captured by the assignment statement al,ah := !ah,!al;
because this call swaps the values of the elements a[lo] and a[hi].

2.3 Reachable States in the Boolean Abstraction

We used the model checker Bebop [2] to compute the reachable states of the boolean program,
as shown in Figure 2. There is a row for each of the thirteen labels in the boolean program (L0
to LC) and a column for each of the ten possible valuations for the boolean variables (lt,le,al
and ah).

There are 49 reachable states in the boolean program, denoted by the “x” marks in the
table. This is much smaller than the total number of states, which is 130. Such sparseness is
important because it rules out many states that we shouldn’t even attempt to cover with tests
(because they are unreachable in the boolean program, and thus in the partition function).
Let us examine the reasons for this sparseness.

Consider the first four columns of the table. In each of these columns, the variable al (third
bit position from left) is true. If al is true upon entry to the while loop at labels L2 to L4, then

6

this loop iterates until al becomes false. This is why (with two exceptions) there is no state
in which al is true after label L4 in the function. The exception is due to the swap procedure,
which makes al true at labels LA and LB.

Now consider the next three columns (labeled TTFT, FTFT, and FFFT). In these states,
the variable al is false and ah (fourth bit position from left) is true. In these states, the first
inner while loop does not iterate and the second inner while loop (labels L5 to L7) will iterate
until ah is false.

Finally, we arrive at columns labeled TTFF, FFFF, and FFTT. As can be seen in the table,
due to the effect of the two inner while loops, the label L8 can only be reached in one of two
states (TTFF or FFFF). In the first case, the swap procedure will be called; in the second case,
the swap procedure will not be called. The state FFTT is not reachable at all.

In summary, the reachable state space is sparse because of correlations between predicates
in the code. This sparsity makes symbolic model checking efficient. Additionally, symbolic
model checking of a boolean program has a number of advantages over directly symbolically
executing a C program: (1) it can compute loop invariants over the observed predicates; (2)
it is more efficient since it only observes certain aspects of the program’s state. In the next
section, we show how the state space of the boolean program can be used to effectively guide
symbolic execution of the C code to generate test data.

2.4 Feasibility Testing and Input Generation

Our goal now is to generate test inputs that will cause each observed reachable state (in Figure 2)
to be observed in an actual run of the partition function.

Figure 3 shows the reachable state space of the boolean program, output by the Bebop
model checker. Each state is labelled LX:ABCD, where LX is the label (program counter), and
A, B, C and D are the values of the boolean variables lt, le, al, and ah. Edges represent state
transitions.

Solid edges in the graph are tree edges in a depth-first search (DFS) forest of the graph
with roots (initial states) { L0:TTFT, L0:TTTT, L0:TTTF, L0:TTFF }. The initial states are
rectangles. The dotted edges are non-tree edges (back edges, cross edges or forward edges) in
the DFS forest. There are twelve leaves in the DFS forest (ovals). To cover all the states in the
DFS forest requires twelve unique paths (from a rectangle to an oval), which are automatically
generated as the output of the Bebop model checker.

Each of the twelve paths corresponds to a straight-line C “path” program that we automat-
ically generated by tracing the path through the partition function. Let us consider one of
these paths:

L0:TTTF → L1:TTTF → L2:TTTF → L3:TTTF → L4:TTFF → L2:TTFF

and its corresponding path program (see Figure 4). There are five transitions between labels in
this path. The transition L0:TTTF → L1:TTTF corresponds to the expression in while loop
at label L0 evaluating to true. This is modeled by the statement assume(lo<=hi) in the path
program in Figure 4. The five statements corresponding to the five transitions are presented

