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Abstract 
Subspace learning is a fundamental approach for face 
recognition and facial expression analysis. In this paper, 
we propose a novel subspace analysis scheme for the 
two applications. Unlike the traditional subspace 
algorithms, such as PCA and LDA, in which an image 
is treated as a vector; in our scheme, an image is 
directly treated as a 2D matrix, and a new criterion is 
proposed to infer two low dimensional coupled 
subspaces that optimally reconstruct the original 
matrices from row and column directions 
collaboratively. An efficient approach, namely Coupled 
Subspace Analysis (CSA), is applied to learn these two 
subspaces in an iterative manner. Then we reveal the 
essence of each step in CSA and propose an approach 
to select the dimension numbers for these two 
subspaces with the given rate of information lost. 
Moreover, we prove that PCA and the recently 
proposed 2DPCA are just simplified special cases of 
CSA and answer the unsolved theoretical problems in 
2DPCA. The main contributions of this paper include: 
1) for both face recognition and facial expression 
analysis, we propose a novel image matrix based 
scheme, and obtain a much lower dimensional face 
representation for subsequent discriminant analysis; 2) 
CSA effectively alleviates the curse of dimensionality 
dilemma and small sample size problem existed in face 
recognition problem; and 3) CSA clarifies the essence 
of 2DPCA and explains the superiority of 2DPCA 
compared with PCA. The extensive experiments on 
both face recognition and facial expression analysis 
demonstrate that CSA is superior to the classical 
algorithms.  

1. Introduction 
Face recognition and facial expression analysis have 
been two active research topics for decades, due to 
their potential applications in human machine 
interfaces, image/video analysis and et al. The face 
recognition problem can be classified into three types, 
i.e. verification, identification and watch list 20. 
Verification is to solve the problem “am who I say I 
am”, identification is for the question “who am I” and 
watch list is the task of “are you looking for me”. More 
specifically, for the verification task, a person claims 
his identity to a face recognition system, and the 

system then compares the presented biometric with the 
stored biometric of the claimed identity and decides to 
either accept or reject the claim. In the identification 
task, an image of an unknown person is provided to a 
system, and then the system compares the unknown 
image to each image of known people in the database 
to present a ranked listing of the top n “candidates”. 
Watch list task is more difficult than the above two 
tasks. Firstly face recognition system needs to 
determine whether an individual is in the watch list; 
and then if the individual is in the watch list, the system 
should identify the individual. For facial expression 
analysis, there are two different tasks: Facial Action 
Unit Recognition and Prototypic Emotional Expression 
Recognition 22. The former is to describe the subtle 
change of facial components, while the latter is to 
recognize a small set of prototypic emotional 
expressions, such as disgust, fear, joy, surprise, sadness 
and anger. 

Many algorithms have been proposed for face 
recognition 12910151824 25262729 and facial 
expression analysis 35671213 142223283031. The 
related comprehensive surveys can be found in 411732. 
Among all these algorithms, the linear subspace 
learning algorithms, such as PCA, LDA and ICA, are 
the most popular ones for both applications. For face 
recognition problem, Turk et al. 24 applied Principal 
Component Analysis (PCA/ Eigenface), Belhumeur et 
al. 2 used Linear Discriminant Analysis (LDA), and 
Bartlett et al. implemented Independent Component 
Analysis (ICA) 1. For facial expression analysis 
problem, Lyons et al. 12 applied LDA, Buciu et al. 3 
used ICA, X. Chen 5 applied variant LDA for 
Prototypic Emotional Expression Recognition and 
Donato et al. 6 applied PCA, LDA and ICA for Facial 
Action Unit Recognition. PCA 24 applies Karhunen-
Loeve transformation to derive the most expressive 
subspace for face representation and decorrelates the 
input data using the second-order statistics, while ICA 
1 minimizes both the second and higher-order 
dependencies of the data. Unlike the unsupervised 
algorithms PCA and ICA, LDA 2 is a supervised 
learning algorithm and aims at pursuing a set of 
features that can best distinguish different object 
classes. 

