
PeerStreaming: A Practical Receiver-Driven Peer-to-Peer Media Streaming System
Jin Li

One Microsoft Way, Bld. 113, Redmond, WA 98052.
Email: jinl@microsoft.com

ABSTRACT
We have developed PeerStreaming, a receiver-driven peer-to-

peer (P2P) media streaming system. Recognizing the fact that the
peer is performing a favor for the client and the server during the
streaming session, the design philosophy of PeerStreaming is to
ensure that the peer is lightweight and the P2P network is loosely
coupled. The peer performs simple operations, and may elect to
cache only part of the streaming media. It does not collaborate
with other peers, may be unreliable and may drop offline or come
online during the streaming session. The client coordinates the
peers, streams the media from multiple peers, performs load bal-
ancing, handles the online/offline of peers, decoding and render-
ing the media, all in real-time. Through the high rate erasure resil-
ient code, the serving peers may hold partial media without con-
flict, and the client simply retrieves a fixed number of erasure
coded blocks regardless of where and what specific blocks are
retrieved. PeerStreaming can stream the embedded coded media,
and vary the streaming bitrate according to the serving band-
widths and the client queue status. Via the Microsoft DirectShow
framework, PeerStreaming is capable of live P2P streaming, de-
coding and rendering a number of media format, such as
MPEG1/2/4, WMA/WMV, and the embedded media of [10].

Categories and Subject Descriptors
C.2.4 [Distributed system]: Distributed applications
H.5.1 [Multimedia Information Systems]: Audio, Video

General Terms
Algorithms, Design, Performance

Keywords
Media streaming, peer-to-peer (P2P), receiver-driven, on-demand,
high rate erasure resilient code, scalable media, embedded coded
media, loosely coupled P2P network, live streaming, practical
streaming system.

1. INTRODUCTION
According to market research [1], over half of the Internet users

in the United States have accessed some form of streaming media
in 2004. Streaming music is still the most popular activities of the
users, but the popularity of streaming video is growing rapidly.
Unlike web pages, a streaming media file is huge. A 3 minute
movie trailer encoded at 2 megabits per second (Mbps) results in a
45 megabyte (MB) media file. Streaming media also carries strin-
gent demand in the timing of packet delivery. The large size of the
streaming media as well as its delivery timing requirement causes
a streaming media server to be expensive to set up and run. Cur-
rently, the going rate for the streaming media server is $10 per
1GB of serving traffic. This may not seem much, until you realize
that the server bandwidth alone costs $0.45 per movie trailer dis-
tributed. Apparently, more efficient way of distributing the
streaming media needs to be developed.

Recently, there is great interest in using the peer-to-peer (P2P)
network in media streaming. The idea is to let the peer node assist
the media server in distributing the streaming media. A great
number of P2P media streaming systems have been developed.

The end system multicast (ESM) [2] and PeerCast [3] were two
systems using the application-level multicast (ALM) for media
streaming. In ESM and PeerCast, the peer nodes self organized
into an overlay tree over the existing IP network and the stream-
ing data were distributed along the overlay tree. The cost of pro-
viding bandwidth was shared amongst the peer nodes, reducing
the burden of the media server. In ESM and PeerCast, the leaf
nodes of the distribution tree only received streaming media, and
did not contribute to content distribution. CoopNet [5] and Split-
Stream [6] built multiple distribution trees that spanned the source
and the peer nodes. Each tree in CoopNet and SplitStream might
transmit a separate piece of streaming media. As a result, all peer
nodes were involved in content distribution. OStream [8] used
cache-and-relay approach so that the peer node might serve the
client with previously distributed media from its cache. GnuS-
tream [6] was a receiver driven P2P media streaming system built
on top of Gnutella. Utilizing an application level P2P service
called CollectCast, PROMISE [7] sought for serving peers that
were most likely to achieve the best streaming quality, and dy-
namically adapted to network fluctuations and peer failure. These
were only a few examples of the recent schemes of the P2P media
streaming solutions.

In this work, we propose and implement PeerStreaming, which
is a receiver-driven P2P media streaming system. Compared with
the existing works [2]-[8], PeerStreaming has a number of unique
features. The PeerStreaming serving peers are designed to be
lightweight. They may only hold a portion of the streaming media,
and perform simple operations during the service. The P2P net-
work of PeerStreaming is loosely coupled. The peers do not col-
laborate with other peers, may be unreliable, and may drop offline
or come online during the streaming session. It is the PeerStream-
ing client that drives the P2P streaming process, connects to peer
that just comes online, redirects the requests dropped by offline
peers, and balances the load among the peers. PeerStreaming sup-
ports the embedded coded media. It also uses the high rate erasure
resilient code to allow each peer to hold partial media without
conflict, and simplifies the operation of the client as it retrieves
the partial media from the multiple peers. The PeerStreaming
client is built on top of the Microsoft DirectShow framework. It is
capable of live P2P media streaming, decoding and rendering, and
supports a number of coded media format, such as MPEG 1/2/4
audio/video codec, WMA/WMV, as well as an embedded audio
codec developed by the author [10].

2. PEER-TO-PEER NETWORK
The P2P network that facilitates the PeerStreaming system is

shown in Figure 1. For a particular streaming session, let the
server be a node that originates the streaming media. Let the client
be a node that currently requests the streaming media. Let the
serving peer be a node that serves the client with a complete or
partial copy of the streaming media. In the PeerStreaming system,
the server, the client and the serving peers are all end-user nodes
connected to the Internet. Because the server is always capable of
serving the streaming media, the server node is always a serving
peer. The server node may perform media administrative func-
tionalities that cannot be performed by a serving peer, e.g., main-

taining a list of available serving peers, performing digital right
management (DRM) functionality. The role of the node in the
P2P network may change as well. A certain node may act as the
client in one particular streaming session. In another session, it
may act as the serving peer, and serve the received media of the
last session to the other client.

