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Abstract

Subspace learning is a fundamenta approach for face
recognition and facial expression analysis. In this paper,
we propose a novel subspace analysis scheme for the
two applications. Unlike the traditional subspace
algorithms, such as PCA and LDA, in which an image
is treated as a vector; in our scheme, an image is
directly treated as a 2D matrix, and a new criterion is
proposed to infer two low dimensional coupled
subspaces that optimally reconstruct the original
matrices from row and column directions
collaboratively. An efficient approach, namely Coupled
Subspace Analysis (CSA), is applied to learn these two
subspaces in an iterative manner. Then we revea the
essence of each step in CSA and propose an approach
to select the dimension numbers for these two
subspaces with the given rate of information lost.
Moreover, we prove that PCA and the recently
proposed 2DPCA are just simplified special cases of
CSA and answer the unsolved theoretical problems in
2DPCA. The main contributions of this paper include:
1) for both face recognition and facial expression
analysis, we propose a novel image matrix based
scheme, and obtain a much lower dimensional face
representation for subsequent discriminant analysis; 2)
CSA effectively alleviates the curse of dimensionality
dilemma and small sample size problem existed in face
recognition problem; and 3) CSA clarifies the essence
of 2DPCA and explains the superiority of 2DPCA
compared with PCA. The extensive experiments on
both face recognition and facial expression analysis
demonstrate that CSA is superior to the classical
algorithms.

1. Introduction

Face recognition and facial expression analysis have
been two active research topics for decades, due to
their potential applications in human machine
interfaces, image/video analysis and et al. The face
recognition problem can be classified into three types,
i.e. verification, identification and watch list 20.
Verification is to solve the problem “am who | say |
am’, identification is for the question “who am I” and
watch list is the task of “are you looking for me”. More
specifically, for the verification task, a person claims
his identity to a face recognition system, and the

system then compares the presented biometric with the
stored biometric of the claimed identity and decides to
either accept or reject the claim. In the identification
task, an image of an unknown person is provided to a
system, and then the system compares the unknown
image to each image of known people in the database
to present a ranked listing of the top n “candidates’.
Watch list task is more difficult than the above two
tasks. Firstly face recognition system needs to
determine whether an individual is in the watch list;
and then if the individua isin the watch list, the system
should identify the individual. For facial expression
analysis, there are two different tasks. Facial Action
Unit Recognition and Prototypic Emotional Expression
Recognition 22. The former is to describe the subtle
change of facia components, while the latter is to
recognize a smal set of prototypic emotional
expressions, such as disgust, fear, joy, surprise, sadness
and anger.

Many algorithms have been proposed for face
recognition 12910151824 25262729 and facia
expression analysis 35671213 142223283031. The
related comprehensive surveys can be found in 411732.
Among al these agorithms, the linear subspace
learning algorithms, such as PCA, LDA and ICA, are
the most popular ones for both applications. For face
recognition problem, Turk et al. 24 applied Principal
Component Analysis (PCA/ Eigenface), Belhumeur et
al. 2 used Linear Discriminant Analysis (LDA), and
Bartlett et al. implemented Independent Component
Anaysis (ICA) 1. For facia expression analysis
problem, Lyons et al. 12 applied LDA, Buciu et al. 3
used ICA, X. Chen 5 applied variant LDA for
Prototypic Emotional Expression Recognition and
Donato et al. 6 applied PCA, LDA and ICA for Facia
Action Unit Recognition. PCA 24 applies Karhunen-
Loeve transformation to derive the most expressive
subspace for face representation and decorrelates the
input data using the second-order statistics, while ICA
1 minimizes both the second and higher-order
dependencies of the data. Unlike the unsupervised
algorithms PCA and ICA, LDA 2 is a supervised
learning algorithm and aims at pursuing a set of
features that can best distinguish different object
classes.

In al aforementioned subspace learning algorithms,
aface image matrix is typically transformed to a vector
by concatenating all row vectors, which usually results



in some serious problems in practical applications.
Firstly, theintrinsic spatial structure informationislost.
Secondly, the feature dimension is extremely high even
in moderate cases, which will result in the curse of the
dimensionality dilemma. Finaly, in many cases, the
available number of training samples is relatively very
small compared to the feature dimension, which will
make the algorithms suffer from the small sample size
problem.