In all aforementioned subspace learning algorithms, 
a face image matrix is typically transformed to a vector 
by concatenating all row vectors, which usually results 



in some serious problems in practical applications. 
Firstly, the intrinsic spatial structure information is lost. 
Secondly, the feature dimension is extremely high even 
in moderate cases, which will result in the curse of the 
dimensionality dilemma. Finally, in many cases, the 
available number of training samples is relatively very 
small compared to the feature dimension, which will 
make the algorithms suffer from the small sample size 
problem. 

Recently, Yang et al. 29 proposed an algorithm 
called 2DPCA for face recognition, in which the image 
covariance (scatter) matrix as in PCA/Eigenface is 
directly computed from the image matrix 
representations. However, as the authors stated in 29 , 
there are still three fundamental questions not solved 
for 2DPCA: one is whether the eigenvalues have the 
same characteristics as in Eigenface; another one is 
why 2DPCA can outperform Eigenface; and the last 
one is that it is still unclear how to directly reduce the 
dimension of 2DPCA. 

In this paper, we directly treat an image as a two 
dimensional matrix and the image spatial structure 
information is explicitly utilized for face recognition 
and facial expression analysis. Firstly, we propose a 
novel image reconstruction criterion to reconstruct the 
original image matrices with two low dimensional 
coupled subspaces in the sense of least square error. 
These two subspaces encode the row and column 
information of the image matrices, respectively, which 
is different from traditional algorithms that encode all 
the information in one subspace. To obtain the optimal 
solution, it needs to solve a biquadratic programming 
problem with biquadratic constraint, yet there is no 
closed-form solution. In this work, an iterative 
approach, called Coupled Subspace Analysis (CSA), is 
proposed to pursue the local optimum of the new 
criterion. In each sub-step of CSA, the optimization 
criterion is changed to an eigenvector decomposition 
problem as in Eigenface. As analyzed later in the paper, 
each sub-step of CSA is intrinsically a specialized PCA 
in which the row/column vectors of the image matrices 
are considered as the new objects to be analyzed and 
the Principle Component Analysis is conducted on 
these new vectors 2627. 

Furthermore, we investigate PCA and 2DPCA from 
a novel perspective and reveal the relationship among 
PCA, 2DPCA and CSA. We prove that PCA and 
2DPCA are just the simplified special cases of CSA. 
The proposed CSA has the advantages of PCA and 
2DPCA algorithms and meanwhile throws away the 
disadvantages of them. More specifically, CSA pursues 
the low dimensional representation aiming at 
reconstructing the original image set as PCA does, and 
it can remove the intrinsic redundancies in row and 
column vectors of the image. A much lower 
dimensional image representation is acquired after 

CSA, thus LDA can be used directly to further improve 
the performance. In this way, CSA overcomes the 
drawback of 2DPCA. As the object to be analyzed is 
the row/column vector, and the object set in each step 
is significantly enlarged, CSA avoids the curse of 
dimensionality dilemma and the small sample size 
problem. Consequently, we answer the three questions 
mentioned in 2DPCA 29. For the first problem, as 
2DPCA is a special case of CSA, its eigenvalues have 
the same meaning as in PCA, i.e. the larger the 
eigenvalue is, the more important its corresponding 
eigenvector is in reconstructing the original image.  For 
the second problem, as 2DPCA can also avoid the 
curse of dimensionality dilemma and the small sample 
size problem as CSA, it is superior to PCA. For the 
third question, our proposed CSA is the method that 
directly reduces the dimensions based on the image 
matrix representations. 

The remainder of this paper is organized as follows. 
In Section 2, we introduce the coupled subspaces based 
criterion for image reconstruction and present the 
iterative algorithm for the optimization of the new 
criterion. In Section 3, we study the relationship 
between CSA and PCA, 2DPCA. In Section 4, the 
exhaustive experiments on face recognition and facial 
expression analysis are presented to demonstrate the 
effectiveness of the proposed CSA algorithm. Finally, 
we conclude this paper in Section 5. 