During the streaming session, the client locates a number of
close-by peers that hold the requested media, and streams the
media from the multiple peers (which may include the server).
Apparently, the serving peer is doing a favor for the client and the
server. By using its upload bandwidth and storage, the serving
peer reduces the burden of the server. The client may also receive
much better media quality as there are more serving bandwidths
available. The peer does not directly benefit from serving the cli-
ent. Nevertheless, if the P2P network has certain fairness mecha-
nism, e.g., [9], it may expect better media quality next time it
becomes the client. PeerStreaming can be considered as an add-on
component to an existing media player component. When only a
few PeerStreaming nodes are deployed, the benefit may not be
much. However, with more and more PeerStreaming nodes de-
ployed, every PeerStreaming node as well as the media server
benefit, because the media server will become less costly to run,
and the PeerStreaming node will be able to receive much better
media quality during the streaming session.

Recognizing the fact that the serving peer is performing a favor
for the client and the server during the streaming session, a good
design philosophy is to ensure that the serving peer is lightweight
and the P2P network is loosely coupled. The serving peer should
only need to perform very simple operations with low CPU load.
It may also elect to cache only part of the media to save its storage
space used for caching the media. It should not be required to
collaborate with other peers. Other programs running on the serv-
ing peer may also have a higher priority in claiming the CPU and
network resource. As a result, the serving peer may be unreliable,

with fluctuation of serving bandwidth and may drop offline and
become online anytime during the streaming session.

On the contrary, it is fair to let the PeerStreaming client devote
resources in the streaming session. The client needs to receive the
streaming media from multiple peers, so it is connected to the
peers already. It is motivated to do a good job to coordinate the
peers, which can improve its own streaming experience. We there-
fore design the PeerStreaming with a receiver-driven solution,
with light weight serving peer and loosely coupled P2P network.

The rest of the paper is organized as follows. In section 3, we
examine the media model. We also introduce the high rate erasure
resilient code that let the serving peer hold partial media without
conflict. The operation of PeerStreaming is discussed in Section
4. Experimental results are shown in 5.

3. MEDIA MODEL, PARTIAL CACHING
AND ERASURE RESILIENT CODE
3.1 Streaming Media Model

A streaming media consists of a stream of packets that are de-
coded and rendered as they arrive (hence the name streaming).
Without streaming, the entire media has to be downloaded in one
big chunk before it can be used. The general structure of a stream-
ing media file is illustrated in Figure 2. The media is led by a
header, which contains global information of the media, e.g., the
number of channels in the media, the property and characteristic
(audio sampling rate, video resolution/frame rate) of each channel,
codecs used, author/copyright holder of the media, etc. The media
header is usually downloaded before the start of the streaming
session, so that the client may set up the necessary tools to decode
and render the following packets. A streaming media may consist
of several channels, each of which is a media component that can
be independently selected and decoded, e.g., an English audio
track, a Spanish audio track, a 4:3 video, a 16:9 video. The header
is followed by a sequence of media packets, each of which con-
tains the compressed bitstream of a certain channel spanning
across a short time period. Each media packet is led by a packet
header, which contains information such as the channel index, the
beginning timestamp of the packet, the duration of the packet, as
well as a number of flags, e.g., whether the packet is a key frame
(a MPEG I frame), whether the packet is an embedded coded
packet (with truncatable bitstream), etc.. The compressed bit-
stream of the packet then follows.

In PeerStreaming system, a media packet can be embedded
coded (scalable) or non-embedded coded (non-scalable). Most of
the compressed media codecs today, such as MPEG1/2/4 au-
dio/video, WMA/WMV, Real Audio/Video, generate non-
embedded coded media packets. The size of these media packet
can not be changed. Moreover, the lost of one media packet in
such bitstream either causes the media to be not decodable, or
incurs significant penalty to the playback quality. In addition to
the support of this form of the traditional compressed media,
PeerStreaming supports the embedded coded media. With the
embedded coded media, each media packet is encoded in such a
way that it can be independently truncated afterwards. This is
generally achieved by coding a block of audio/video transform
coefficients bitplane-by-bitplane, from the most significant bit-
plane (MSB) to the least significant bitplane (LSB). If the bit-
stream is truncated after encoding, the information is retained for
the several most significant bitplanes of all the coefficients. More-
over, the truncated bitstream corresponds to a lower bitrate com-
pressed bitstream, which can be considered as embedded in the
higher bitrate compressed bitstream, hence the name embedded

Server

Peers

Client
Figure 1 The peer-to-peer media streaming framework.

0 1 n-1

Packet Header

Compressed
bitstream

Channel
Timestamp
Duration

Key Frame?
Embedded?

Figure 2 The file format of a streaming media.

coding. As a result, the media packet generated by the embedded
coder can be truncated, with graceful rate-distortion trade-off1. In
PeerStreaming, we support the embedded audio codec of [10].

3.2 Media Structure
To operate in a receiver-driven mode, the PeerStreaming client

needs the structure of the to-be-requested media packets, so that it
may know what packets and what portion of each packet to re-
quest from each peer. The media structure also provides the Peer-
Streaming client with a bird’s eye view of the entire media, so that
it can plan the P2P streaming intelligently, and make sure that the
media packets are arrived in time for decoding and rendering.