7

LC:FFFF

LB:FFFF

L0:FFFF

LB:TTTT

L0:TTTT

LA:TTTT

L9:TTFF

L8:FFFF

L8:TTFF

L7:FFFF

L5:FFFF

L7:TTFF

L5:TTFF

L7:FFFT

L5:FFFT

L7:FTFT

L5:FTFT

L7:TTFT

L5:TTFT

L6:FFFT

L6:FTFT

L6:TTFT

L4:FFFF

L2:FFFF

L4:TTFF

L2:TTFF

L4:FFTF

L2:FFTF

L4:FTTF

L2:FTTF

L4:TTTF

L2:TTTF

L4:FTFT

L2:FTFT

L4:TTFT

L2:TTFT

L4:TTTT

L2:TTTT

L3:FFTF

L3:FTTF

L3:TTTFL3:TTTT

L1:TTFF

L1:TTTF

L1:TTFT

L1:TTTT

L0:TTFFL0:TTTFL0:TTFT

Figure 3: The state space of the boolean program and its depth-first search forest.

after the “prelude” code in Figure 4. The assert statement at the end of the path program
asserts that the final state at label L2 (TTFF) cannot occur.

We used CBMC [7], a bounded-model checker for C programs to determine whether or
not the assert statement in each of the twelve path programs can fail. If it can fail then it
means that all the observed states in the path are reachable in the original partition function
and CBMC generates a counterexample which includes an input array a[] and array length n
that will cause the partition function to visit all these observed states. (CBMC unrolls a C
program to a boolean formula and uses a SAT solver to determine if the C program can fail
and generate an input that would cause it to fail). If CBMC proves that the assert statement
cannot fail then the path is infeasible. We will discusss later what can be done when infeasible
paths are encountered.

For the generated path program of Figure 4, CBMC finds a counterexample and produces
the input array { 1, -7, 3, 0 }.1 Let us show that the partition function run on this input will

1CBMC actually produces very small negative input values. For our example, the negative values produced

8

partition(int a[],int n) {

pivot = a[0]; // prelude

lo = 1; // prelude

hi = n-1; // prelude

assume(n>2); // prelude

assume(lo<=hi); // L0:TTTF -> L1:TTTF

; // L1:TTTF -> L2:TTTF

assume(a[lo]<=pivot); // L2:TTTF -> L3:TTTF

lo=lo+1; // L3:TTTF -> L4:TTFF

; // L4:TTFF -> L2:TTFF

assert(! ((lo<hi)&&(lo<=hi)&&

!(a[lo]<=pivot)&&!(a[hi]>pivot))

);

}

Figure 4: The “path” program corresponding to the path L0:TTTF → L1:TTTF → L2:TTTF
→ L3:TTTF → L4:TTFF → L2:TTFF.

Leaf Input Array CBMC Result Bounds Failure?
L1:TTFF { 1, 3, 0 } assert
L1:TTFT { 0, 2, 1 } assert
L2:FFFF { 0, -7, -8 } assert x
L2:TTFF { 1, -7, 3, 0 } assert
L3:FFTF { 0, -7, -8 } assert x
L4:TTTF { 1, -7, -7, 0 } assert x
L4:TTTT { 0, -8, -8, 1 } assert
L6:FFFT infeasible
L7:FTFT { 0, -8, 1, 2 } assert
L7:TTFT { 0, -8, 3, 0, 1, 2 } assert
LB:TTTT { 0, -7, 1, 0, -8, 2 } assert
LC:FFFF { 0, -8, 1 } assert

Figure 5: Array inputs generated by CBMC for the twelve paths of the buggy C program in
Figure 1(a).

cover the six reachable states in the path

L0:TTTF → L1:TTTF → L2:TTTF → L3:TTTF → L4:TTFF → L2:TTFF.

Given the input array, the initial values of (lo,hi,pivot, a[lo], a[hi]) are
(lo=1,hi=3,pivot=1,a[lo]=-7,a[hi]=0) just before execution of label L0. This covers the
state L0:TTTF. Since lo<=hi in this state, control will pass to labels L1 and then L2, thus
covering states L1:TTTF and L2:TTTF. Since a[lo]<=pivot in the current state, control will

by CBMC are -2147483647 and -2147483648. We have substituted -7 and -8 for these two values throughout the
paper for conciseness.