Recently, Yang et al. 29 proposed an agorithm
called 2DPCA for face recognition, in which the image
covariance (scatter) matrix as in PCA/Eigenface is
directly computed from the image matrix
representations. However, as the authors stated in 29 ,
there are till three fundamental questions not solved
for 2DPCA: one is whether the eigenvalues have the
same characteristics as in Eigenface; another one is
why 2DPCA can outperform Eigenface; and the last
one is that it is still unclear how to directly reduce the
dimension of 2DPCA.

In this paper, we directly treat an image as a two
dimensional matrix and the image spatial structure
information is explicitly utilized for face recognition
and facial expression analysis. Firstly, we propose a
novel image reconstruction criterion to reconstruct the
origina image matrices with two low dimensional
coupled subspaces in the sense of least square error.
These two subspaces encode the row and column
information of the image matrices, respectively, which
is different from traditional algorithms that encode al
the information in one subspace. To obtain the optimal
solution, it needs to solve a biquadratic programming
problem with biquadratic constraint, yet there is no
closed-form solution. In this work, an iterative
approach, called Coupled Subspace Analysis (CSA), is
proposed to pursue the local optimum of the new
criterion. In each sub-step of CSA, the optimization
criterion is changed to an eigenvector decomposition
problem as in Eigenface. As analyzed later in the paper,
each sub-step of CSA isintrinsically a specialized PCA
in which the row/column vectors of the image matrices
are considered as the new objects to be analyzed and
the Principle Component Analysis is conducted on
these new vectors 2627.

Furthermore, we investigate PCA and 2DPCA from
a novel perspective and reveal the relationship among
PCA, 2DPCA and CSA. We prove that PCA and
2DPCA are just the simplified specia cases of CSA.
The proposed CSA has the advantages of PCA and
2DPCA algorithms and meanwhile throws away the
disadvantages of them. More specifically, CSA pursues
the low dimensional representation aiming at
reconstructing the original image set as PCA does, and
it can remove the intrinsic redundancies in row and
column vectors of the image. A much lower
dimensional image representation is acquired after

CSA, thus LDA can be used directly to further improve
the performance. In this way, CSA overcomes the
drawback of 2DPCA. As the object to be analyzed is
the row/column vector, and the object set in each step
is significantly enlarged, CSA avoids the curse of
dimensionality dilemma and the small sample size
problem. Consequently, we answer the three questions
mentioned in 2DPCA 29. For the first problem, as
2DPCA is a special case of CSA, its eigenvalues have
the same meaning as in PCA, i.e. the larger the
eigenvalue is, the more important its corresponding
eigenvector isin reconstructing the original image. For
the second problem, as 2DPCA can aso avoid the
curse of dimensionality dilemma and the small sample
size problem as CSA, it is superior to PCA. For the
third question, our proposed CSA is the method that
directly reduces the dimensions based on the image
matrix representations.

The remainder of this paper is organized as follows.
In Section 2, we introduce the coupled subspaces based
criterion for image reconstruction and present the
iterative agorithm for the optimization of the new
criterion. In Section 3, we study the relationship
between CSA and PCA, 2DPCA. In Section 4, the
exhaustive experiments on face recognition and facial
expression analysis are presented to demonstrate the
effectiveness of the proposed CSA agorithm. Finaly,
we conclude this paper in Section 5.

2. Coupled Subspaces Analysis

Before describing the Coupled Subspace Analysis
algorithm, we give some terminologies on matrix
operations. The inner  product of two

matrices Ac R"xR" and Be R"xR" is defined as
(AB)L D" > AB, andthe Frobenius norm of the

IAL=(AA)
Let X, e R"xR", i=1,...N be the training samples,

where N is the total number of training images. The
samples are assumed to be zero centered, i.e

N
i:lxi = Om><n .

matrix A is defined as

2.1. Optimal Matrix Reconstruction Criterion

Denote matrix Y e R™ xR" be the lower-dimensional
matrix representation of sample X; derived from two
projection matricesU e R"xR™andV € R"xR", i.e.
Y, =U"'X\V . Then, the optimal matrices U and V that

best reconstruct the origina matrices in the sense of
least square error should satisfy the following objective
function, i.e. Optimal Matrix Reconstruction Criterion:;

(U*V*) = ArgMind " JUYV = X; [} 6



2.2 Coupled Subspaces Analysis

The objective function in Eq. (1) is biquadratic and has
no closed-form solution. Therefore, we design an
iterative procedure to obtain the local optimal solution.