The media structure of a set of packets is simply the packet
headers plus the packet bitstream lengths. Before the media packet
can be retrieved in a receiver-driven P2P fashion, its media struc-
ture has to be retrieved first. The media structure is pretty compact.
On five test movie clips of 31-49 megabytes (MB), the media
structures of the entire clips range from 37KB-53KB. Therefore,
the media structure is typically 0.10-0.15% of the media body.
The retrieval of the media structure does not cost additional
bandwidth. It just shuffles the information, and requires certain
information of the media packets to be retrieved in advance. In
current PeerStreaming, the media structure of the entire media is
retrieved in the streaming setup stage. This causes an additional
small delay in the startup of streaming2. An alternative implemen-
tation is to generate a media structure for each media segment (say
10 seconds), and only retrieve the media structure before the cor-
responding media segment is to be streamed in the near future.

3.3 Data Units
PeerStreaming breaks the media packet, the media header and

the media structure into fixed size data units of length L. The rea-
son of using fixed size data units is that the PeerStreaming client
and the serving peer may pre-allocate memory block of size L,
thus avoid the costly memory allocation operation during the
streaming process. Splitting the media packets (potentially very
large) into small fixed size data units also allows the PeerStream-
ing client to distribute the serving load to the peers with small
granularity, thus achieves better load balancing. A length P packet
(can be the media packet, the media header and the media struc-
ture) is split into ⎡P/L⎤ data units, where ⎡x⎤ is the ceiling function
that returns the smallest integer that is larger than or equal to x.
All data units are of fixed length L, except the last data unit of the
packet, which is of length P mod L.

The non-embedded coded media packet generates data units
that cannot be dropped during the network transmission. They are
designated as the essential data units. On the other hand, when an
embedded coded media packet is split into data units, only the
base layer data unit must be delivered, the rest data units may be
optionally dropped if the serving bandwidths are insufficient. We
designate such optional data units as the non-essential data units.

1 There is an additional form of embedded coded media – layer

coded media. In the layer coded media, the media content is
compressed into a base layer and multiple enhancement layers,
each of which occupies a separate channel. Due to space limita-
tion, we will not further discuss the layer coded media here.

2 With the exception of the full length movie, the delay is pretty
small. Assuming that the serving bandwidths are greater than or
equal to the media bitrate, and the media structure is 0.15% of
the media body, downloading the media structure of a 10 min-
ute clip causes an additional delay of less than 0.9s.

Let an embedded coded media packet last T seconds. Assuming
the media packet is split into a number of data units. To serve the
data unit at layer i, all data units below layer i must be served as
well. As a result, the serving bandwidth required to serve the data
unit at layer i is:
 Ri= (i+1)L/T, (1)
We call (1) the bitrate of the data unit. In PeerStreaming, the cli-
ent adjusts to changing serving bandwidths by dropping non-
essential data units with bitrate above the serving bandwidths.

All data units of a particular media, including the data units of
the media packet, the media header and the media structure, are
mapped into a unique ID space. We index the data units of the
media packets from 0x00000000 to 0xfdffffff, the data units of the
media header from 0xfe000000-0xfeffffff, and the data units of
the media structure from 0xff000000-0xffffffff. The data units of
PeerStreaming are illustrated in Figure 3. To obtain the data unit
IDs of the media header and the media structure, we need the
lengths of the media header and the media structure, which can be
considered as their mega-structure. To obtain the data unit IDs of
the media packet, we need the lengths of the media packet bit-
stream, which is included in the media structure.

3.4 Partial Caching of Media
An effective way to decrease the amount of storage resource re-

quired by the serving peer is to allow it to hold only a portion of
the media. Note that for serving purpose, the serving peer only
needs to hold the portion of the media in proportional to its serv-
ing bandwidth, which may be substantially less than its download
bandwidth that dictates the highest streaming bitrate that the node
may receive. The end-user node on the Internet tends to have an
imbalance between its upload bandwidth and its download band-
width. For the node on the ADSL/cable modem network, it is not
uncommon for the download bandwidth to be an order of magni-
tude higher than its upload bandwidth. Even for the node on the
campus/corporate network, the node may cap its serving band-
width so that its participation in the P2P activity may not affect
other mission-critical functions. Thus, holding portion of stream-
ing media may not interfere with its serving functionality.

Let the bitrate of the non-embedded coded media be R, let the
maximum serving bandwidth provided by the peer in a streaming
session be B, the peer node only needs to keep p portion of the
streaming media in its cache, where the value p is:
 p=max(1.0,B/R). (2)

As an example, let us assume that the media bitrate is twice the
serving bandwidth: R=2B. The serving peer only needs to keep
half of the streaming media in its storage. The reason is that the
peer alone can not serve the client at the full streaming bitrate. It

Figure 3 The data units of PeerStreaming.

can at most supply half the media, and thus only need to keep half
in cache. The rest must be supplied by the other serving nodes.

Combing equations (1) and (2), we can determine the amount
of media to keep for the embedded coded media as well. Recall
from Section 3.3, the media packet of the embedded coded media
is split into a number of data units with different bitrate. With R
being the bitrate of the data unit at a certain layer, the equation (2)
now gives the portion of the media to be kept for that data unit.
Shown in Figure 4, an embedded media packet is split into 8 data
units. The amount of media that needs to be cached for each data
unit (with L/T=0.5B) is shown in Figure 4.

When the storage resource of the serving peer is abundant, the
serving peer may elect to cache a larger portion of the media by
using a higher potential serving bandwidth B’ in equation (2). The
extra portion of the media cached enables the media to be served
in a choppy, yet high quality fashion. Assuming that all serving
peers elect to use a potential serving bandwidth B’ twice of its
actual serving bandwidth: B’=2B, the resultant amount of media
in the P2P network will be enough for the client to retrieve the
media at half the streaming rate. That is, assuming that the aggre-
gated serving bandwidths of all the available peers are larger than
R/2, the client should be able to first download half the media,
then continuously stream and playback the rest half. It can also
elect to download a Ts/2 segment of the media (with time Ts),
continuously stream another Ts/2 segment and playback the seg-
ment, then download and stream another segment. The streaming
media may thus be play back at rate R, albeit in a choppy fashion.