9

pass from L2 to L3, covering L3:TTTF. At this point the increment of lo takes place and the
values of the five locations now are (lo=2,hi=3,pivot=1,a[lo]=3,a[hi]=0). Control passes
to label L4. The expression

((lo<hi)&&(lo<=hi)&&!(a[lo]<=pivot)&&!(a[hi]>pivot))

evalutes to true and control then passes to label L2. Thus, states L4:TTFF and L2:TTFF have
been covered as well.

Figure 5 shows the results of running CBMC on each of the generated path programs
corresponding to the twelve paths to leaf vertices in the DFS forest. If the column CBMC
result contains “assert”, this means that CBMC found a counterexample that caused the final
assert statement to fail. If the column contains “infeasible” it means that CBMC proved that
the final assert cannot fail. CBMC finds that eleven of the twelve paths generated from the
boolean program are feasible in the source program.

The infeasible path is due to the fact that the state L6:FFFT is not reachable in the
partition function, but is reachable in the boolean program. The path is infeasible in the
partition function because the hi variable has been decremented so that its value is less than
that of the lo variable. Since the partition function maintains the invariant that all array
elements with index less than lo have value less than or equal to pivot, the value of a[hi]
must be less than or equal to pivot. However, the state L6:FFFT requires that a[hi]>pivot is
true at the end of the path. The reason the path is feasible in the boolean program is that our
four chosen predicates do not track the values of the array elements that are below the index
lo or are above the index hi.

Three of the twelve feasible paths exhibit a bounds violation, namely those with leaf states
L2:FFFF, L3:FFTF and L4:TTTF. For example, the path with leaf state L2:FFFF and the path
with leaf state L3:FFTF both have the input array { 0, -7, -8 }, which will cause the partition
function to advance the lo index beyond the upper bound of the array.2

2.5 Analysis of the Corrected Partition Function

We fixed the partition function to eliminate the two array bounds violations (first and sec-
ond inner while loops) and re-ran our entire process on the fixed function. The end result of
this analysis is shown in Figure 6. The results for ten of the leaf states (L1:TTFF, L1:TTFT,
L2:FFFF, L2:TTFF, L4:TTTF, L4:TTTT, L7:FTFT, L7:TTFT, LB:TTTT, LC:FFFF) are ex-
actly the same as before.

The leaf states L3:FFTF and L6:FFFT, which were reachable in the buggy boolean program,
are no longer reachable in the fixed boolean program. The first state corresponded to a bounds
violation (which has been eliminated) and the second state was unreachable in the buggy
partition function.

However, two new leaf states have been found: LC:FFFT and LC:FFTF. The first state
is unreachable (for the same reason that the state L6:FFFT was unreachable in the buggy
program). The second state is a new state that is reachable as a result of the bug fix.

2The inquisitive reader may wonder how two different paths can generate the same input array. This is
because the value of a[lo] is undefined when the variable lo steps beyond the bounds of the array { 0, -7, -8 }.
Thus, the predicate a[lo]<=pivot could be true or false, giving rise to two different paths.

10

Leaf Input Array CBMC Result
L1:TTFF { 1, 3, 0 } assert
L1:TTFT { 0, 2, 1 } assert
L2:FFFF { 0, -7, -8 } assert
L2:TTFF { 1, -7, 3, 0 } assert
L4:TTTF { 1, -7, -7, 0 } assert
L4:TTTT { 0, -8, -8, 1 } assert
L7:FTFT { 0, -8, 1, 2 } assert
L7:TTFT { 0, -8, 3, 0, 1, 2 } assert
LB:TTTT { 0, -7, 1, 0, -8, 2 } assert
LC:FFFF { 0, -8, 1 } assert
LC:FFFT infeasible
LC:FFTF { 0, -7, -8 } assert

Figure 6: Array inputs generated by CBMC for the corrected program (no array bounds viola-
tions).