For givenU € R™xR™, the objective function of Eq.

(1) can be rewritten as
H V] ' 2
V*:Argl\/\l/lnzi” Xi W= X[l 2
where X’ =UU'X, . As proved in the following

theorem-1, the solution of Eq (2) is the eigenvectors of
the eigen-decomposition problem FF 'x = Ax with

F=[X) (L), X (M#), X7 (L9, Xy (M ] (3)
where X/’ (r,*) is the r-th row of the image matrix X
and F is the concatenated matrix of all dimension-
reduced samples X .

Similarly, for givenVe R"xR" , the optimization

Coupled Subspaces Analysis. Given the sample
st {X, e R"xR", i=1,...,N} and the fina reduced
dimensions(m’,n’) .
1. Initiization:U, =1, .
2. Fort=12,..., T, ,Do
a ForgivenU,,, X’ <U, U "X
F=[X]@#) e X (M), X5 (L %) ey X (M) ]
Compute the optimal projection matrixV, asthe

first m' leading eigenvectors of symmetry
matrix FF'.

b) ForgivenV,, X' < X,V
G =[XY (52,000 XY (5,0), XY (5,2), cc0r0. XY, (5,1)]
Compute the optimal projection matrix U, as

the first n' leading eigenvectors of symmetry
matrix GG'.
¢ If t>2and

”Uk_Uki1 ”F<m*g
VK-V < nxe
F

Go to step 2; else, continue.
3. Output the final coupled projection matrices

U=U,eR™ and V=V, e R™.
Figure 1. Coupled Subspaces Analysis Procedure

problemin Eg. (1) is changed to
U*=ArgMin}_ [JUUXY = X[k ()

where X' = XW'. And as proved in the following

theorem-1, the solution of Eq (4) is the eigenvectors of
the eigen-decomposition problem GG ' x = Ax with

G=[X) (*2),..., X (+,n), XJ (,2),...,. X} (x,n)] ~ (5)

where X (*,c) isthe c-th column of image matrix X" .
By iteratively optimizing the objective function with

respect to U and V, respectively, we can obtain a local

optimum of the solution. The whole procedure, namely
Coupled Subspace Analysis, islisted asin Figure 1.

2.2. Algorithmic Analysis and Justification

In this subsection, we discuss and reveal the essence of
each sub-step of our proposed Coupled Subspace
Analysis agorithm. First, we solve the problem in each
sub-step of CSA with the theorem-1.

Theorem 1. For givenU e R™xR™, the solution of
objective function (2) is the leading eigenvectors of the
symmetry matrix FF'; and for givenV e R"xR", the
solution of the objective function (4) is the leading
eigenvectors of the symmetry matrix GG'.

Proof. We take the case with givenVe R"xR" as
example to prove the theory and another case can be
proved in the same way. Denote

f(U)=> lUU' XY =X , then we have
fU)=2" UV XW = XW '+ XW - X, |}
= VU XW = XW ' + | XW = X, [
=2 VU XW = XW'[E +¢,
= VU X =X B +¢
=3 TH(X VU= X )UU XY =X )]+, ©
=3 Trl-X/'UU' XY + X' X/ ]+¢, )
=-Tr[U' (., XX/ W]+,
=-Tr(U'GG'U)+¢,

The second equality is obtained owing to the
orthogonality of the columns of the projection matrix V;
i.e. §S=UU'XW'-XW' lies in the sub-space
spanned by V ; while S =XW'-X, is the
reconstruction error, which is orthogonal to § . The

third equality is derived because the projection matrix
V is assumed known in this sub-step. The fifth equality

is obtained because ||A|E=Tr(AA)=Tr(A'A) |,
whereTr () is the trace of a matrix. The sixth equality
stands because U'U=1 . And the last equaity is
obtained as
LXK =20 Y XY (10X (%,.0)'
=Zivcxy(*,c)xiv(*,c)'= GG’

In the derivation,

)



C=C+Tr(Q X/ X"
= XW =X ] +Tr (Y, XY X
From Eg. (6), the optima U of function f(U) is the

first m' eigenvectors of the symmetry matrix GG'and
can be obtained by solving the eigenvector
decomposition problem as

GG'u=Au st. |JulF1 9
Thus, the solution of the objective function (4) is the
leading eigenvectors of the symmetry matrixGG'. B

®)

From theorem-1, we can easily obtain the following
corollary which reveas the essence of each sub-step of
CSA.