2. Coupled Subspaces Analysis 
Before describing the Coupled Subspace Analysis 
algorithm, we give some terminologies on matrix 
operations. The inner product of two 
matrices m nA∈ ×R R and m nB ∈ ×R R  is defined as 

1 1
,

m n

ij iji j
A B A B

= =∑ ∑  and the Frobenius norm of the 

matrix A  is defined as || || ,FA A A= . 

Let m n
iX ∈ ×R R , 1,...i N= be the training samples, 

where N is the total number of training images. The 
samples are assumed to be zero centered, i.e. 

1
0

N

i m ni
X ×=

=∑ . 

2.1. Optimal Matrix Reconstruction Criterion 

Denote matrix ' 'm n
iY ∈ ×R R  be the lower-dimensional 

matrix representation of sample iX derived from two 

projection matrices 'm mU ∈ ×R R and 'n nV ∈ ×R R , i.e. 
'i iY U X V= . Then, the optimal matrices U and V that 

best reconstruct the original matrices in the sense of 
least square error should satisfy the following objective 
function, i.e. Optimal Matrix Reconstruction Criterion:  

2

, 
( *, *) || ' ||i i FiU V
U V Arg Min UYV X= −∑  (1) 



2.2 Coupled Subspaces Analysis 
The objective function in Eq. (1) is biquadratic and has 
no closed-form solution. Therefore, we design an 
iterative procedure to obtain the local optimal solution. 

For given 'm mU ∈ ×R R , the objective function of Eq. 
(1) can be rewritten as  

2* || ' ||U
i i FiV

V Arg Min X VV X= −∑  (2) 

where 'U
i iX UU X= . As proved in the following 

theorem-1, the solution of Eq (2) is the eigenvectors of 
the eigen-decomposition problem 'FF x xλ= with  

' ' ' '
1 1 2[ (1, ) ,..., ( , ) , (1, ) ,...,... ( , ) ]U U U U

NF X X m X X m= ∗ ∗ ∗ ∗  (3) 

where ( , )U
iX r ∗  is the r-th row of the image matrix U

iX  

and F is the concatenated matrix of all dimension-
reduced samples U

iX . 

Similarly, for given 'n nV ∈ ×R R , the optimization 

problem in Eq. (1) is changed to  
2* || ' ||V

i i FiU
U Arg Min UU X X= −∑  (4) 

where 'V
i iX X VV= . And as proved in the following 

theorem-1, the solution of Eq (4) is the eigenvectors of 
the eigen-decomposition problem 'GG x xλ= with 

1 1 2[ ( ,1),..., ( , ), ( ,1),...,... ( , )]V V V V
NG X X n X X n= ∗ ∗ ∗ ∗  (5) 

where ( , )V
iX c∗ is the c-th column of image matrix V

iX .  

   By iteratively optimizing the objective function with 
respect to U and V, respectively, we can obtain a local 
optimum of the solution. The whole procedure, namely 
Coupled Subspace Analysis, is listed as in Figure 1. 

2.2. Algorithmic Analysis and Justification 
In this subsection, we discuss and reveal the essence of 
each sub-step of our proposed Coupled Subspace 
Analysis algorithm. First, we solve the problem in each 
sub-step of CSA with the theorem-1. 
Theorem 1. For given 'm mU ∈ ×R R , the solution of 
objective function (2) is the leading eigenvectors of the 
symmetry matrix 'FF ; and for given 'n nV ∈ ×R R , the 
solution of the objective function (4) is the leading 
eigenvectors of the symmetry matrix 'GG . 

Proof. We take the case with given 'n nV ∈ ×R R as 
example to prove the theory and another case can be 
proved in the same way. Denote 

2( ) || ' ||V
i i Fi

f U UU X X= −∑ , then we have 
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The second equality is obtained owing to the 
orthogonality of the columns of the projection matrix V; 
i.e. 1 ' ' 'i iS UU X VV X VV= − lies in the sub-space 

spanned by V ; while 2 'i iS X VV X= − is the 

reconstruction error, which is orthogonal to 1S . The 

third equality is derived because the projection matrix 
V is assumed known in this sub-step. The fifth equality 
is obtained because 2|| || ( ') ( ' )FA Tr AA Tr A A= = , 

where ( )Tr ⋅ is the trace of a matrix. The sixth equality 

stands because 'U U I= . And the last equality is 

obtained as 

,

' ( , ) ( , ) '

( , ) ( , ) ' '

V V V V
i i i ii i c

V V
i ii c

X X X c X c

X c X c GG

= ∗ ∗

= ∗ ∗ =
∑ ∑ ∑
∑

 (7) 

In the derivation, 

 
Coupled Subspaces Analysis: Given the sample 
set { ,  =1,..., }m n

iX i N∈ ×R R and the final reduced 

dimensions ( ', ')m n .  

