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1 Introduction

The automatic reasoning about computer programs from their program text is
called static analysis. It has applications in, for example, compiler optimizations
and program verification. An important form of static analysis is abstract in-
terpretation [6, 7], which systematically computes over-approximations of sets of
reachable program states. The over-approximations are represented as elements
of some given lattice, called an abstract domain. The elements of the abstract
domain can be viewed as constraints on a set of variables, typically the variables
of the program. For example, the polyhedra abstract domain [8] can represent
linear-arithmetic constraints like x+ y � z .

Often, the constraints of interest involve function and relation symbols that
are not all supported by any single abstract domain. For example, a constraint
of possible interest in the analysis of a Java or C# program is sel(H, o, x) + k �
length(a) where H denotes the current heap, sel(H, o, x) represents the value
of the x field of an object o in the heap H (written o.x in Java and C#),
and length(a) gives the length of an array a . A constraint like this cannot be
represented directly in the polyhedra domain because the polyhedra domain does
not support the functions sel and length . Consequently, the polyhedra abstract
domain would very coarsely over-approximate this constraint as true—the lattice
element that conveys no information. This example conveys a general problem
for many abstract domains: the abstract domain only understands constraints
consisting of variables and its supported function and relation symbols. If a given
constraint mentions other, alien, function or relation symbols, it is ignored (that
is, it is very coarsely over-approximated) by the abstract domain.

Rather than building in special treatment of such alien symbols in each ab-
stract domain, we propose a coordinating congruence-closure abstract domain,
parameterized by any set of given abstract domains that we shall refer to as
base domains. The congruence-closure abstract domain introduces variables to
stand for subexpressions that are alien to a base domain, presenting the base
domain with the illusion that these expressions are just variables. For example,
by itself, the polyhedra domain can infer that 0 � y holds after the program in
Fig. 1(a), but it can only infer true after the program in Fig. 1(b). In contrast,
the congruence-closure domain using the polyhedra domain as a base domain
can also infer that 0 � y holds after the program in Fig. 1(b).

if 0 � x then
y := x

else
y := −x

end

(a)

if 0 � o.x then
y := o.x

else
y := −o.x

end

(b)

x := 0 ; y := 0 ;
while x < N do
y := y + x ;
x := x+ 1

end

(c)

o.x := 0 ; p.y := 0 ;
while o.x < N do
p.y := p.y + o.x ;
o.x := o.x+ 1

end

(d)

Fig. 1. Two pairs of simple programs demonstrating the difference in what can be
inferred without and with the congruence-closure and the heap succession abstract
domains.
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In this paper, we introduce the congruence-closure abstract domain and de-
tail its operations. The congruence-closure abstract domain gets its name from
the fact that it stores congruence-closed equivalence classes of terms. It is these
equivalence classes that are represented as variables in the base domains. Equiv-
alence classes may be dissolved as the variables of the program change. So as not
to lose too much information, the congruence-closure domain consults its base
domains during such updates.

We also introduce a particular base domain, the heap succession abstract
domain, that is useful in analyzing programs with a heap, such as object-oriented
programs (but also applies more generally to arrays and records). The benefit
of this domain is demonstrated by the programs in Fig. 1 where program (d)
involves updates to the heap. The polyhedra domain can infer that 0 � x ∧
0 � y holds after the program in Fig. 1(c), but it can only infer true after the
program in Fig. 1(d), even when the polyhedra domain is used as a single base
domain of the congruence-closure domain. However, if one additionally uses the
heap succession domain as a base domain, one can infer that 0 � o.x ∧ 0 � p.y
holds after the program in Fig. 1(d).

2 Abstract Interpretation

In this section, we introduce the basic interface of each abstract domain. A brief
review of abstract interpretation [6] is given in Appendix A.

Expressions. We assume expressions of interest to be variables and functions
applied to expressions:

expressions Expr e, p ::= x | f(�e)
variables Var x, y, . . .
function symbols FunSym f
expression sequences Expr[ ] �e ::= e0, e1, . . . , en−1

In programs and examples, we take the liberty of deviating from this particular
syntax, instead using standard notation for constants and operators. For exam-
ple, we write 8 instead of 8() and write x+ y instead of +(x, y). A constraint
is any boolean-valued expression.

Abstract Domains. The basic abstract domain interface is shown in Fig. 2. Each
abstract domain provides a type Elt , representing the elements of the abstract
domain lattice. Each lattice element corresponds to a constraint on variables.
This constraint is returned by the ToPredicate operation. Conversely, ToElt(p)
yields the most precise representation for constraint p in the lattice, which may
have to lose some information. We do not need to compute ToElt , so we have
omitted it from the abstract domain interface. In the literature [6], the functions
corresponding to ToElt and ToPredicate are often written as α (abstraction)
and γ (concretization), respectively.
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interface AbstractDomain {
type Elt ;

ToPredicate : Elt → Expr ;

Top : Elt ;
Bottom : Elt ;
AtMost : Elt × Elt → bool ;

Constrain : Elt × Expr → Elt ;
Eliminate : Elt × Var → Elt ;
Rename : Elt × Var × Var → Elt ;

Join : Elt × Elt → Elt ;
Widen : Elt × Elt → Elt ;

}

Fig. 2. Abstract domains.

An abstract domain is required to define a partial ordering on the lat-
tice elements (AtMost), Top and Bottom elements (required to correspond to
true and false , respectively), and Join and Widen operations. Furthermore,
an abstract domain must define operations to add a constraint to an element
(Constrain), existentially quantify a variable (Eliminate), and rename a free
variable (Rename), all of which may be conservative. See Appendix A.1 for a
more detailed description of these operations.

In Appendix A, we also fix a particular imperative language and review how
to apply the abstract domain operations to compute over-approximations of
reachable states to infer properties about the program. This ends our general
discussion of abstract interpretation. Next, we describe the congruence-closure
abstract domain.