Corollary 1. For each sub-step in Coupled Subspace
Analysis, the optimal projection matrix is obtained
from the Singular Value Decomposition by taking each
row/column vector of each image matrix as a new
object to be analyzed.
Proof. Similarly to the proof of theorem-1, we take the
case with given Ve R"xR" as example to prove the
corollary. From theorem-1, the optimal projection
matrix in each sub-step is the leading eigenvector
of GG'. If we consider G in a different perspective,
each column of G is a column vector of the
reconstructed image X\ and G can be considered as a
new sample matrix with each column as an object.
Denote the Singular VVaue Decomposition of G as
G =Ws3sW, (10)

whereU and W are orthonormal matrices and Sis a
diagonal matrix. Then, we have

GG'W, =W,S? (11
which means that the leading column vectors in
Singular Value Decomposition matrix W, are the

solution for optimal projection matrix U. |

In the following, we introduce how to determine the
proper dimension numbers with given rate of
information loss as in theorem-2.

Theorem 2. (Dimensions Selection) For any given £ >0
(assumed less than 0.5), if the retained row and column
numbers in the first step are determined by making the
energy/information loss rate not larger than g, which

satisfies (g +2) &< ¢ , then the tota

information/energy loss rate for final results will not be
larger thane .

Proof. From the anaysis in theoreml,
FUV) =2 IUU X W =X W IE + XWX
. It is obvious that the information loss is not increased
in each iteration; therefore,

fU V)<Y U U XV, = XY+ XY, = X
. As the retained row and column numbers are

determined by satisfying the energy/information loss
rate which islessthan g, in thefirst step, then

FUV) <& XV IR +&20 11 T and
Zi I XV, = X |||2: = 5lzi I X |||2: , then,
2AIXMV I (6 +D) D X IR Then,

FUNV)<(g+2e) 11X I <eX 11X I}
Therefore, the rate of final lost information/energy is
not larger than £ . And the dimension can be

L A<aY A
i=n'+1 i=1

and ) A'<g> A, where 4 and A’ are the
i=1

i=m'+1

determined according to

eigenvaluesof FF' and GG'inthefirst step. |

3. Connections with PCA and 2DPCA

In this section, we discuss the relationship between the
proposed CSA and the PCA, 2DPCA. Figure 2
illustrates the flowchart of the CSA agorithm. Firstly,
as shown in Figure 2(a) and (b), the row vectors of the
image matrices are considered as the objects to be
analyzed, and Singular Vaue Decomposition is
performed to learn the subspace in the row direction V
with optimal reconstruction capability. Secondly, With
the matrix V, the original image matrices in Figure 2(a)
are projected to the low-dimensional matricesin Figure
2 (c) and then reconstructed, as in Figure 2 (d); and
then, as in Figure 2(d) and (€), the column vectors of
the image matrices are considered as the objects to be
analyzed, and similarly, Singular VValue Decomposition
is applied to derive the optimal subspace in the column
direction. Finaly, the Figure 2(f) shows the low-
dimensional matrices after the projection with U and V.
then we reconstruct the original images with U and V
again, and the algorithm continues to run until the
procedure goes on until converged. The derived
coupled subspaces collaboratively reconstruct the
original imagesin the sense of least square error.

2
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Figure 2. The flowchart of Coupled Subspaces
Analysis (a) the original image X, (b) all the rows
of the images are treated as the objects, i.e. F'(c)
the low-dimensional representation after the
projection with V (d) The reconstructed

images X" with V (€) all the columns of the images
are treated s the objects, i.e. G' (f) the low
dimensional representation Y, after the projection
with U and V.