1. Initialization: 0 mU I= . 

2. For t=1,2,…, xmaT , Do 

a) For given 1tU − , 1 1 'U
i t t iX U U X− −⇐  

' ' ' '
1 1 2[ (1, ) ,..., ( , ) , (1, ) ,...,... ( , ) ]U U U U

NF X X m X X m= ∗ ∗ ∗ ∗
Compute the optimal projection matrix tV as the 

first 'm leading eigenvectors of symmetry 
matrix 'FF . 

b) For given tV , 'V
i i t tX X VV⇐  

1 1 2[ ( ,1),..., ( , ), ( ,1),...,... ( , )]V V V V
NG X X n X X n= ∗ ∗ ∗ ∗  

Compute the optimal projection matrix tU as 

the first 'n leading eigenvectors of symmetry 
matrix 'GG . 

c) If  t > 2 and  

     
1

1

|| ||

|| ||

k k
F

k k
F

U U m

V V n

ε
ε

−

−

− < ∗
− < ∗

 

Go to step 2; else, continue. 
3. Output the final coupled projection matrices 

'm m
tU U ×= ∈R  and 'n n

tV V ×= ∈R . 

Figure 1. Coupled Subspaces Analysis Procedure 
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2
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i i F i ii
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From Eq. (6), the optimal U of function ( )f U is the 

first 'm eigenvectors of the symmetry matrix 'GG and 
can be obtained by solving the eigenvector 
decomposition problem as 

' . . || || 1GG u u s t uλ= =  (9) 
Thus, the solution of the objective function (4) is the 
leading eigenvectors of the symmetry matrix 'GG .    ■ 

 
From theorem-1, we can easily obtain the following 

corollary which reveals the essence of each sub-step of 
CSA. 
Corollary 1. For each sub-step in Coupled Subspace 
Analysis, the optimal projection matrix is obtained 
from the Singular Value Decomposition by taking each 
row/column vector of each image matrix as a new 
object to be analyzed. 
Proof. Similarly to the proof of theorem-1, we take the 
case with given 'n nV ∈ ×R R as example to prove the 
corollary. From theorem-1, the optimal projection 
matrix in each sub-step is the leading eigenvector 
of 'GG . If we consider G in a different perspective, 
each column of G is a column vector of the 
reconstructed image V

iX and G can be considered as a 

new sample matrix with each column as an object. 
Denote the Singular Value Decomposition of G as 

1 2G W SW=  (10) 
where U and W are orthonormal matrices and S is a 
diagonal matrix. Then, we have 

2
1 1'GG W W S=  (11) 

which means that the leading column vectors in 
Singular Value Decomposition matrix 1W are the 

solution for optimal projection matrix U.                    ■ 
  

 In the following, we introduce how to determine the 
proper dimension numbers with given rate of 
information loss as in theorem-2. 
Theorem 2. (Dimensions Selection) For any given ε >0 
(assumed less than 0.5), if the retained row and column 
numbers in the first step are determined by making the 
energy/information loss rate not larger than 1ε which 

satisfies ( 1ε +2) 1ε ≤ ε , then the total 

information/energy loss rate for final results will not be 
larger than ε . 