3.5 High Rate Erasure Coding
How should the peer keep p portion of the media? Or, since the

media is ultimately split into the data units, how should we keep p
portion of the data unit? A simple strategy is to separate each data
unit into k blocks. The peer keeping p portion of the media may
hold random ⎡k·p⎤ blocks, with ⎡x⎤ being the ceiling function
again. There is a weakness of such scheme. Even if there are much
more than k blocks available in the peer cluster, it is possible that
the cluster may lack a particular block j, thus renders the entire
data unit irretrievable. Besides, the client needs to locate each and
every distinct block from the peers, which complicates the design
of the protocol between the client and the peers.

To resolve the issues, we introduce the high rate erasure resil-
ient code. An erasure resilient code is a block error correction
code with parameter (n, k), where k is the number of original mes-
sages, and n is the number of coded messages. High rate erasure
resilient code satisfies the property that n is much larger than k,
thus the k original messages are expanded into a much larger
coded message space of n messages.

As a block error correction code, the operation of the high rate
erasure resilient code can be described through a matrix multipli-
cation over the Galois Field GF(p):

,

1

1

0

1

1

0

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

k
n

x

x
x

c

c
c

M
M

M G
 (3)

where p is the order of the Galois Field, {x0, x1, …, xk-1} are the
original messages, {c0, c1, …, cn-1} are the coded messages, G is
the generator matrix. We do not use equation (3) to generate all
the coded messages at once. Rather, the generator matrix G de-
fines a coded message space. When the client receives k coded
messages {c’0, c’1, …, c’k-1}, they can be represented as:

,

'

'
'

1

1

0

1

1

0

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−− k

k

k x

x
x

c

c
c

MM
G

 (4)

where Gk is a sub-generator matrix formed by the k rows of the
generator matrix G that correspond to the coded messages. If the
sub-generator matrix Gk has full rank k, the matrix Gk can be
inversed, and thus the original messages can be decoded.

In PeerStreaming, the high rate erasure resilient code used is a
modified Reed-Solomon code [11] on the Galois Field GF(216).
The number of the original messages k is 16. The size of the coded
message space n is 216=65536. Reed-Solomon code is a maximum
distance separable (MDS) code. Thus, any 16 rows of the generate
matrix G form a sub-generator matrix with full rank 16, which is
equivalent to say that the original messages can be recovered from
any 16 coded messages. The Reed-Solomon code of [11] can be
encoded and decoded efficiently. It achieves an encod-
ing/decoding throughput of 80Mbps on a 2.2 GHz Pentium com-
puter. This is equivalent to say that the erasure decoding of a
2Mbps media stream only consumes 2.5% of the CPU on that
machine.

With a high rate (n, k) erasure resilient code, we may assign
each peer node k keys in the coded message space of n, with each
key being the row index of the generator matrix G. The key as-
signment may be carried out by the server. If the number of peers
caching the media is smaller than n/k, it is possible to assign each
peer with a unique set of keys. As a result, we can guarantee that
each peer holds distinctive coded messages. The strategy requires
a central coordination node. An alternative strategy that does not
need a central coordination node is to let each peer choose k ran-
dom keys. If the number of peer nodes is greater than n/k or the
key is assigned with no central coordination node, certain peer
nodes may hold the same keys. Nevertheless, in any PeerStream-
ing session where the client is connected to m peers, m is usually
much smaller than n/k. As a result, the probability that two serv-
ing peers happen to hold the same key, and thus one key of one of
the peers is not useful, is small. Even if there is conflict, the client
can easily identify such conflict when it connects to the peer, and
invalidates one of the duplicated keys. The client thus does not
need to deal with the key conflict during the streaming process.

With (65536,16) Reed-Solomon code, each data unit is dis-
sected into 16 blocks. Using a set of pre-assigned keys, the peer
chooses to cache ⎡16p⎤ erasure encoded blocks, where p is a pa-
rameter calculated from (1) and (2). The keys assigned to the peer
as well as its maximum serving bandwidth B constitute the avail-
ability vector of the peer, as the client can determine how many
and what erasure coded blocks are held by the peer using the in-
formation. The client resolves the key conflict, if there is any,
when the peer is connected. During the streaming session, the

Figure 4 Partial caching of an embedded coded media packet
(split into 8 data units, with L/T=0.5B).

client can retrieve any k coded messages from any serving peer
nodes, and decode the associated data unit.

4. PEERSTREAMING OPERATIONS
We describe the PeerStreaming operations in details in this sec-

tion.

4.1 Locating Serving Peers
The first task that the PeerStreaming client performs is to obtain

the IP addresses and the listening ports of a list of neighbor serv-
ing peers that hold a complete or partial copy of the serving me-
dia. This list is also updated during the media streaming session.
There are in general three approaches that this list can be ob-
tained: 1) from the media server, 2) from one known serving peer,
3) using a distributed hash table (DHT) approach.

Currently, we assume that each serving peer keeps a list of the
servers and the peers that hold the streaming media, and the Peer-
Streaming client is able to connect to at least one server/peer that
holds such list. In the future, we plan to use a DHT approach,
such as the Microsoft Peer-to-Peer SDK, which may retrieve the
initial peer lists with neither the media server nor a known serving
peer online.