3.1. Connection with PCA

In PCA, all the pixelsin one image are concatenated as
a vector as shown in Figure 3(a). The principa
components are the leading eigenvectors of the
covariance matrix. It can be proved that PCA is a
special case of CSA asfollows.

Claiml. Principa Component Analysis is a specia

case of Coupled Subspace Analysis algorithm with n=1.

Proof: As n=1, the optima V is 1, and the
matrix X, can be directly represented as a

vector x = X, . Here, we assume the data is not

centered and X =X are the mean vector; then the
objective of CSA is:

YUYV =X, - X) |
=Y UV (% =)= (% - %) |F

=-TrU" Y, (% - )(% -%)' U] +c, 23)
=-Tr(U'CU)+c,

O1
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(a) PCA (b) 2DPCA

Figure 3. Object representations of Eigenface and
2DPCA

where c, is a constant. Therefore, CSA with n=1 is
equal to the traditional PCA algorithm.

3.2. Connection with 2DPCA

2DPCA was recently proposed by Yang et. a 29. It
treats the input image as a matrix and replaces the
vector with matrix to compute the covariance matrix.

Cap = 30X, =M (X, ~W) (33)

However, there are three questions unsolved in
2DPCA 29: 1) what is the meaning of the largest
eigenvectors of the computed covariance matrix; 2)
why 2DPCA outperforms PCA; and 3) how to continue
reduce the dimensionality. Here, we systematically
answer these questions in the following claim 2.

Claim2. 2DPCA is a special case of Coupled Subspace
Analysis algorithm with fixed U=1.

Proof. Similar to the proof of claim 1, we assume the
data is not centered and X are the total mean matrix of
dl the samples,i.e. X = 34 3" X, . With given fixed
U =1, the objective function of CSA can be rewritten
as

2 MUYV = (X = X) [
=Zi (X — )?)VV —(X - >z) ”2
=-Tr[v Izi (Xi— )_()I(Xi - )_()V] +C,
=-Tr(U'C,,U)+c,
wherec, is a constant. That is, CSA with U=l is the
2DPCA algorithm. |

(44)



As the 2DPCA is a specia CSA dgorithm, the
leading eigenvectors are the optimal components to
reconstruct the original image matrix in the sense of
Frobenius norm, which is similar to the eigenvectors of
the PCA algorithm. On the other hand, 2DPCA shares
the some characteristics of CSA, and thus it can avoid
the curse of dimensionality and the small sample
problem. Therefore, 2DPCA has the potential of being
superior to PCA. Furthermore, the third question is
solved by using the proposed CSA to reduce the
dimensions from both row and column directions.

3.3. Discussions

As described in the above two subsections, PCA,
2DPCA are special cases of the proposed CSA
algorithm. More strictly speaking, they are simplified
versions of CSA, thusthey still have some limitations.

In PCA, al the pixelsin one image are concatenated
as a vector, which usually results in the well known
curse of dimensionality dilemma and the small sample
size problem. 2DPCA overcomes the above two
problems to some extent. However, as stated in 29, the
fundamental theory for why to do so and why it has the
superiority was not presented.

The proposed CSA is motivated from the optimal
matrix reconstruction criterion and its purpose is to
pursue two coupled subspaces to reconstruct the
original sample image matrices in the sense of
Frobenius norm. As a genera method, it reveas the
essence of the 2DPCA algorithm and clearly explains
why 2DPCA is able to outperform traditional PCA.
Moreover, compared with 2DPCA, CSA has the
following advantages: 1) CSA removes the redundant
information and noise in both row and column vector
directions; while 2DPCA only considers the row vector
direction; 2) CSA can derive a much lower dimensional
representation than 2DPCA, which makes the
following LDA convenient for further supervised
learning.

4. Experiments

In this section, we compare the proposed Coupled
Subspaces Analysis agorithm with other classical
subspace agorithms for face recognition and facial
expression anaysis. For face recognition, two
databases CMU PIE 21 and ORL 16 are used, and for
facial expression analysis, JAFFE database 11 is used.