3 Congruences and Alien Expressions

The congruence-closure abstract domain C is parameterized by a list of base
domains �B . A lattice element of the congruence-closure domain is either ⊥ ,
representing BottomC , or has the form 〈G, �B〉 , where G is an equivalence graph
(e-graph) that keeps track of the names given to alien expressions and �B is a
list containing one non-BottomBi

lattice element from each base domain Bi .
The names introduced by the congruence-closure domain to stand for alien ex-
pressions appear as variables to the base domains. To distinguish these from the
variables used by the client of the congruence-closure domain, we call the newly
introduced variables symbolic values. Intuitively, a symbolic value represents the
value to which a client expression evaluates. Alternatively, one can think of the
symbolic value as identifying an equivalence class in the e-graph. Throughout,
we use Roman letters to range over client variables and Greek letters to range
over symbolic values. The e-graph consists of a set of mappings:

mappings Mapping m ::= t �→ α
terms Term t ::= x | f(�α)
symbolic values SymVal α, β, . . .
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In addition to providing the service of mapping alien expressions to symbolic
values, the e-graph keeps track of equalities between terms. It represents an
equality between terms by mapping these terms to the same symbolic value. For
example, the constraint w = f(x) ∧ g(x, y) = f(y) ∧ w = h(w) is represented
by the e-graph

w �→ α x �→ β f(β) �→ α y �→ γ g(β, γ) �→ δ f(γ) �→ δ h(α) �→ α (Ex. 1)

The e-graph maintains the invariant that the equalities it represents are congru-
ence-closed. That is, if the e-graph represents the terms f(x) and f(y) and the
equality x = y , then it also represents the equality f(x) = f(y). For instance, if
the e-graph in Ex. 1 is further constrained by x = y , then β and γ are unified,
which in turn leads to the unification of α and δ , after which the e-graph
becomes

w �→ α x �→ β f(β) �→ α y �→ β g(β, β) �→ α h(α) �→ α

A supplementary description of how these mappings can be viewed as a graph
is given in Appendix B.

To compute ToPredicateC(〈G, �B〉), the congruence-closure domain first ob-
tains a predicate from each base domain Bi by calling ToPredicateBi

(Bi).
Since the base domains represent constraints among the symbolic values, these
predicates will be in terms of symbolic values. The congruence-closure domain
then replaces each such symbolic value α with a client expression e , such that
recursively mapping the subexpressions of e to symbolic values yields α . In
Sec. 3.3, we explain how we ensure that such an e exists for each α . Finally, the
congruence-closure domain conjoins these predicates with a predicate expressing
the equalities represented by the e-graph. For example, if the congruence-closure
domain uses a single base domain B0 for which ToPredicateB0(B0) returns α �
γ , then the congruence-closure domain may compute ToPredicateC(〈(Ex. 1), �B〉)
as w = f(x) ∧ g(x, y) = f(y) ∧ w = h(w) ∧ w � y .

In the remainder of this section, we detail the other abstract domain opera-
tions for the congruence-closure domain.

3.1 Constrain

The operation ConstrainC(〈G, �B〉, p) may introduce some new symbolic val-
ues and constraints in G and then calls ConstrainBi

(Bi, pi) on each base
domain Bi , where pi is p with expressions alien to Bi replaced by the corre-
sponding symbolic value. If any ConstrainBi

operation returns BottomBi
, then

ConstrainC returns ⊥ . Additionally, if the constraint p is an equality, then the
congruence-closure domain will make note of it in the e-graph by calling Union
(discussed below).

In order for the congruence-closure domain to know which subexpressions of
p to replace by symbolic values, we extend the interface of abstract domains
with the following operation:

Understands : FunSym × Expr[ ] → bool
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which indicates whether the abstract domain understands the given function
symbol in the given context (i.e., the arguments to the function in question).
An abstract domain may choose to indicate it “understands” a function symbol
even when it only partially interprets it.

To translate the client expression to an expression understandable to a base
domain, the congruence-closure domain traverses top-down the abstract syntax
tree of the client expression calling Understands on the base domain for each
function symbol. If the base domain understands the function symbol, then C

leaves it as is. If not, then C replaces the alien subexpression with a symbolic
value and adds this mapping to the e-graph. Hopeful that it will help in the
development of good reduction strategies (see Sec. 6), we also let C continue to
call Understands on subexpressions of alien expressions and assert equalities
with the symbolic value for any subexpression that is understood by the base
domain. In fact, this is done whenever a new client expression is introduced into
the e-graph as part of the Find operation (discussed below).

To illustrate the ConstrainC operation, suppose the congruence-closure do-
main is given the following constraint:

ConstrainC(〈G, �B〉, 2 · x+ sel(H, o, f) � |y − z|)
If a base domain Bi is the polyhedra domain, which understands linear arith-
metic (+, − , · , 2, � in this example), then the congruence-closure domain
makes the following calls on the polyhedra domain Bi :

ConstrainBi
(ConstrainBi

(Bi, γ = υ − ζ), 2 · χ+ α � β)

and the e-graph is updated to contain the following mappings:

x �→ χ H �→ σ sel(σ, ω, φ) �→ α
y �→ υ o �→ ω |γ| �→ β
z �→ ζ f �→ φ υ − ζ �→ γ

We now define the union-find operations on the e-graph. The Union opera-
tion merges two equivalence classes. It does so by unifying two symbolic values
and then merging other equivalence classes to keep the equivalences congruence-
closed. Unlike the standard union operation, but akin to the union operation in
the Nelson-Oppen congruence closure algorithm that combines decision proce-
dures in a theorem prover [16], doing the unification involves updating the base
domains.

The Find operation returns the name of the equivalence class of a given
client expression, that is, its symbolic value. If the e-graph does not already
represent the given expression, the Find operation has a side effect of adding
the representation to the e-graph. Like Union , this operation differs from the
standard find operation in that it involves updating the base domains. As noted
above, to avoid loss of information by the congruence-closure domain, additional
equality constraints between understandable subexpressions and their symbolic
values (like γ = υ − ζ in the example above) are given to the base domains.
Detailed pseudo-code for ConstrainC along with both Union and Find are
given in Appendix C.
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3.2 Rename and Eliminate

Since the base domains never see client variables, the congruence-closure do-
main can implement RenameC without needing to call the base domains. The
congruence-closure domain need only update its e-graph to map the new variable
to the symbolic value mapped by the old variable (and remove the mapping of
the old variable).

Similar to RenameC , we implement EliminateC by simply removing the map-
ping of the given variable (without calling the base domains). This means that
base domains may have constraints on symbolic values that are no longer rep-
resentable in terms of client variables. We postpone eliminating such “garbage
values” from the base domains until necessary, as we describe in the next subsec-
tion. Pseudo-code for RenameC and EliminateC are also given in Appendix C.