4.2 Decoding/Rendering Setup
 After securing the serving peer list, the PeerStreaming client

attempts to connect to each of the serving peer. Once connected,
the client retrieves the availability vector of the peer, and resolves
the key conflict, if there is any. Then, the client retrieves the
lengths of the media header and the media structure from one of
the peers. After both lengths are retrieved, the IDs of the data
units of the media header and media structure are constructed. The
media header and the media structure can then be retrieved in a
P2P fashion as shown in Section 4.6.

 Once the media header is retrieved, the client constructs a Di-
rectShow filter graph [13]. The network component of the Peer-
Streaming client is a DirectShow network source filter, whose
output is feed into the proper audio/video decoder DirectX media
object (DMO), which is further connected to the appropriate au-
dio/video rendering device. A sample DirectShow filter graph of a
PeerStreaming session is shown in Figure 5. In this example, the
streamed media is non-embedded coded. The audio bitstream is
compressed by WMA, and the video bitstream is compressed by
MPEG-4.

We implement the PeerStreaming client via the DirectShow
framework so that it may use the huge library of existing au-
dio/video encoders/decoders developed under DirectShow. With
DirectShow, the PeerStreaming system is capable of streaming,
decoding and rendering media coded by a variety of codecs, such
as MPEG 1/2/4, WMA/WMV, Indeo Video (in fact, any codec
that has a DirectShow decoder DMO component). DirectShow
also provides additional audio/video processing modules, such as
resolution/color space conversion, de-interlacing, so that the de-
coded audio/video may match the capacity of the audio/video
rendering device. DirectShow automatically handles the synchro-
nization of the audio/video track. Shown in Figure 5, the audio
renderer has a small clock attached to it. This indicates that the
audio stream holds the reference clock of the entire stream. When
playing the video, DirectShow makes sure that the system timing
clock of the video stream is doing its best to stay near the audio
stream. The lip sync is thus achieved. Finally, a DirectShow ap-
plication is inherently multithreaded. On a multiprocessor PC (or
one with Hyper-Threading enabled), the computation load of
various components of the PeerStreaming client, e.g., the network
component, the audio decoder, the video decoder, and the au-

dio/video rendering engine, can be distributed onto the multiple
processors. This greatly speeds up the execution of the client, and
allows more complex audio/video decoders to be used.

4.3 Network Link: the TCP Connection.
Most media streaming clients, such as the windows media

player or RealPlayer, use the real time transport protocol (RTP),
which is carried on top of UDP. The UDP/RTP protocol is chosen
for media streaming applications because: 1) the UDP protocol
supports IP multicast, which can be efficient in sending media to a
set of nodes on an IP multicast enabled network; 2) the UDP pro-
tocol does not have any re-transmission or data-rate management
functionality. As a result, the streaming server and client may
implement advanced packet delivery functionality, e.g., forward
error correction (FEC), to ensure the timely delivery of media
packets.

However, in PeerStreaming, we choose TCP connections as the
network links between the client and the serving peers. The reason
of our choice is as follows. First, IP multicast is not widely de-
ployed in the real world because of issues such as inter-domain
routing protocols, ISP business models (charging models), con-
gestion control along the distribution tree and so forth. Second,
like many commercial media players, the PeerStreaming client
incorporates a streaming media buffer (of 4s) to combat the net-
work anomalies such as jitter and congestion. With the presence
of the streaming media buffer many times larger than the round
trip time (RTT) between the client and the serving peer, we claim
that the TCP ARQ (automated repeated request) mechanism is
good enough for the delivery of the media packet.

There are three possible mechanisms to deal with the media
packet loss: FEC, the selective retransmission, and ARQ (always
retransmission). For the Internet channel, which can be considered
as an erasure channel with changing characteristics and unknown
packet loss ratio, a fixed FEC scheme either wastes bandwidth
(with too much protection) or fails to recover the lost packets
(with too little protection). It thus does not efficiently utilize the
bandwidth resource between the client and the peer. With a
streaming buffer many times larger than the RTT, thus plenty of
chances for retransmission, retransmission based error protection
is preferable over FEC. Our choices are now down to ARQ and
the selective retransmission, which will have an edge over ARQ
only if many packets are not selected to be retransmitted. For non-
embedded coded media, a lost packet usually leads to serious
playback degradation. Therefore, the lost packet is almost always
retransmitted. With the embedded coded media, a lost packet may
not prevent the media from playing back. However, the lost of a
random packet still causes a number of derivative packets to be
not useable. As a result, only the top most enhancement layer
packets may select not to be retransmitted. Compare with the se-
lective retransmission, ARQ always retransmits the packets once
they are requested; even they belong to the top most enhancement
layer. Nevertheless, the ARQ scheme can choose not to request
the top most enhancement layer packets of the following media
packets, thus achieve the same bandwidth usage and perceived
media playback quality with the selective transmission scheme.
Unless the network condition varies very quickly, the ARQ

Figure 5 The DirectShow filter graph of the PeerStreaming Client.

mechanism employed by the TCP protocol is sufficient to handle
the packet loss in media streaming.

Using TCP as the network links also brings a number of side
benefits into the development of PeerStreaming. There is no need
to deal explicitly with flow control, throughput estimation, con-
gestion control and avoidance, keep alive, etc.. They are all han-
dled by TCP. TCP also detects the peer going offline, and grace-
fully handles the shutdown of the connection link.