3 Discussion

3.1 Predicate Selection

Our approach to test generation is parameterized by the set of predicates E, which define the
precision of the boolean abstraction BP (P, E). The more precise this abstraction, the more
likely that the paths generated by the Bebop model checker (P (SE)) will be feasible paths
(F (SE)) in the source program P . This led us to propose the ratio |F (SE)|/|P (SE)|, which
measures the precision of the boolean program abstraction by its ability to find feasible paths
in the source program.

To illustrate this concept, consider using our test generation process on the partition
function with no predicates. In such a case, every path through the function would be considered
by the model checker, including many infeasible paths. For example, the model checker would
output the (infeasible) path in which the outermost while loop does not iterate. However, as
we can see from the source program, the outermost while loop must iterate at least once.

What exactly does a |F (SE)|/|P (SE)| ratio of 1.0 signify? It says that no more tests
are needed in order to cover the observable states in SE . However, it doesn’t mean that all
interesting observations about a piece of code have been made. In our running example, the
specification for the partition function illustrates other observations we could make. This
specification states that at label L1 the following loop invariant holds:

for all i, 0<=i<lo, (a[i]<=pivot) and for all j, hi<j<n, (pivot<a[j])

Our basic point is not new: generating test data based solely on the code is never sufficient–
one must also consider the specification of what the code is supposed to as well. [10]

If a path in ps generated by the model checker is infeasible in the C program, it may be that
the state s at the end of ps is unreachable in the C program or it may be that there is a feasible

11

path to s but the predicates in E were insufficient to guide the model checker to this path. In
this case, there are several alternatives: involve the programmer in the process to either add
predicates to E to guide the model checker to a feasible path to s or assert that the state is not
reachable; use an automated tool such as SLAM to try to prove that s is reachable/unreachable
in the C program, thereby generating more predicates.

3.2 Partial Programs and “Ping-Pong” Analysis

It often will be the case that the source code of a unit is compiled and linked against existing
(binary) libraries for which no source code is available. We propose a simple idea for dealing
with such code: use our test generation technique on the code for which we have source, run
the tests and observe the effect of the binary code on the observation predicates.

In our running example, suppose that the swap function is only available as a binary. In this
case, it will not be possible to construct an accurate boolean program model of the partition
function at the call to the swap procedure. At the call to swap, every predicate that can be
potentially affected must be invalidated.

However, since every other program point in the partition function can be abstracted
precisely, we can still use our process to generate inputs that will cause the swap function to
execute. For such test inputs, we observe the affect of swap on the four observation predicates
and incorporate these observations into the boolean program abstraction. The idea is to let
our analysis “ping-pong” between an “abstract” phase of predicate abstraction, model checking
and symbolic execution and a “concrete” phase of execution on generated inputs. Observations
of the values of the predicates E during concrete execution can be fed back into the abstract
execution phase to refine the knowledge about the behavior of library code.

3.3 The Small Scope Hypothesis

The “small scope hypothesis” of testing is that a high percentage of the bugs in a system can
be found by exhaustively checking the program on inputs of a small size. If one believes this
hypothesis then a central question is “how large should we choose ’small’ to be?” Our process
helps to generate such small inputs that cover a set of observed states. In our example, the
size of the input arrays range from length three to six. The observations E place constraints on
the size of the input needed to cover the observable states SE . In effect, our process can help
determine how large “small” should be.