3.3 Cleaning Up Garbage Values

Garbage values—symbolic values that do not map to any client expressions—can
be generated by EliminateC , JoinC , and WidenC . The garbage values would
be a problem for ToPredicateC . Therefore, at strategic times, including at the
start of the ToPredicateC operation, the congruence-closure domain performs
a garbage collection. Roughly speaking, Eliminate with garbage collection is a
lazy quantifier elimination operation.

To garbage collect, we use a “mark-and-sweep” algorithm that determines
which terms and symbolic values are reachable in the e-graph from a client
expression; a symbolic value that is not reachable is a garbage value. We define
“reachable (from a client expression)” as the smallest relation such that: (a) any
client variable is reachable, (b) any function application term whose arguments
are all reachable is reachable, and (c) if the left-hand side of a mapping in the
e-graph is reachable, then so is the right-hand side of the mapping.

There may be terms in the e-graph that depend on unreachable symbolic
values (i.e., that take unreachable symbolic values as arguments). Dropping
these may lead to an undesirable loss of information, as we demonstrate in Sec. 4.
However, the base domains may have additional information that would allow us
to rewrite the term to not use the garbage value. To harvest such information,
we extend the abstract domain interface with the following operation:

EquivalentExpr : Elt × Queryable × Expr × Var → Expr option

Operation EquivalentExpr(B,Q, t, α) returns an expression that is equivalent
to t but does not mention α (if possible). The Queryable parameter Q provides
the base domain an interface to broadcast queries to all other abstract domains
about certain predicates, which it might need to yield an equivalent expression.

After marking, the garbage collector picks a candidate garbage value (say α),
if any. Then, for every mapping t �→ β where t mentions α , each base domain
is asked for an equivalent expression for t that does not mention α ; if one is
obtained, then the t in the mapping is replaced by the equivalent expression.
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The marking algorithm is then resumed there, in case an equivalent expression
may have given rise to more reachable terms and symbolic values. After that,
if α is still unreachable, all remaining mappings that mention α are removed
from the e-graph and EliminateBi

(Bi, α) is called on every base domain Bi .
At this time, α has either been determined to be reachable after all, or it has
been eliminated completely from the e-graph and all base domains. The garbage
collector then repeats this process for the next candidate garbage value, if any.

3.4 Congruence-Closure Lattice

Mathematically, we view the congruence-closure domain C as the Cartesian
product lattice [7] over an equivalences lattice E and the base domain lattices.
We consider the equivalences lattice E as the lattice over (empty, finite, and infi-
nite) conjunctions of equality constraints between expressions ordered by logical
implication. Elementary lattice theory gives us that both E and C are indeed
lattices (assuming the base domain lattices are indeed lattices) [5].

However, as with other “standard” e-graph data structures, the e-graph de-
scribed in previous sections represents only an empty or finite conjunction of
ground equalities plus implied congruences, that is, only a proper subset of E .
To define the set of equalities implied by an e-graph, we define the evaluation
judgment G � e ⇓ α , which says that the e-graph G evaluates the client expres-
sion e to the symbolic value α :

G � e ⇓ α

G(x) = α

G � x ⇓ α var
G � e0 ⇓ α0 · · · G � en−1 ⇓ αn−1 G(f(α0, α1, . . . , αn−1)) = α

G � f(e0, e1, . . . , en−1) ⇓ α
fun

This corresponds to intuition that an expression belongs to the equivalence class
of expressions labeled by the symbolic value to which it evaluates. We define the
equalities implied by an e-graph by introducing the following judgment:

G � e0 = e1

G � e0 ⇓ α G � e1 ⇓ α
G � e0 = e1

eval
G � e0 = e1

G � f(e0) = f(e1)
cong

G � e = e
refl

G � e1 = e0

G � e0 = e1
symm

G � e0 = e1 G � e1 = e2

G � e0 = e2
trans

An equality is implied by the e-graph if either both sides evaluate to the same
symbolic value, it is a congruence implied by the e-graph, or it is implied by the
axioms of equality.

We let G denote the poset of e-graphs ordered with the partial order from
E (i.e., logical implication). All the operations already described above have
the property that given an element representable by an e-graph, the resulting
element can be represented by an e-graph. However, JoinG cannot have this
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property, which is demonstrated by the following example given by Gulwani et
al. [9]:
�
x = y

� �E

�
g(x) = g(y) ∧ x = f(x) ∧ y = f(y)

�
=

�
i : i�0

g(fi(x)) = g(fi(y)) (Ex. 2)

where we write 	E for the join in the lattice E and fi(x) for i applications of f .
This example shows that G is not a lattice, since for any k , ∧i : 0�i�kg(fi(x)) =
g(fi(y)) can be represented by an e-graph, but not the infinite conjunction.
Thus, JoinC may have to conservatively return an e-graph that is less precise
(i.e., higher) than the join in E . These issues are discussed further in Sec. 3.5.

AtMost. Aside from the trivial cases where one or both of the inputs are TopC

or BottomC , AtMostC(〈G0, �B0〉, 〈G1, �B1〉) holds if and only if G1 � e0 = e1
implies G0 � e0 = e1 for all e0, e1 and AtMost�B( �B0, �B1). For the e-graphs, we
determine if all equalities implied by G1 are implied by G0 by considering all
“ground” equalities in G1 (given by two mappings to the same symbolic value)
and seeing if a Find on both sides in G0 yield the same symbolic value (since
the e-graph is congruence-closed).

3.5 Join

The primary concern is how to compute the join of two e-graphs, since the
overall join for elements of the congruence-closure domain is simply the join of
the e-graphs and the join for the base domains (which is obtained by calling
Join�B on the base domains). Some may find the graphical view of the e-graph
described in Appendix B more intuitive for understanding this algorithm, though
it is not necessary. Intuitively, there is a potential symbolic value (i.e., node) in
the result e-graph for every pair of symbolic values in the input e-graphs (one
from each). Let us denote a symbolic value in the resulting e-graph with the
pair of symbolic values from the input e-graphs, though we actually assign a
new symbolic value to each unique pair of symbolic values. Then, the resulting
e-graph G = JoinG(G0, G1) consists of the following mappings:

x �→ 〈α′, β′〉 if G0(x) = α′ and G1(x) = β′

f( �〈α, β〉) �→ 〈α′, β′〉 if G0(f(�α)) = α′ and G1(f(�β)) = β′

In Fig. 3, we give the algorithm that computes this join of e-graphs, intro-
duces the new symbolic values in the base domains, and then computes JoinC as
the Cartesian product of the various joins. As we create new symbolic values in
the result e-graph, we need to remember the corresponding pair of symbolic val-
ues in the input graphs. This is given by two partial mappings M0 and M1 that
map symbolic values in the resulting e-graph to symbolic values in G0 and G1 ,
respectively. Visited0 and Visited1 track the symbolic values that have already
been considered in G0 and G1 , respectively.