Proof. From the analysis in theorem-1, 
2 2( , ) || ' ' ' || || ' ||i i F i i Fi

f U V UU X VV X VV X VV X= − + −∑
. It is obvious that the information loss is not increased 
in each iteration; therefore,  

2 2
1 1 1 1 1 1 1 1( , ) || ' ' ' || || ' ||i i F i i Fi

f U V U U X VV X V V X V V X≤ − + −∑
. As the retained row and column numbers are 
determined by satisfying the energy/information loss 
rate which is less than 1ε  in the first step, then 

2 2
1 1 1 1( , ) || ' || || ||i F i Fi i

f U V X VV Xε ε≤ +∑ ∑ and
2 2

1 1 1|| ' || || ||i i F i Fi i
X V V X Xε− ≤∑ ∑ , then,     

2
1 1 1|| ' || ( 1) || ||i i Fi i

X VV Xε≤ +∑ ∑ . Then, 
2 2

1 1( , ) ( 2) || || || ||i F i Fi i
f U V X Xε ε ε≤ + ≤∑ ∑  . 

Therefore, the rate of final lost information/energy is 
not larger than ε . And the dimension can be 

determined according to 1
' 1 1

n n
v v
i i

i n i

λ ε λ
= + =

≤∑ ∑   

and 1
' 1 1

m m
u u
i i

i m i

λ ε λ
= + =

≤∑ ∑ , where u
iλ and v

iλ  are the 

eigenvalues of 'FF  and 'GG in the first step.            ■ 

3. Connections with PCA and 2DPCA  
In this section, we discuss the relationship between the 
proposed CSA and the PCA, 2DPCA. Figure 2 
illustrates the flowchart of the CSA algorithm. Firstly, 
as shown in Figure 2(a) and (b), the row vectors of the 
image matrices are considered as the objects to be 
analyzed, and Singular Value Decomposition is 
performed to learn the subspace in the row direction V 
with optimal reconstruction capability. Secondly, With 
the matrix V, the original image matrices in Figure 2(a) 
are projected to the low-dimensional matrices in Figure 
2 (c) and then reconstructed, as in Figure 2 (d); and 
then, as in Figure 2(d) and (e), the column vectors of 
the image matrices are considered as the objects to be 
analyzed, and similarly, Singular Value Decomposition 
is applied to derive the optimal subspace in the column 
direction. Finally, the Figure 2(f) shows the low-
dimensional matrices after the projection with U and V. 
then we reconstruct the original images with U and V 
again, and the algorithm continues to run until the 
procedure goes on until converged. The derived 
coupled subspaces collaboratively reconstruct the 
original images in the sense of least square error.  



3.1. Connection with PCA 
In PCA, all the pixels in one image are concatenated as 
a vector as shown in Figure 3(a). The principal 
components are the leading eigenvectors of the 
covariance matrix. It can be proved that PCA is a 
special case of CSA as follows. 
Claim1. Principal Component Analysis is a special 
case of Coupled Subspace Analysis algorithm with n=1. 
Proof: As n=1, the optimal V is 1, and the 
matrix iX can be directly represented as a 

vector i ix X= . Here, we assume the data is not 

centered and X x= are the mean vector; then the 
objective of CSA is:   

2

2

3

3

|| ' ( ) ||

|| '( ) ( ) ||

[ ' ( )( ) ' ]

( ' )

i i Fi

i ii

i ii

UYV X X

UU x x x x

Tr U x x x x U c

Tr U CU c

− −

= − − −

= − − − +

= − +

∑
∑

∑

 

(23) 

where 3c is a constant. Therefore, CSA with n=1 is 

equal to the traditional PCA algorithm. 

3.2. Connection with 2DPCA 
2DPCA was recently proposed by Yang et. al 29. It 
treats the input image as a matrix and replaces the 
vector with matrix to compute the covariance matrix.  
 

2
1

1
( ) ( )

N
T

D i i
i

C X M X M
N =

= − −∑  (33) 

   However, there are three questions unsolved in 
2DPCA 29: 1) what is the meaning of the largest 
eigenvectors of the computed covariance matrix; 2) 
why 2DPCA outperforms PCA; and 3) how to continue 
reduce the dimensionality. Here, we systematically 
answer these questions in the following claim 2. 