4 Related Work

The idea of using paths and symbolic execution of paths to generate tests has a long and rich
history going back to the mid-1970’s. [5, 15, 8, 22] and continuing to the present day [17, 11, 13]

The major contribution of our work over previous efforts is to guide test generation using
predicate abstraction and model checking. We use the automatically-created boolean program
abstraction to guide the search for feasible paths in a C program. This abstraction is based
on observations (predicates) over the state space of the C program. These observations can be

12

taken directly from the code (as they appear in conditionals) or provided by programmers or
testers. In fact, this parameterization of test generation via predicates makes it possible for
the programmer or tester to increase the level of testing thoroughness through the addition of
new observations. Finally, the boolean program abstraction provides a denominator (P (SE))
by which we can assess the test generation effectiveness of a set of predicates E.

A classic problem in path-based symbolic execution is the selection of program paths. One
way to guide the search for feasible paths is to execute the program symbolically along all
paths, while guiding the exploration to achieve high code coverage. Clearly, it is not possible
to symbolically execute all paths, so the search must be cut off at some point. Often, tools
will simply analyze loops through one or two iterations. [6] Another way to limit the search is
to bound the size of the input domain (say, to consider arrays of at most length three) [16],
or to bound the maximum path length that will be considered, as done in bounded model
checking. [7] An experiment by Yates and Malevris provided evidence that the likelihood that a
path is feasible decreases as the number of predicates in the path increases. [23] This led them
to use shortest-path algorithms to find a set of paths that covers all branches in a function.

In contrast to all these heuristics, our technique uses the set of input predicates E to bound
the set of paths that will be used to generate test data for a program P . The predicates induce
a boolean abstraction BP (P, E) which guides the selection of paths, with the goal of covering
the set of observable states SE .

Other approaches to test generation rely on dynamic schemes. Given an existing test t,
Korel’s “goal-oriented” approach seeks to perturb t to a test t′ cover a particular statement,
using function minimization techniques. [18] The potential benefit of Korel’s approach is that it
is dynamic and has an accurate view of memory and flow dependences. Ideas from his approach
may be applicable in a “ping-pong” analysis. The downside of his approach is that test t may
be very far away from a suitable test t′.

Another dynamic approach to test generation is found in the Korat tool. [4]. This tool
uses a function’s precondition on its input to automatically generate all (nonisomorphic) test
cases up to a given small size. It exhaustively explores the input space of the precondition and
prunes large portions of the search space by monitoring the execution of the precondition. For
an example such as the partition function that has no constraints on its input, the Korat
method will not work very well. Furthermore, it requires the user to supply a bound on the
input size whereas our technique infers the input size.

Random or fuzz testing is another popular technique for unit testing. [9], [20], [21] For a
simple example such as the partition function, random generation of arrays would probably
perform quite well. It will be interesting to compare random testing with our technique for
more complex examples.

Of course, if a designer provides a specification of the expected behavior of a software sys-
tem, this specification can be used to drive test generation as well. State-based test generation
from manually-provided models has been widely studied and applied. [19] Such techniques are
complementary to our code-based approach, which creates abstract models from code automat-
ically.

13

5 Conclusion

We have presented a process for using predicate abstraction and model checking to guide
test case generation via symbolic execution, and have applied the process to a small exam-
ple. Clearly, much more needs to be done to judge whether or not this process will scale and be
useful. Towards that end, we plan to implement the process fully for Microsoft’s intermediate
language (MSIL) that is the bytecode representation now targeted by Microsoft compilers for
C# and Visual Basic. Our plan is to create a unit testing tool that will automate test generation
for MSIL and investigate the “ping-pong” approach outlined in Section 3.2 for incorporating
results from test executions back into symbolic analysis.

Acknowledgements

Thanks to Daniel Kroening for his help with the CBMC model checker. Thanks also to Byron
Cook and Vladimir Levin for their comments on drafts of this paper.

References

[1] T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Automatic predicate abstraction
of C programs. In PLDI 01: Programming Language Design and Implementation, pages
203–213. ACM, 2001.

[2] T. Ball and S. K. Rajamani. Bebop: A symbolic model checker for Boolean programs. In
SPIN 00: SPIN Workshop, LNCS 1885, pages 113–130. Springer-Verlag, 2000.