The workset W gets initialized to the variables and 0-ary functions that are
in common between the input graphs (along with where they map in the input
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0: fun JoinC(〈G0, �B0〉 : Elt, 〈G1, �B1〉 : Elt) : Elt =
1: let G : EGraph in
2: let B′

0, B
′
1 : Elt[ ] = B0, B1 in

3: let M0,M1 : SymVal → SymVal in
4: let Visited0,Visited1 : set of SymVal in

5: let W : set of Term × SymVal × SymVal =
{〈x,G0(x), G1(x)〉 | x ∈ domain(G0) ∧ x ∈ domain(G1)}
∪ {〈f(), G0(f()), G1(f())〉 | f() ∈ domain(G0) ∧ f() ∈ domain(G1)}

in

6: while W is not empty do
7: pick and remove (t, α0, α1) ∈W ;

8: if M−1
0 (α0) ∩M−1

1 (α1) = {γ} then
9: add t �→ γ to G

10: else
11: let ρ : SymVal = fresh SymVal in
12: �B′

0 := Constrain�B( �B′
0, α0 = ρ); �B′

1 := Constrain�B( �B′
1, α1 = ρ);

13: add ρ �→ α0 to M0 and ρ �→ α1 to M1 ;
14: add t �→ ρ to G ;
15: add α0 to Visited0 and α1 to Visited1 ;
16: find each f( �β0) ∈ domain(G0) and f( �β1) ∈ domain(G1) such that

�β0 ⊆ Visited0 ∧ α0 ∈ �β0 ∧ �β1 ⊆ Visited1 ∧ α1 ∈ �β1

and add each 〈f(�β), G0(f( �β0)), G1(f( �β1))〉 to W such that

M0(�β) = �β0 ∧ M1(�β) = �β1 ∧ ρ ∈ �β
17: end if
18: end while;

19: 〈G, Join�B( �B′
0,
�B′
1)〉

20: end fun

Fig. 3. The join for the congruence-closure abstract domain.

graphs) (line 5, Fig. 3). One can consider the workset as containing terms (i.e.,
edges) that will be in the resulting e-graph but do not yet have a symbolic value
to map to (i.e., a destination node).

Then, until the workset is empty, we choose some term to determine what
symbolic value it should map to in the resulting e-graph. For a 〈t, α0, α1〉 ∈W ,
if the pair 〈α0, α1〉 is one where we have already assigned a symbolic value γ in
the resulting e-graph G , then map t to γ in G (line 9). Otherwise, it is a new
pair, and we create a new symbolic value (i.e., node) ρ in G , update M0 and M1

accordingly, consider α0 and α1 visited, and map t to ρ in G (lines 11–15). So
that information is not lost unnecessarily (unless chosen to by the base domains),
we assert equalities between the symbolic values in the input graphs with the
corresponding symbolic values in the result graph (line 12) before taking the join
of the base domains. Finally, we find each function in common between G0 and
G1 from α0 and α1 , respectively, where all arguments have now been visited
(α0 and α1 being the last ones). We add each such function to the workset
but with the arguments being in terms of the symbolic values of the resulting
e-graph (line 16).
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We can make a few small optimizations when creating a new symbolic value
in the result graph. First, if we have a global invariant that symbolic values
are never reused, then α can be used for the symbolic value in the resulting
e-graph corresponding to the pair 〈α, α〉 in the input graphs (rather than get-
ting a fresh symbolic value). Second, for the first symbolic value ρ in the re-
sulting e-graph that maps to α0 in the input graph G0 , rather than calling
Constrain�B( �B′

0, α0 = ρ), we can call Rename�B( �B′
0, α0, ρ) since α0 will not be

a symbolic value in the result e-graph (and similarly for G1 ).

Soundness. We show that the above join algorithm indeed gives an upper bound.
Note that since the Constrain�B calls on the base domain simply give multiple
names to existing variables, the soundness of JoinC reduces to soundness of the
join of the e-graphs (assuming the joins of the base domains are sound). We
write JoinG for the algorithm described in Fig. 3 ignoring the base domains.
Informally, JoinG is sound if for any equality implied by the resulting e-graph,
it is implied by both input e-graphs. The formal statement of the soundness
theorem is given below, while its proof is given in Appendix D.1.

Theorem 1 (Soundness of JoinG ) Let G = JoinG(G0, G1) . If G � e0 = e1 ,
then G0 � e0 = e1 and G1 � e0 = e1 .

Completeness. Note that different e-graphs can represent the same lattice ele-
ment. For example, consider the following e-graphs

x �→ α y �→ α (Ex. 3a) x �→ α y �→ α f(α) �→ β (Ex. 3b)

that both represent the constraint x = y (and any implied congruences). For the
previous operations, the element that is represented by the result was the same
regardless of the form of the e-graph in the input; however, the precision of the
join algorithm is actually sensitive to the particular e-graph given as input. For
example, the join of the e-graphs shown in Ex. 3a and Ex. 3b with an e-graph
representing the constraint f(x) = f(y) yields elements true and f(x) = f(y),
respectively, as shown below:

JoinG({x �→ α, y �→ α} , {x �→ γ, y �→ δ, f(γ) �→ ε, f(δ) �→ ε}) = {x �→ ρ, y �→ σ}
JoinG({x �→ α, y �→ α, f(α) �→ β} , {x �→ γ, y �→ δ, f(γ) �→ ε, f(δ) �→ ε})

= {x �→ ρ, y �→ σ, f(ρ) �→ τ, f(σ) �→ τ}

A näıve idea might be to extend e-graph (Ex. 3a) to (Ex. 3b) in the join algorithm
as necessary; however, the algorithm no longer terminates if the join in the lattice
E is not representable as a finite conjunction of equality constraints plus their
implied congruences. Recall that Ex. 2 shows that such a non-representable join
is possible.