 
Claim2. 2DPCA is a special case of Coupled Subspace 
Analysis algorithm with fixed U= I.  
Proof. Similar to the proof of claim 1, we assume the 
data is not centered and X are the total mean matrix of 

all the samples, i.e. 
1

1 N

ii
X XN =

= ∑ . With given fixed 

U = I, the objective function of CSA can be rewritten 
as 

2

2

4

2 4

|| ' ( ) ||

|| ( ) ' ( ) ||

[ ' ( ) '( ) ]

( ' )

i i Fi

i ii

i ii

D

UYV X X

X X VV X X

Tr V X X X X V c

Tr U C U c

− −

= − − −

= − − − +

= − +

∑
∑

∑
 (44) 

where 4c is a constant. That is, CSA with U=I is the 

2DPCA algorithm.                               ■ 

 Figure 2. The flowchart of Coupled Subspaces 
Analysis (a) the original image iX (b) all the rows 
of the images are treated as the objects, i.e. 'F (c) 
the low-dimensional representation after the 
projection with V (d) The reconstructed 
images V

iX with V (e) all the columns of the images 

are treated s the objects, i.e. 'G (f) the low 
dimensional representation iY after the projection 

with U and V.  
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Figure 3. Object representations of Eigenface and 
2DPCA 



As the 2DPCA is a special CSA algorithm, the 
leading eigenvectors are the optimal components to 
reconstruct the original image matrix in the sense of 
Frobenius norm, which is similar to the eigenvectors of 
the PCA algorithm. On the other hand, 2DPCA shares 
the some characteristics of CSA, and thus it can avoid 
the curse of dimensionality and the small sample 
problem. Therefore, 2DPCA has the potential of being 
superior to PCA. Furthermore, the third question is 
solved by using the proposed CSA to reduce the 
dimensions from both row and column directions. 

3.3. Discussions 
As described in the above two subsections, PCA, 
2DPCA are special cases of the proposed CSA 
algorithm. More strictly speaking, they are simplified 
versions of CSA, thus they still have some limitations. 

In PCA, all the pixels in one image are concatenated 
as a vector, which usually results in the well known 
curse of dimensionality dilemma and the small sample 
size problem. 2DPCA overcomes the above two 
problems to some extent. However, as stated in 29, the 
fundamental theory for why to do so and why it has the 
superiority was not presented. 

The proposed CSA is motivated from the optimal 
matrix reconstruction criterion and its purpose is to 
pursue two coupled subspaces to reconstruct the 
original sample image matrices in the sense of 
Frobenius norm. As a general method, it reveals the 
essence of the 2DPCA algorithm and clearly explains 
why 2DPCA is able to outperform traditional PCA. 
Moreover, compared with 2DPCA, CSA has the 
following advantages: 1) CSA removes the redundant 
information and noise in both row and column vector 
directions; while 2DPCA only considers the row vector 
direction; 2) CSA can derive a much lower dimensional 
representation than 2DPCA, which makes the 
following LDA convenient for further supervised 
learning. 

4. Experiments 
In this section, we compare the proposed Coupled 
Subspaces Analysis algorithm with other classical 
subspace algorithms for face recognition and facial 
expression analysis. For face recognition, two 
databases CMU PIE 21 and ORL 16 are used, and for 
facial expression analysis, JAFFE database 11 is used. 

4.1. Experiments for Face Recognition 
In this sub-section, the CSA is evaluated in different 

scenarios with pose, illumination and expression 
variations as well as the small number of samples 
problem. ORL database contains 400 images of 40 
individuals. Some images were captured at different 
times and have different variations including 

expression (open or closed eyes, smiling or non-
smiling) and facial details (glasses or no glasses). The 
images were taken with a tolerance for some tilting and 
rotation of the face up to 20 degrees. All images are 
grayscale and normalized to a resolution of 56*46 
pixels. Five sample images of one individual in the 
ORL database are displayed in Figure 4. Data set is 
randomly partitioned into gallery and probe sets with 
given sample numbers. We conducted three sets of 
experiments with the training samples for each 
individual varying from 4 to 2. 