4.1. Experiments for Face Recognition

In this sub-section, the CSA is evaluated in different
scenarios with pose, illumination and expression
variations as well as the small number of samples
problem. ORL database contains 400 images of 40
individuals. Some images were captured at different
times and have different variations including

expression (open or closed eyes, smiling or non-
smiling) and facial details (glasses or no glasses). The
images were taken with a tolerance for some tilting and
rotation of the face up to 20 degrees. All images are
grayscale and normalized to a resolution of 56*46
pixels. Five sample images of one individua in the
ORL database are displayed in Figure 4. Data set is
randomly partitioned into gallery and probe sets with
given sample numbers. We conducted three sets of
experiments with the training samples for each

individual varying from 4 to 2.

=\ r,,.
I a
Figure 4. Flvelmagesm the ORL database

The CMU PIE (Pose, Illumination and Expression)
database contains more than 40,000 facial images of 68
individuals. The images were acquired across different
poses, under variable illumination conditions and with
different facial expressions. In our experiments, we use
two sub-databases. In the first sub-database PIE-I, we
use five near frontal poses (C27, C05, C29, C09 and
CO07) and illumination 08 and 11. The flash 08 and 11
are placed near the center and the illumination can be
considered as the nearly fronta illumination. Due to
the data collection problem, we can only use 63
persons. The preprocessing steps include: 1) al ten
images are aligned by fixing the locations of two eyes,
and the images are resized to 64*64 pixels, 2)
Histogram equilibrium is applied to remove the
illumination affection. Figure 5 shows five examples of
one individual. Data set is randomly partitioned into
gallery and probe sets with given sample numbers. We
conducted three sets of experiments with the training
samples for each person varying from 4 to 2. In the
second sub-database PIE-Il, we choose the same five
poses and the illumination 08, 10, 11 and 13. The flash
10 is placed at the one-quarter left profile side and flash
13 is placed at the one-quarter right profile side, so this
database is more difficult. Thus there are 63 individuals,
and each individual has 20 images. The same
preprocessing strategies are applied. We aso
conducted three sets of experiments with the training
&amplesfor each nd|V|dual vary| ng from 6to 4.

gure 5. Five images in the PI E database

4.1.1.CSA vs. Eigenface and 2DPCA

In this part, we compare the performance of CSA with
Eigenface and 2DPCA on CMU PIE and ORL
databases. The top-one recognition results are shown in
the Table 1-3. From these results, we find that the



proposed CSA consistently outperforms Eigenface and
2DPCA.
Table 1. The top-one recognition rate of CSA,
Eigenface and 2DPCA on ORL database

G4/P6 G3/P7 G2/8
Eigenface 87.9% 84.6% 76.9%
2DPCA 91.7% 89.3% 81.9%
CSA 92.1% 90.7% 84.7%

Table 2. The top-one recognition rate of CSA,
Eigenface and 2DPCA on PIE_| database

G4/P6 G3/P7 G2/8

Eigenface 70.1% 70.1% 56.9%
2DPCA 78.0% 77.3% 62.5%
CSA 79.6% 79.1% 64.5%

Table 3. The top-one recognition rate of CSA,
Eigenface and 2DPCA on PIE-1I database

G4/P16 G5/P15 G6/14

Eigenface 43.4% 49.2% 49.2%
2DPCA 46.9% 52.1% 50.6%
CSA 60.0% 65.1% 63.2%

We also plot the top-one recognition rate of G2/8 in
ORL database with the number of selected
eigenvectors of Eigenface in Figure 6, 2DPCA in
Figure 7 and CSA in Figure 8.

4.1.2.CSA+LDA vs. Fisherface

We aso compare the performance of the proposed
CSA+LDA with traditional Fisherface. The top-one
recognition rates on ORL and CMU PIE database are
shown in Table 4-6. In Fisherface, the dimension in
PCA step is set asN—c and in LDA step it is set
asc—1. For fair comparison, we also report the result
in PCA+LDA by exploring al PCA dimension no
larger than N—c and LDA dimension no larger
thanc-1.
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Table 4. The top-one recognition rate of Fisherface,
PCA+LDA and CSA+LDA on ORL database

G4/P6 G3/P7 G2/8
Fisherface 87.9% 86.4% 71.9%
PCA+LDA 93.8% 91.4% 82.2%
CSA+LDA 97.1% 94.6% 84.1%