Ex. 2 does, however, suggest that JoinG can be made arbitrarily precise
though not absolutely precise. In fact, the precision is controlled exactly by
what terms are represented in the e-graph. If an equality is represented in both
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input e-graphs to JoinG , then that equality will be implied by the result e-
graph. In fact, a slightly stronger statement holds that says that the equality
will also be represented in the result e-graph. Thus, the precision of the join can
be controlled by the client by introducing expressions it cares about in the initial
e-graph. We state the completeness theorem formally below, while its proof is
given in Appendix D.2.

Theorem 2 (Relative Completeness of JoinG ) Let G = JoinG(G0, G1) .
If G0 � e0 ⇓ α0 , G0 � e1 ⇓ α0 , G1 � e0 ⇓ α1 , and G1 � e1 ⇓ α1 , then
G � e0 = e1 .

This theorem, however, does not directly indicate anything about the pre-
cision of the entire join JoinC . While without the calls to Constrain�B , much
information would be lost, it is not clear if as much as possible is preserved.
Gulwani et al. [9] give the following challenge for obtaining precise combinations
of join algorithms. Let E0

def= a = a′ ∧ b = b′ and E1
def= a = b′ ∧ b = a′ , then

E0 	E E1 ≡ true E0 	P E1 ≡ a+ b = a′ + b′

E0 	E,P E1 �E,P

∧

i : i�0

f i(a) + f i(b) = f i(a′) + f i(b′)

where P is the polyhedra abstract domain and E,P is a hypothetical combi-
nation of equalities of uninterpreted functions and linear arithmetic. Note that
the combined join also yields an infinite conjunction of equalities not repre-
sentable by our e-graph. Thus, we cannot achieve absolute completeness using
the congruence-closure domain with the polyhedra domain as a base domain;
however, we do achieve an analogous relative completeness where we obtain all
conjuncts where the terms are represented in the input e-graphs. In the table
below, we show the e-graphs for E0 and E1 with one application of f to each
variable explicitly represented and the join of these e-graphs. Consider the input
elements for the polyhedra domain to be TopP . We show the elements after the
calls to ConstrainP during JoinC and the final result after the polyhedra join.

C0 C1 JoinC(C0, C1)

E-Graph a �→ α0 b �→ β0

a′ �→ α0 b′ �→ β0

f(α0) �→ γ0 f(β0) �→ δ0

a �→ α1 b �→ β1

b′ �→ α1 a′ �→ β1

f(α1) �→ γ1 f(β1) �→ δ1

a �→ ρ b �→ τ
a′ �→ σ b′ �→ υ

f(ρ) �→ φ f(τ) �→ ψ
f(σ) �→ χ f(υ) �→ ω

Polyhedra
(after Constrains)

α0 = ρ = σ β0 = τ = υ
γ0 = φ = χ δ0 = ψ = ω

α1 = ρ = υ β1 = τ = σ
γ1 = φ = ω δ1 = ψ = χ

ρ+ τ = σ + υ
φ+ ψ = χ+ ω

ToPredicateC on the result yields a+ b = a′ + b′ ∧ f(a) + f(b) = f(a′) + f(b′),
as desired. (Gulwani and Tiwari have indicated that they have a similar solution
for this example.) Note that there are no equality constraints in the resulting
e-graph; these equalities are only reflected in the base domain. This example sug-
gests that such equalities inferred by a base domain should be propagated back
to the e-graph in case those terms exist in the e-graph for another base domain
where such a term is alien (akin to equality sharing of Nelson-Oppen [16]).
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3.6 Widen

Unfortunately, the above join operation successively applied to an ascending
chain of elements may not stabilize (even without consideration of the base
domains), as can demonstrated by the following example. Let Gi (for i � 0) be
an ascending chain of e-graphs representing x = f2

i

(x). Then,

G′
0 = G0 G′

1 = JoinG(G′
0, G1) = G1 G′

2 = JoinG(G′
1, G2) = G2 · · ·

does not reach a fixed point. The above sequence does not converge because a
cycle in the e-graph yields an infinite number of client expressions that evaluate
to a symbolic value (by following the loop several times). Thus, a non-stabilizing
chain can be constructed by joining with a chain that successively rules out
terms that follow the loop less than k times (as given above). The same would
be true for acyclic graphs with the join algorithm that adds additional terms to
the e-graph as necessary to be complete. Therefore, we can define WidenC by
following the join algorithm described in Fig. 3 except fixing a finite limit on the
number of times a cycle can be followed in G0 (and calling Widen�B on the base
domains rather than Join�B ). Once the e-graph part stabilizes, since the set of
symbolic values are fixed up to renaming, the base domains will also stabilize by
the stabilizing property of Widen�B .

4 Heap Structures

In this section, we specifically consider programs with heaps, such as object-
oriented programs. We view a heap as an array indexed by heap locations.
Therefore, what we say here more generally applies also to arrays and records.

4.1 Heap-Aware Programs

We consider an imperative programming language with expressions to read ob-
ject fields (o.x) and statements to update object fields (o.x := e). To analyze
these programs, we explicitly represent the heap by a program variable H . The
heap is an array indexed by heap locations 〈o, x〉 , where o denotes an object
identity and x is a field name.

A field read expression o.x in the language is treated simply as a shorthand
for sel(H, o, x). Intuitively, this function retrieves the value of H at location
〈o, x〉 . Thus, from what we have already said, the congruence-closure domain
allows us to infer properties of programs that read fields. For example, using
the polyhedra domain as a base domain on the program in Fig. 1(b), we infer
arithmetic properties like y = sel(H, o, x) ∧ 0 � sel(H, o, x) after the statement
in the true-branch and 0 � y after the entire program.