     
Figure 4. Five images in the ORL database 

The CMU PIE (Pose, Illumination and Expression) 
database contains more than 40,000 facial images of 68 
individuals. The images were acquired across different 
poses, under variable illumination conditions and with 
different facial expressions. In our experiments, we use 
two sub-databases. In the first sub-database PIE-I, we 
use five near frontal poses (C27, C05, C29, C09 and 
C07) and illumination 08 and 11. The flash 08 and 11 
are placed near the center and the illumination can be 
considered as the nearly frontal illumination. Due to 
the data collection problem, we can only use 63 
persons. The preprocessing steps include: 1) all ten 
images are aligned by fixing the locations of two eyes, 
and the images are resized to 64*64 pixels; 2) 
Histogram equilibrium is applied to remove the 
illumination affection. Figure 5 shows five examples of 
one individual. Data set is randomly partitioned into 
gallery and probe sets with given sample numbers. We 
conducted three sets of experiments with the training 
samples for each person varying from 4 to 2. In the 
second sub-database PIE-II, we choose the same five 
poses and the illumination 08, 10, 11 and 13. The flash 
10 is placed at the one-quarter left profile side and flash 
13 is placed at the one-quarter right profile side, so this 
database is more difficult. Thus there are 63 individuals, 
and each individual has 20 images. The same 
preprocessing strategies are applied. We also 
conducted three sets of experiments with the training 
samples for each individual varying from 6 to 4. 

 
Figure 5. Five images in the PIE database 

4.1.1. CSA vs. Eigenface and 2DPCA  
In this part, we compare the performance of CSA with 
Eigenface and 2DPCA on CMU PIE and ORL 
databases. The top-one recognition results are shown in 
the Table 1-3.  From these results, we find that the 



proposed CSA consistently outperforms Eigenface and 
2DPCA. 

Table 1. The top-one recognition rate of CSA, 
Eigenface and 2DPCA on ORL database 

 G4/P6 G3/P7 G2/8 
Eigenface 87.9% 84.6%  76.9%  
2DPCA 91.7%  89.3%  81.9%  

CSA 92.1%  90.7%  84.7%  
  Table 2. The top-one recognition rate of CSA, 

Eigenface and 2DPCA on PIE_I database 
 G4/P6 G3/P7 G2/8 

Eigenface 70.1%  70.1%  56.9%  
2DPCA 78.0%  77.3%  62.5%  

CSA 79.6%  79.1%  64.5%  
Table 3. The top-one recognition rate of CSA, 

Eigenface and 2DPCA on PIE-II database 
 G4/P16 G5/P15 G6/14 

Eigenface 43.4% 49.2% 49.2% 
2DPCA 46.9% 52.1% 50.6% 

CSA 60.0% 65.1% 63.2% 
We also plot the top-one recognition rate of G2/8 in 

ORL database with the number of selected 
eigenvectors of Eigenface in Figure 6, 2DPCA in 
Figure 7 and CSA in Figure 8. 

4.1.2. CSA+LDA vs. Fisherface 

We also compare the performance of the proposed 
CSA+LDA with traditional Fisherface. The top-one 
recognition rates on ORL and CMU PIE database are 
shown in Table 4-6. In Fisherface, the dimension in 
PCA step is set as N c− and in LDA step it is set 
as 1c − . For fair comparison, we also report the result 
in PCA+LDA by exploring all PCA dimension no 
larger than N c− and LDA dimension no larger 
than 1c − .  

 

 
Figure 6. The top-one recognition rate of 

Eigenface with different number of 
selected eigenvectors 

 
Figure 7. The performance of 2DPCA 

with different number of selected 
eigenvectors 

 

 
Figure 8. The performance of CSA with 

different number of selected eigenvectors 
 

Table 4. The top-one recognition rate of Fisherface, 
PCA+LDA and CSA+LDA on ORL database 

 G4/P6 G3/P7 G2/8 
Fisherface 87.9% 86.4% 71.9% 
PCA+LDA 93.8% 91.4% 82.2% 
CSA+LDA 97.1%  94.6%  84.1%   

 
Table 5. The top-one recognition rate of Fisherface, 

PCA+LDA and CSA+LDA on PIE_I database 
 G4/P6 G3/P7 G2/8 

Fisherface 88.1% 82.1% 53.8% 
PCA+LDA 93.4% 91.6% 71.6% 
CSA+LDA 97.1%  98.2%  81.2%  