4.4 Streaming Bitrate Control
Non-embedded coded media is always streamed at the bitrate of

the media. However, the streaming bitrate of the embedded coded
media may vary during the streaming session. We set a streaming
bitrate Rrecv for each media packet, which is calculated by:
 Rraw= Th⋅(1+Trft–Tstaging)+Bstaging–Boutstanding, (5)
 Rfilter=(1-α)Rfilter+αRraw (6)
 Rrecv=min(Rmin, Rinst), (7)
where Th is the aggregated serving bandwidths,

Tstaging is the target staging buffer size (default 2.5s),
Trft is the desired request fulfillment time (RFT, default 1.0s),
Bstaging is the length of the received packets in the staging queue,
Boutstanding is the length of outstanding replies to be received,
Rmin is the base layer bitrate (with only essential data units),
α is a low pass control parameter.
The equations (5)-(7) control the streaming bitrate Rrecv to fol-

low the serving bandwidths Th and the staging and request queue
statuses (to be described in Section 4.6). Once the streaming bi-
trate is determined, the client only issue requests for the data units
with bitrate below the streaming bitrate Rrecv.

A more advanced strategy is to control the bitrate Rrecv by con-
sidering the distortion contribution of the data units as well. How-
ever, this requires that the client gains access to the distortion (or
the rate-distortion slope) of the data units, which must be included
in the media structure and sent to the client. Unlike existing in-
formation in the media structure, the distortion of the data units is
not needed in decoding and is thus an overhead. It is thus a trade-
off between the amount of overhead to be sent to the client versus
the rate-control accuracy. In current PeerStreaming system, we
use the rate only bitrate control strategy of (5).

4.5 PeerStreaming Requests and Replies
Let us examine the life of a PeerStreaming request and its reply.

Shown in Figure 6, the client generates the request and sends it
through the outbound TCP connection to a certain serving peer. In
network delivery, TCP may bundle the request with prior requests
issued to the same peer. If a prior request is lost in transmission,
TCP handles the retransmission of the request as well. After the
request packet is delivered, it is stored in the TCP receiving buffer
of the serving peer. The peer processes the request one at a time.
For each request, it reads the requested erasure coded blocks from
its disk storage, and sends the requested content back to the client.
In case the TCP socket from the serving peer to the client is
blocked, i.e., no more bandwidth is available, the serving peer will
block until the TCP connection opens up. The time interval be-
tween the request is issued by the client till its reply is received by
the client is defined as the request fulfillment time (RFT). Because
the request is usually much smaller than its reply, and the opera-
tions involved in processing the request, e.g., disk read, are trivial
compared with the network delivery time used to send the content
back, we may calculate the RFT of the request T’rft by:
 T’rft= (Bi,outstanding+Bcur)/Thi, (8)
where Thi is the serving bandwidth of peer i,

Bi,outstanding is the length of unreceived replies before the request,
Bcur is the length of the content requested.

RFT is determined by the serving bandwidth of the peer, size of
the request and size of the unreceived content from the peer.

Once the content packet arrives at the client, it is immediately
moved to a staging queue. In the staging queue, the erasure coded
blocks from multiple peers are combined and decoded into the
data units, which are further combined into the media packet.
Periodically, the PeerStreaming client removes the delivered me-
dia packets from the staging queue, and pushes them into the cor-
responding audio/video decoder DMO. After the media packets
are decompressed by the decoder, the uncompressed audio/video
data streams are sent to the audio/video rendering unit.

Except the uncompressed audio/video buffers, which are under
the control of the DirectShow filter graph and are not program-
mable, all the rest of the buffers in Figure 6 may be shrunk to
combat network anomalies such as the packet loss and jitter. In
current implementation, we set the size of the staging buffer to
Tstaging=2.5s, set the desired request fulfillment time to Trft=1.0s,
and set the compressed audio/video buffer to 0.5s. The total Peer-
Streaming buffer is thus around 4s.

Each request in PeerStreaming is formulated as the request of a
group of erasure coded blocks of a certain data unit. The erasure
coded block group is identifiable with the start block index and
the number of blocks requested. The data unit is identifiable
through a 32 bit ID. The request is thus in the form of:
 data unit ID [32], start_index [4], number_of_blocks[4], (9)
where the number in the bracket is the number of bits of each
component. Shown in (9), each request is 5 byte long. On the
other hand, the content requested measures from 128 to 2048
bytes (data unit length L=2048, k=16). As a result, the size of the
request is about 0.24%-3.91% of the reply. The amount of the
upload bandwidth spent by the PeerStreaming client to send the
request is thus very small compared to the content requested.

4.6 Request and Staging Queues: Throughput Control, Load
Balancing and Request Redirection

In PeerStreaming, the client maintains a staging queue to hold
the arrived erasure coded blocks, and to assemble them into the
data units and the media packets. It also maintains a request queue
for each of the serving peer to hold the unfulfilled request sent to

Request

fullfillment time Network

TCP sending buffer
(client)

TCP receiving buffer
(server)

TCP sending buffer
(server)

Staging queue
(client)

PeerStreaming Client
(DirectShow Network Source Filter)

Compressed
Audio

Compressed
Video

Audio
Decoder (DMO)

Video
Decoder (DMO)

Uncompressed
Audio

Uncompressed
Video

Audio
Rendering

Video
Rendering

Request queueReply queue

Figure 6 The life of a PeerStreaming request and its reply: the
buffers (in dashed box) and the processing modules (in solid box).

the peer. The request and staging queues are shown in Figure 7.
The staging queue is the main streaming buffer of the PeerStream-
ing client. All received contents are first deposited into the staging
queue. The request queues serve three purposes: 1) to perform
throughput control and load balancing, 2) to identify the reply
send back by the serving peer, and 3) to handle the disconnected
peer.