The semantics of the field update statement o.x := e is usually defined as an
assignment H := upd(H, o, x, e) (cf. [10, 11, 17]), where upd is a function with
the following axiomatization:

sel(upd(H, o, x, e), o′, x′) = e if o = o′ and x = x′

sel(upd(H, o, x, e), o′, x′) = sel(H, o′, x′) if o = o′ or x = x′
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We choose a slightly different formulation introducing the heap succession pred-
icate H ≡o.x H

′ , which means H ′ is an updated heap equivalent to H every-
where except possibly at o.x . We thus regard the field update statement o.x := e
as the following assignment:

H := H ′ where H ′ is such that H ≡o.x H
′ and sel(H ′, o, x) = e

A more precise semantics is given in Appendix A.4.
Unfortunately, this is not enough to be useful in the analysis of heap struc-

tured programs. Consider the program in Fig. 1(d). Applying the congruence-
closure domain with, say, the polyhedra domain as a single base domain gives
the disappointingly weak predicate true after the entire program. The problem
is that an analysis of the field update statement will effect a call to the operation
EliminateC(〈G, �B〉,H) on the congruence-closure domain, which has the effect
of losing all the information that syntactically depends on H . This is because no
base domain Bi is able to return an expression in response to the congruence-
closure domain’s call to EquivalentExprBi

(Bi, Q, sel(H, o, x),H) (or more pre-
cisely, with expression sel(σ, φ, χ) and variable σ that are the corresponding
symbolic values).

To remedy the situation, we develop an abstract domain that tracks heap up-
dates. Simply including this abstract domain as a base domain in our congruence-
closure abstract domain solves this problem.

4.2 Heap Succession Abstract Domain

A lattice element in the heap succession abstract domain S represents false or
a conjunction of heap succession predicates

(∃ . . . • H0 ≡o0.x0 H1 ∧ H1 ≡o1.x1 H2 ∧ · · · ∧ Hn−1 ≡on−1.xn−1 Hn)

for some n � 0, where the Hi , oi , and xi are variables, some of which may be
existentially bound, and where no Hi is repeated.

The heap succession domain, like any other base domain, works only with
variables and implements the abstract domain interface. However, of primary
importance is that it can often return useful results to EquivalentExpr calls.
Specifically, it substitutes newer heap variables for older heap variables in ex-
pressions when it is sound to do so, which is exactly what we need. The operation
EquivalentExprS(S,Q, t,H) returns nothing unless t has the form sel(H, o, x)
and element S contains a successor of heap H . If there is a heap successor H ′

of H , that is, if S contains a predicate H ≡p.y H ′ , then S first determines
whether o = p ∨ x = y (i.e., whether the references o and p are known to be
unaliased or the fields are distinct). If it finds that o = p ∨ x = y and H ′ is
not existentially bound, then the operation returns the expression sel(H ′, o, x);
otherwise, the operation iterates, this time looking for a heap successor of H ′ . If
x and y denote two different fields (which are represented as 0-ary functions),
the condition is easy to determine. If not, the heap succession domain may need
to query the other abstract domains via Q to find out if any other abstract
domain knows that o = p .
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4.3 Preserving Information Across Heap Updates

We give an example to illustrate how the heap succession domain can allow
information to be preserved across heap updates. Consider a heap update state-
ment o.x := z and suppose that before the update, the abstract domains have
the information that p.y = 8 (i.e., sel(H, p, y) = 8). After the update to o.x , we
hope to preserve this information, since the update is to a different field name.
Consider the relevant mappings in the e-graph after the update:

H �→ σ′ sel(σ, ψ, υ) �→ α sel(σ′, φ, χ) �→ ζ
p �→ ψ o �→ φ 8 �→ α z �→ ζ
y �→ υ x �→ χ

while the heap succession domain has the following constraint: σ ≡φ.x σ
′ . The

old heap σ is now a garbage value. Recall that during garbage collection be-
fore σ is eliminated from the base domain, the congruence-closure domain will
call EquivalentExprBi

to ask each base domain Bi whether it can give an
equivalent expression for sel(σ, ψ, υ) without σ . In this case, the heap succes-
sion domain can return sel(σ′, ψ, υ) because field name constants x and y are
distinct. Thus, the information that sel(H, p, y) = 8 is preserved. In the same
way, the congruence-closure domain with heap succession and polyhedra as base
domains computes 0 � o.x ∧ N � o.x ∧ 0 � p.y after the program in Fig. 1(d).

5 Related Work

Gulwani et al. [9] describe several join algorithms for both special cases of the
theory of uninterpreted functions and in general. The representation of equality
constraints they consider, called an abstract congruence closure [2, 3], is a con-
vergent set of rewrite rules of the form f(c0, c1, . . . , cn−1) → c or c0 → c for
fresh constants c, c0, c1, . . . , cn−1 . If the latter form is excluded, then we obtain
something analogous to our e-graph where the fresh constants are our symbolic
values. In fact, because the latter form can lead to many different sets of rewrite
rules for the same set of equality constraints, Gulwani et al. quickly define a
fully reduced abstract congruence closure that precisely excludes the latter form
and then only work with fully reduced abstract congruence closures. Our work
goes further by introducing the concept of base domains and recognizing that
symbolic values can be used to hide alien expressions. Gulwani et al. discuss
an item of future work to combine their join algorithm for the theory of unin-
terpreted functions with some other join algorithm (e.g., for linear arithmetic)
and a challenge for such a combination. Using the congruence-closure abstract
domain with polyhedra as a base domain, we seem to stand up to the challenge
(see Sec. 3.5).

Previous research in the area of abstract interpretation and dynamic data
structures has centered around shape analysis [14], which determines patterns of
connectivity between pointers in the heap. Using transitive closure, shape anal-
ysis can reason about reachability in the heap and abstracts many heap objects
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into so-called summary nodes. Our technique of combining abstract domains
does not specifically attempt to abstract objects into summary nodes, though it
would be interesting to consider the possibility of using such a shape analyzer
as a base domain in our technique. In shape analysis, properties of nodes can be
encoded as specially interpreted predicates (cf. [18, 12]). Our technique differs in
that it extends the representable properties of nodes by simply plugging in, as
base domains, classic abstract domains that reason only with relations among
variables. This feature allows our analysis to obtain properties like o.f � p.g
with an “off-the-shelf” polyhedra implementation.

Logozzo uses abstract interpretation to infer object invariants with several
objects but with some restrictions on the possible aliasing among object refer-
ences [13]. The abstract domains described in this paper might be able to be
used as building blocks for another method for inferring object invariants.

6 Conclusion

We have described a technique to extend any abstract domain to handle con-
straints over arbitrary terms, not just variables, via a coordinating abstract
domain of congruences. Moreover, this technique is designed so that abstract
domains can be used mostly unmodified and oblivious to its extended reason-
ing. To implement the congruence-closure domain, we have given a sound and
relatively complete algorithm to join e-graphs.