 
Table 6. The top-one recognition rate of Fisherface, 

PCA+LDA and CSA+LDA on PIE-II database 
 G4/P16 G5/P15 G6/14 

Fisherface 76.9% 83.6% 88.9% 
PCA+LDA 79.1% 84.7% 91.5% 
CSA+LDA 85.9% 88.7% 94.1% 
 
The above experiments demonstrate the following 

interesting points: 1) although PCA, 2DPCA and CSA 
are all unsupervised approaches, different image 
representation may lead to different recognition 
performance due to the curse of the dimension dilemma 
and small sample size problem existed in face 
recognition problem; 2) Coupled Subspaces Analysis 



algorithm treats all row/column vectors of all the image 
matrices, thus it alleviates the above two problems. 
Moreover, CSA removes the redundancy among both 
row and column vectors, thus it can obtain a much 
lower dimensional matrix representation than 2DPCA; 
and 3) LDA can be used directly after CSA, and 
CSA+LDA shows much better performance compared 
with the classical Fisherface algorithm. 

4.2. Experiments for Facial Expression 
Recognition 

In this part, we conduct the facial expression 
recognition experiments on JAFFE 11 database. JAFFE 
database contains 213 images of female facial 
expression. Ten expressers were asked to pose seven 
different facial expressions (anger, disgust, fear, 
happiness, neutral, sadness and surprise). In this 
experiment, each image is resized to 64*64 according 
to the locations of the two eyes. Histogram equilibrium 
is also applied as the preprocessing method. As in 6, 
the analysis is performed on the different images, 
obtained by subtracting the average neutral images 
from each of the other expression images, so we only 
need to recognize six expressions. A similar leave-one-
out strategy is applied in the experiments, i.e. each 
individual is in turn used for testing and other 
individuals are used as training samples. The 
experimental results for each individual are shown in 
Table 7.  We can find that, in most cases, the proposed 
CSA is superior to PCA and 2DPCA algorithms; and 
CSA+LDA consistently outperforms Fisherface and 
also performs better than PCA+LDA with only one 
exception. 

 
Table 7. The top-one recognition rate of different 

algorithms on JAFFE database 
 PCA 2DPCA CSA 

0 65.0% 70.0% 65.0% 
1 52.6% 68.4% 68.4% 
2 63.2% 68.4% 89.5% 
3 47.1% 52.9% 58.8% 
4 61.1% 72.2% 83.3% 
5 44.4% 61.1% 61.1% 
6 64.7% 47.1% 52.9% 
7 38.9% 44.4% 55.6% 
8 38.9% 33.3% 44.4% 
9 63.2% 78.9% 68.4% 

 
 Fisherface PCA+LDA CSA+LDA 

0 70.0% 75.0% 85.0% 
1 73.7% 79.0% 94.7% 
2 89.5% 100.0% 100.0% 
3 58.8% 76.5% 76.5% 
4 72.2% 88.9% 94.4% 
5 83.3% 83.3% 88.9% 

6 70.6% 82.4% 88.2% 
7 72.2% 100.0% 88.9% 
8 72.2% 83.3% 83.3% 
9 100.0% 100.0% 100.0% 

5. Conclusions 

In this paper, we have developed a novel algorithm, 
called Coupled Subspaces Analysis (CSA), for face 
recognition and facial expression analysis. In this 
algorithm, the images are directly treated as 2D 
matrices, and an optimal matrix reconstruction criterion 
is proposed to reconstruct the original image matrices 
using two coupled subspaces. To acquire the solution, 
an iterative procedure is presented to learn these two 
subspaces. The proposed CSA effectively utilized the 
intrinsic spatial structure information and overcomes 
the two problems for face recognition, i.e. the curse of 
dimensionality dilemma and small sample size problem. 
Moreover, with a deep analysis of PCA and 2DPCA 
algorithms, we proved that PCA and 2DPCA are the 
simplified special cases of our proposed algorithm. To 
the best of knowledge, CSA is the first work to study 
the subspace learning problem to reconstruct the 
original samples by integrating two coupled subspaces. 
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