The first functionality of the request queue is to balance the
load among the serving peers. The request of the data unit is bro-
ken into the requests of multiple groups of erasure coded blocks,
with each group directed to one peer. The requests are generated
through the following operations. Upon requesting a data unit, the
client first checks the availability vector of the peers, and calcu-
lates the number of erasure coded blocks (ai) held by each peer for
the data unit. If the total number of blocks held by all peers online
is less than k, the data unit is irretrievable. If the irretrievable data
unit is non-essential, the client simply skips the data unit. If the
irretrievable data unit is essential, i.e., belongs to a non-embedded
coded media packet or the base layer of an embedded coded me-
dia packet, the client cannot proceed. It will wait for more peers to
come online to supply the missing blocks3. After ensuring that the
data unit is retrievable, i.e.,
 ∑iai ≥ k, (10)
we check the space available in the request queue of each peer. It
is desirable to maintain the RFT of each peer to be around a sys-
tem constant Trft, say 1.0s. Too short request queue may not effec-
tively combat the network anomalies from the client to the peer.
In case that the request packet is lost or delayed, the serving peer
may be left with nothing to send, which wastes its serving band-
width. Too long request queue may prevent the client from
quickly adapting to the changes, e.g., the disconnection of a peer.

3 An alternative strategy is to skip the entire media packet, and

marked it as missing to the following audio/video decoder
DMO. Nevertheless, if one essential data unit is irretrievable
from the peer cluster, it is very likely that more following essen-
tial data units will be irretrievable too. Therefore, it is better to
let the client wait.

With the request queues to all peers being the same length in
RFT, the capacity of the request queue becomes proportional to
its serving bandwidth: Thi⋅Trft. As an example, with Trft be 1.0s, a
peer with serving bandwidth 16kbps allows 2KB of unfulfilled
request pending in its request queue, while a peer with serving
bandwidth 1Mbps allows 128KB of unfulfilled request pending.
The number of erasure coded blocks that can be requested from a
particular peer is thus capped by the space left in its request
queue:
 ei = min(ai , (Thi⋅Trft - Bi,outstanding)/bk), (11)
where ei is the number of erasure coded blocks that can be re-
quested from the peer i, and bk is the size of the erasure coded
block. The equation (11) guarantees that the client never sends out
a request that has an expected RFT greater than Trft. If the client
cannot find enough current available erasure coded blocks, i.e.,
 ∑iei < k, (12)
it will wait until the request queue of the serving peer clears up.
Only when ∑iei ≥ k, the data unit requests are formed and sent to
the peers. The actual number of blocks (bi) requested from a cer-
tain peer is calculated by:

()⎩
⎨
⎧

⋅=
=∑

,,min
,

iii

i i

Thceb
kb (13)

where c is a constant that satisfies ∑ibi = k. In general, the proce-
dure outlined above allocates the serving load to each peer in
proportional to its serving bandwidth Thi (equation (13)). It also
makes sure that the client does not request more blocks than what
are possessed by the serving peer, and the RFT of the request does
not exceed Trft (equation (11)).

The second functionality of the request queue is to identify the
content send back by the serving peer. The PeerStreaming client
and the peer communicate through TCP, which preserves the
order of data transmission, and guarantees packet delivery. Fur-
thermore, the peer processes incoming requests in sequence. As a
result, there is no need to identify the content sent back. It must be
for the first request pending in the request queue.

Finally, the request queue is also used to redirect the requests of
the disconnected peers. Whenever a certain serving peer is dis-
connected from the client, the disconnection event is picked up by
TCP and is reported to the client. The client reassigns all unful-
filled requests pending in the queue of the disconnected peer to
the other peers. The procedure for reassigning the request is very
similar to the procedure of assigning the request in the first place.
The only exception is that the number of blocks already requested
from the peer must be considered in the request reassignment.

Whenever the erasure coded blocks arrive at the client, they are
immediately pulled away from the TCP socket. After pairing the
arriving content with the pending request, the fulfilled request is
removed from the request queue. The identified erasure coded
blocks are deposited into the staging queue. The size of the stag-
ing queue increases as a result. If the staging queue reaches a
predetermined size Tstaging, no further requests of the media pack-
ets/data units are sent. Once all erasure coded blocks of a certain
data unit has been received, the data unit is erasure decoded, and
is marked as ready. A media packet becomes ready if all its re-
quested data units are ready. Periodically, the audio/video decoder
removes the “ready” media packet from the staging queue. This
reduces the size of the staging queue, and may trigger the genera-
tion of new media packet requests.

4.7 PeerStreaming Operation: Complete Overview
As a summary, the PeerStreaming operation is as follows. First,

the client gets a list of nearby peers that hold the requested

Figure 7 The client maintains a staging queue for the arriving
data unit, and one request queue for each serving peer.

streaming media. It connects to each serving peer, obtains its
availability vector. It then retrieves the lengths of the media
header and the media structure from one of the peers. After both
lengths are retrieved, the client calculates the data unit IDs of the
media header and media structure, and retrieve them from the peer
cluster. Once the media header arrives, the client analyzes the
media header, and setups the audio/video decoder DMOs and the
rendering devices in the form of a DirectShow filter graph. It then
proceeds to the on going stage of media streaming. Using the
media structure, the data unit IDs of the media packets are calcu-
lated, and the media packets are retrieved one by one. For the
embedded coded media packets, the streaming bitrate is dynami-
cally adjusted based on the available serving bandwidths and the
status of the client queues. Periodically, the client updates the
serving peer list, and connects to potential new serving peers.
Currently, this is achieved by issuing a TCP connect() function
call every 4s for each potential serving peer. After the client estab-
lishes the connection to a new serving peer, it first retrieves the
availability vector. The new peer may then join the other active
peers. The client coordinates the peers, balances the serving load
of the peers according to their serving bandwidths and content
availability, and redirects unfulfilled requests of the disconnected
peer to the other active peers. The received erasure coded blocks
are deposited into the staging queue of the client, where the media
packet is assembled. The completely assembled media packets are
sent downstream to the audio/video decoder DMOs for decoding
and rendering. By controlling the length of the staging queue, the
request queue, and the compressed audio/video buffer, the client
maintains a streaming buffer of around 4s. The combined buffer is
used to combat network packet loss and jitter. The streaming op-
eration continues until the entire streaming media is received, or
the streaming operation is stopped by the user.