Additionally, we have described the heap succession domain, which allows our
framework to handle heap updates. This domain need only be a base domain
and thus fits modularly into our framework. Lastly, the handling of heap updates
can be improved modularly through other base domains that yield better alias
(or rather, unaliased) information.

We have a prototype implementation of our technique in the abstract in-
terpretation engine of the Spec# program verifier, which is part of the Spec#
programming system [4], and are in the process of obtaining experience with it.

Our work is perhaps a step toward having a uniform way to combine ab-
stract domains, analogous to the Nelson-Oppen algorithm for cooperating de-
cision procedures [16]. For example, continuing to assign symbolic values to
subexpressions of alien expressions, as well as notifying base domains of addi-
tional understandable subexpressions suggests some kind of potential sharing
of information between abstract domains. The structure of our framework that
uses a coordinating abstract domain of congruences is perhaps also reminiscent
of Nelson-Oppen. While equality information flows from the congruence-closure
domain to the base domains, to achieve cooperating abstract domains, we need
to add a way for each base domain to propagate information, like equalities
that it discovers, to the congruence-closure domain and other base domains. We
believe exploring this connection would be an exciting line of research.
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A Review of Abstract Interpretation

A.1 Abstract Domains

Recall the basic abstract domain interface shown in Fig. 2 and that each lattice
element (Elt) corresponds to a constraint on variables. An abstract domain pro-
vides the top and bottom elements of the lattice, which are required to exist.
These elements satisfy the following:

ToPredicate(Bottom) = false
ToPredicate(Top) = true

The AtMost operation compares two elements according to the partial order
of the lattice. The lattice order must respect the implication order on constraints.
That is, if AtMost(A,B), then

ToPredicate(A) ⇒ ToPredicate(B)

The remaining operations give different ways of computing new lattice el-
ements. Ideally, for any lattice element A and constraint p , Constrain(A, p)
would return

ToElt(ToPredicate(A) ∧ p) (4)

However, it may be that computing this element precisely demands more of the
implementation or computational resources than the designer of the implementa-
tion deems worthwhile. Therefore, Constrain(A, p) is allowed to return a lattice
element that is higher in the lattice than (4). However, Constrain(A, p) should
be no higher than A .

Similarly, Eliminate(A, x) returns a lattice element that is possibly higher
than

ToElt((∃x • ToPredicate(A)))

and for any variable y that does not occur free in ToPredicate(A), the operation
Rename(A, x, y) returns an element that is possibly higher than

ToElt([y/x]ToPredicate(A))

where the notation [y/x]p denotes p with all free occurrences of x replaced by
y .
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The Join(A,B) operation returns a lattice element that is possibly higher
than

ToElt(ToPredicate(A) ∨ ToPredicate(B))

Operation Widen(A,B) returns an element that is possibly even higher, with the
additional property that for any ascending sequence of elements B0, B1, B2, . . .
(ascending meaning AtMost(B0, B1) ∧ AtMost(B1, B2) ∧ · · · ), the ascending
sequence

C0 = A
C1 = Widen(C0, B0)
C2 = Widen(C1, B1)

...

stabilizes after a finite number of steps. That is, there is some k such that for all
j � k , Cj = Ck . Cousot and Cousot suggest the use of a sequence of gradually
coarser Widen operations [6], but for simplicity, we show only a single Widen
operator here.

A.2 An Imperative Language

We consider programs given by the following grammar:

programs prog ::= b∗

blocks b ::= L pred : s
labels L,K
predecessors pred ::= start | from L∗

statements s ::= x := e | assume e

A program consists of a number of uniquely labeled blocks. Each block contains
one statement and a predecessor designation, which is either start , indicating
an entry point of the program or a set of labels of predecessor blocks.

This somewhat unconventional program representation will be convenient
for our purposes. Since we will consider a forward analysis of the program,
control flow between blocks is more conveniently represented as a come-from
relation than its more typically used converse—the go-to relation. The guards
of conditional control flow are placed in assume statements (Nelson’s partial
commands [15]) following the branch, rather than being encoded as part of the
branch.

For example, using skip as a shorthand for assume true , the conventionally
written programs in Fig. 1(a) and Fig. 1(c) can be written as follows in our
program notation:
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Program 1(a) Program 1(c)

0 start : skip
1 from 0 : assume 0 � x
2 from 1 : y := x
3 from 0 : assume ¬(0 � x)
4 from 3 : y := −x
5 from 2,4 : skip

0 start : x := 0
1 from 0 : y := 0
LoopHead from 1, 11 : skip
LoopBody from LoopHead : assume x < N
10 from LoopBody : y := y + x
11 from 10 : x := x+ 1
AfterLoop from LoopHead : assume ¬(x < N)

A.3 Computing Reachable States

Recall the small imperative programming language defined in Sec. 2. We say a
trace of a program is a finite or infinite sequence of blocks b0, b1, b2, . . . such that
b0 is a designated start block and such that for any consecutive blocks bj , bj+1 ,
the label of bj is listed in the from set of bj+1 .

A set bb of blocks is a cut point set if every infinite trace of the program
contains an infinite number of occurrences of blocks from bb (cf. [1]). For any
given cut point set bb , we say a block is a cut point if it is in bb .

A state is a mapping of variables to values. For any states σ and τ , we define
the relation Step as follows:

Step(x := e, σ, τ) ≡ τ = σ[x �→ σ(e)]
Step(assume p, σ, τ) ≡ σ(p) ∧ σ = τ

where σ[x �→ v] is the mapping that is the same as σ except that x maps to v
and σ(e) denotes the value of e where each of its variables is evaluated according
to the mapping σ .

An execution of a program is a finite or infinite sequence of states σ0, σ1, σ2, . . .
such that there is a trace b0, b1, b2, . . . of the same length and for any consecutive
states σj , σj+1 , Step(sj , σj , σj+1), where sj is the statement in block bj .

Reachable states are computed as follows using abstract interpretation for a
given abstract domain. For each block label L , we associate two lattice elements,
Pre(L) and Post(L). These are computed as the least fixpoint equations given
in Table 1. For any block b labeled L , ToPredicate(Pre(L)) is a constraint
that holds any time program execution reaches b and ToPredicate(Post(L)) is
a constraint that holds any time execution leaves b . The stability property of
the Widen operation guarantees that these lattice elements can be computed in
finite time.