[3] T. Ball and S. K. Rajamani. The SLAM project: Debugging system software via static
analysis. In POPL 02: Principles of Programming Languages, pages 1–3. ACM, 2002.

[4] C. Boyapati, S. Khurshid, and D. Marinov. Korat: automated testing based on java pred-
icates. In Proceedings of the International Symposium on Software Testing and Analysis,
pages 123–133. ACM, 2002.

[5] R. Boyer, B. Elspas, and K. Levitt. SELECT–a formal system for testing and debugging
programs by symbolic execution. SIGPLAN Notices, 10(6):234–245, 1975.

[6] W. R. Bush, J. D. Pincus, and D. J. Sielaff. A static analyzer for finding dynamic pro-
gramming errors. Software-Practice and Experience, 30(7):775–802, June 2000.

[7] E. Clarke, D. Kroening, and K. Yorav. Behavioral consistency of c and verilog programs
using bounded model checking. In Design Automation Conference, pages 368–371, 2003.

[8] L. A. Clarke. A system to generate test data and symbolically execute programs. IEEE
Transactions on Software Engineering, 2(3):215–222, September 1976.

[9] J. W. Duran and S. Ntafos. A report on random testing. In Proceedings of the 5th
International Conference on Software Engineering, pages 179–183. IEEE, 1981.

14

[10] J. Goodenough and S. Gerhart. Toward a theory of test data selection. IEEE Transactions
on Software Engineering, 1(2):156–173, 1976.

[11] A. Gotlieb, B. Botella, and M. Rueher. Automatic test data generation using constraint
solving techniques. In Proceedings of the International Symposium on Software Testing
and Analysis, pages 53–62. ACM, 1998.

[12] S. Graf and H. Säıdi. Construction of abstract state graphs with PVS. In CAV 97:
Computer-aided Verification, LNCS 1254, pages 72–83. Springer-Verlag, 1997.

[13] N. Gupta, A. P. Mathur, and M. L. Soffa. Automated test data generation using an iterative
relaxation method. In FSE 98: Foundations of Software Engineering. ACM, 1998.

[14] N. Gupta, A. P. Mathur, and M. L. Soffa. Generating test data for branch coverage. In
Proceedings of Automated Software Engineering, pages 219–222, 2000.

[15] W. E. Howden. Reliability of the path analysis testing strategy. IEEE Transactions on
Software Engineering, 2:208–215, 1976.

[16] D. Jackson and M. Vaziri. Finding bugs with a constraint solver. In Proceedings of the
International Symposium on Software Testing and Analysis, pages 14–25. ACM, 2000.

[17] R. Jasper, M. Brennan, K. Williamson, B. Currier, and D. Zimmerman. Test data genera-
tion and feasible path analysis. In Proceedings of the International Symposium on Software
Testing and Analysis, pages 95–107. ACM, 1994.

[18] B. Korel. Dynamic method of software test data generation. Software Testing, Verification
and Reliability, 2(4):203–213, 1992.

[19] D. Lee and M. Yannakakis. Principles and methods of testing finite state machines—a
survey. Proceedings of the IEEE, 84(8):1090–1123, August 1996.

[20] B. P. Miller, L. Fredriksen, and B. So. An empirical study of the reliability of UNIX
utilities. Communications of the ACM, 33(12):32–44, 1990.

[21] S. Ntafos. On random and partition testing. In Proceedings of the International Symposium
on Software Testing and Analysis, pages 42–48. ACM, 1998.

[22] C. Ramamoorthy, S. Ho, and W. Chen. On the automated generation of program test
data. IEEE Transactions on Software Engineering, 2(4):293–300.

[23] D. Yates and N. Malevris. Reducing the effects of infeasible paths in branch testing.
In Proceedings of the Symposium on Software Testing, Analysis, and Verification, pages
48–54. ACM, 1989.

15