5. EXPERIMENTAL RESULTS
A working PeerStreaming system has been built. The Peer-

Streaming system currently supports a number of media format,
such as MPEG1/2/4, WMA/WMV, and the embedded audio
coder of [10]. It is currently capable of live P2P media streaming,
decoding and rendering in real-time.

In the first experiment, we test the capability of the PeerStream-
ing system in streaming non-embedded coded media. The test
clips are five movie trailers compressed at 2Mbps. The sizes of
the movie clips range from 31-49MB. They last around 2-3 min-
utes. We set up a PeerStreaming cluster, which consists of one
client and seven serving peers. One serving peer is behind an
ADSL link of 128kbps upload bandwidth. The rest peers are on
the Internet, with an upload cap that limits its serving bandwidth
to 16kbps – 1Mbps. The PeerStreaming client then retrieves the
media from the PeerStreaming serving cluster. During the stream-
ing session, we randomly shut down and restart the serving peers
and observe the behavior of the PeerStreaming client.

The PeerStreaming client is able to automatically detect the
peers that drop offline and the peers that come online. We observe
that as long as the aggregated serving bandwidths provided by the
serving peers exceed 2Mbps, which is the media bitrate of the test
clip, the clip plays smoothly. Whenever the serving bandwidths
drop below 2Mbps, the play of the movie clip becomes choppy,
though the client still strives to play the clip. With insufficient
serving bandwidths, the PeerStreaming client is unable to feed the
media packets faster enough to the audio/video decoder DMOs.
As a result, the audio/video rendering devices do not get uncom-
pressed audio/video data stream in a timely fashion. This leads to
the choppy playback. We notice that the choppy audio is much

more noticeable and annoying than the choppy video. As soon as
the new peers are online, and the serving bandwidths exceed
2Mbps, in a short time the movie playback becomes smooth
again.

In the second experiment, we stream an embedded coded audio
via the PeerStreaming solution. The audio, compressed via an
embedded audio codec of [10], is compressed all the way to loss-
less. Every media packet of the audio bitstream is independently
truncatable at any point during the storage and transmission stage.
During the streaming session, the PeerStreaming client selects the
streaming bitrate depending on the serving bandwidths and the
queue status. We observe that the audio playback is always
smooth, no matter what the serving bandwidths are. It is the audio
playback quality that changes with the serving bandwidths. When
coded to lossless, the compression bitrate of the audio is 700kbps.
Yet it may be streamed with serving bandwidths as low as 16kbps.
When the serving bandwidths vary between 16 to 128 kbps, there
is a noticeable change in audio playback quality with the increase
of the serving bandwidths. After the serving bandwidths are above
128kbps, the change in the perceived audio playback quality be-
comes minimum.

6. REFERENCES
[1] Nua Internet Surveys, http://www.nua.com/surveys/index.cgi
[2] Y. Chu, A. Ganjam, T. S. E. Ng, S. G. Rao, K. Sripanidkul-
chai, J. Zhan, and H. Zhang, "Early Experience with an Internet
Broadcast System Based on Overlay Multicast", Technical Report
CMU-CS-03-214, Carnegie Mellon University, December, 2003.
[3] H. Deshpande, M. Bawa and H. Garcia-Molina, “Streaming
Live Media over a Peer-to-Peer Network”, Stanford database
group technical report (2001-20), Aug. 2001.
[4] V. Padmanabhan and K. Sripanidkulchai, “The Case for
Cooperative Networking”, In Proc. of the First International
Workshop on Peer-to-Peer Systems (IPTPS), Cambridge, MA,
USA, March 2002.
[5] M. Castro, P. Druschel, A-M. Kermarrec, A. Nandi, A. Row-
stron and A. Singh, "SplitStream: High-bandwidth content distri-
bution in a cooperative environment", In Proc. of the Interna-
tional Workshop on Peer-to-Peer Systems, Berkeley, CA, Febru-
ary, 2003.
[6] X. Jiang, Y. Dong, D. Xu, B. Bhargava, "GnuStream: a P2P
Media streaming system prototype", In Proc of IEEE Intern. Conf.
on Multimedia and Expo(ICME 2003), Baltimore,MD, June 2003.
[7] M. Hefeeda, A. Habib, B. Botev, D. Xu, B. Bhargave,
“PROMISE: peer-to-peer media streaming using CollectCast”, in
ACM Multimedia 2003, Berkeley, CA, 2003, pp.45-54.
[8] Y. Cui, B. Li, K. Nahrstedt, “oStream: asynchronous stream-
ing multicast in application-layer overlay networks,” IEEE Jour-
nal of Selected Areas in Comm., vol. 22, no. 1, pp. 91-106, Jan.
2004.
[9] B. Gelfand, A.-H. Esfahanian, and M. Mutka, “An agent-
based approach to enforcing fairness in peer-to-peer distributed
file systems”, In Proc. 9th Int. Conf. on Parallel and Distributed
Systems, pp. 157-162, Dec. 2002, Taiwan, China.
[10] J. Li, "Embedded audio coding (EAC) with implicit psycho-
acoustic masking", ACM Multimedia 2002, Nice, France, Dec.1-6,
2001.
[11] J. Li, “The efficient implementation of a high rate Reed-
Solomon erasure resilient code”, in preparation for ICASSP’05.
[12] Windows XP Peer-to-Peer Software Development Kit.
[13] DirectX 9.0 Complete Software Development Kit (SDK).