Table 5. The top-one recognition rate of Fisherface,
PCA+LDA and CSA+LDA on PIE_| database

G4/P6 G3/P7 G2/8
Fisherface 88.1% 82.1% 53.8%
PCA+LDA 93.4% 91.6% 71.6%
CSA+LDA 97.1% 98.2% 81.2%

Table 6. The top-one recognition rate of Fisherface,
PCA+LDA and CSA+LDA on PIE-II database

G4/P16 G5/P15 G6/14
Fisherface 76.9% 83.6% 88.9%
PCA+LDA 79.1% 84.7% 91.5%
CSA+LDA 85.9% 88.7% 94.1%

The above experiments demonstrate the following
interesting points: 1) although PCA, 2DPCA and CSA
are all unsupervised approaches, different image
representation may lead to different recognition
performance due to the curse of the dimension dilemma
and small sample size problem existed in face
recognition problem; 2) Coupled Subspaces Analysis




algorithm treats all row/column vectors of al the image
matrices, thus it aleviates the above two problems.
Moreover, CSA removes the redundancy among both
row and column vectors, thus it can obtain a much
lower dimensional matrix representation than 2DPCA;
and 3) LDA can be used directly after CSA, and
CSA+LDA shows much better performance compared
with the classical Fisherface algorithm.

4.2. Experiments for Facial
Recognition

In this part, we conduct the facial expression
recognition experiments on JAFFE 11 database. JAFFE
database contains 213 images of femae facial
expression. Ten expressers were asked to pose seven
different facia expressions (anger, disgust, fear,
happiness, neutral, sadness and surprise). In this
experiment, each image is resized to 64*64 according
to the locations of the two eyes. Histogram equilibrium
is also applied as the preprocessing method. As in 6,
the analysis is performed on the different images,
obtained by subtracting the average neutral images
from each of the other expression images, so we only
need to recognize six expressions. A similar leave-one-
out strategy is applied in the experiments, i.e. each
individual is in turn used for testing and other
individuals are used as training samples. The
experimental results for each individual are shown in
Table 7. We can find that, in most cases, the proposed
CSA is superior to PCA and 2DPCA agorithms; and
CSA+LDA consistently outperforms Fisherface and
also performs better than PCA+LDA with only one
exception.

Expression

Table 7. The top-one recognition rate of different

6 70.6% 82.4% 88.2%
7 72.2% 100.0% 88.9%
8 72.2% 83.3% 83.3%
9 100.0% 100.0% 100.0%

algorithms on JAFFE database
PCA 2DPCA CSA

0 65.0% 70.0% | 65.0%

1 52.6% 68.4% | 68.4%

2 63.2% 68.4% | 89.5%

3 47.1% 52.9% | 58.8%

4 61.1% 72.2% | 83.3%

5 44.4% 61.1% | 61.1%

6 64.7% 471% | 52.9%

7 38.9% 44.4% | 55.6%

8 38.9% 33.3% | 44.4%

9 63.2% 78.9% | 68.4%

Fisherface PCA+LDA CSA+LDA
0 70.0% 75.0% 85.0%
1 73.7% 79.0% 94.7%
2 89.5% 100.0% 100.0%
3 58.8% 76.5% 76.5%
4 72.2% 88.9% 94.4%
5 83.3% 83.3% 88.9%

5. Conclusions

In this paper, we have developed a novel algorithm,
called Coupled Subspaces Analysis (CSA), for face
recognition and facial expression anaysis. In this
algorithm, the images are directly treated as 2D
matrices, and an optimal matrix reconstruction criterion
is proposed to reconstruct the original image matrices
using two coupled subspaces. To acquire the solution,
an iterative procedure is presented to learn these two
subspaces. The proposed CSA effectively utilized the
intrinsic spatial structure information and overcomes
the two problems for face recognition, i.e. the curse of
dimensionality dilemma and small sample size problem.
Moreover, with a deep analysis of PCA and 2DPCA
algorithms, we proved that PCA and 2DPCA are the
simplified special cases of our proposed algorithm. To
the best of knowledge, CSA is the first work to study
the subspace learning problem to reconstruct the
original samples by integrating two coupled subspaces.
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