For example, applying this analysis with the polyhedra domain to Pro-
gram 1(c) given in Sec. 2, one gets, among other things:

ToPredicate(Post(11)) ≡ 0 � x ∧ x � N ∧ 0 � y
ToPredicate(Pre(AfterLoop)) ≡ 0 � x ∧ 0 � y
ToPredicate(Post(AfterLoop)) ≡ 0 � x ∧ N � x ∧ 0 � y
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Block Lattice Element

L start : s Pre(L) = Top

L from K1, . . . , Kn : s Pre(L) =
(non-cut point) Join(Join(· · · Join(Bottom,Post(K1)) · · · ),Post(Kn))

L from K1, . . . , Kn : s Pre(L) =
(cut point) Widen(Widen(· · · Widen(Bottom,Post(K1)) · · · ),Post(Kn))

L pred : x := e Post(L) = let x′ be a fresh variable,
A = Constrain(Pre(L), x′ = e),
B = Eliminate(A, x),
C = Rename(B, x′, x)

in C end
L pred : assume p Post(L) = Constrain(Pre(L), p)

Table 1. Pre and Post equations.

A.4 Extending to Heap-Aware Programs

We extend the imperative programming language in Appendix A.2 with state-
ments to update object fields.

statements s ::= . . . | o.x := e

and regard field read expressions o.x as a shorthand for sel(H, o, x) where H is
the program heap. Then, we define the concrete semantics of this statement by
defining the following case of the Step relation:

Step(o.x := e, σ, τ) ≡
τ = σ[H �→ τ(H)] ∧ σ(H) ≡σ(o).x τ(H) ∧ sel(τ(H), σ(o), x) = σ(e)

The first conjunct says that the maps σ and τ are equal, except possibly in
the way they map H ; the second conjunct says that H does not change, except
possibly at o.x ; and the third conjunct says that, in τ ’s heap H , o.x has the
value e .

From this semantics, we immediately arrive at the following way to compute
Post for a block L pred : o.x := e :

Post(L) = let H ′ be a fresh variable,
A = Constrain(Pre(L),H ≡o.x H

′),
B = Constrain(A, sel(H ′, o, x) = e),
C = Eliminate(B,H),
D = Rename(C,H ′,H)

in D end

For example, the consider the programs in Fig. 1(b) and Fig. 1(d) shown in
our notation:
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Program 1(b) Program 1(d)

0 start : skip
1 from 0 : assume 0 � o.x
2 from 1 : y := o.x
3 from 0 : assume ¬(0 � o.x)
4 from 3 : y := −o.x
5 from 2,4 : skip

0 start : o.x := 0
1 from 0 : p.y := 0
LoopHead from 1,11 : skip
LoopBody from LoopHead : assume o.x < N
10 from LoopBody : p.y := p.y + o.x
11 from 10 : o.x := o.x+ 1
AfterLoop from LoopHead : assume ¬(o.x < N)

Using the polyhedra domain as a base domain on Program 1(b), we infer arith-
metic properties like:

ToPredicate(Post(2)) ≡ y = sel(H, o, x) ∧ 0 � sel(H, o, x)
ToPredicate(Pre(5)) ≡ 0 � y

With both the polyhedra domain and the heap succession domain as base do-
mains on Program 1(d), we infer properties like:

ToPredicate(Post(AfterLoop)) ≡ 0 � o.x ∧ N � o.x ∧ 0 � p.y

B Graphical View of the E-Graph

Fig. 4. An e-graph.

We can view the e-graph as a rooted directed graph
where the vertices are the symbolic values (plus a dis-
tinguished root node) and the edges are the terms.
Variables and 0-ary functions are labeled edges from
the root node to the symbolic value to which they
map. The n -ary functions are multi-edges with the
(ordered) source nodes being the arguments of the
function and the destination node being the symbolic
value to which they map labeled with the function
symbol. More precisely, let G be a mapping in Sec. 3,
then the corresponding graph is defined as follows:

vertices(G) = range(G) ∪ {•}
edges(G) =

�
• x−→ G(x)

��� x ∈ domain(G)
�
∪
�
�α

f−→ G(f(�α))
��� f(�α) ∈ domain(G)

�

where • stands for the distinguished root node, as well as the empty sequence.
Fig. 4 gives the graph for Ex. 1.

C Pseudo-code for the Congruence-Closure Abstract
Domain Operations

Some operations update the e-graph or base domain elements as a side effect. To
make the possibility of side effects explicit, we show such formal parameters as
in-out parameters, as well as indicating the corresponding actual parameters at
call sites with the in-out keyword.
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Constrain.

fun ConstrainC(〈G, �B〉 : Elt, p : Expr) : Elt =
if p is e0 = e1 then

let α = Find(in-out G, e0, �B, in-out �B) in

let β = Find(in-out G, e1, �B, in-out �B) in

Union(in-out G,α, β, �B, in-out �B)
end if ;
for i := 0 ; i < | �B| ; i++ do

let p′ = ToUnderstandable(in-out G, p,Bi, in-out Bi) in
Bi := ConstrainBi(Bi, p

′)
end for;
if there exists an i such that Bi = BottomBi then

⊥
else

〈G, �B〉
end if

end fun

fun ToUnderstandable(in-outG : EGraph, e : Expr,B : AbstractDomain, in-outB :
Elt) : Expr =

case e of
x then

let α = Find(in-out G, x, [B], in-out [B]) in α
| f(�e′) then

if UnderstandsB(f, �e′) then
f(ToUnderstandable(in-out G, �e′,B, in-out B))

else
let α = Find(in-out G, f(�e′), [B], in-out [B]) in α

end if
end case

end fun

fun Union(in-outG : EGraph, α : SymVal, β : SymVal, �B : AbstractDomain[ ], in-out �B :
Elt[ ]) =

if α and β are different symbolic values then
Unify(in-out G,α, β, �B, in-out �B) ;
while G contains two distinct mappings t �→ γ and t �→ δ do

if γ and δ are the same symbolic value then
remove the redundant t �→ δ mapping from G

else
Unify(in-out G, γ, δ, �B, in-out �B)

end if
end while

end if
end fun

fun Unify(in-outG : EGraph, α : SymVal, β : SymVal, �B : AbstractDomain[ ], in-out �B :
Elt[ ]) =

replace all occurrences of α by β in G ;
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for i := 0 ; i < | �B| ; i++ do
Bi := ConstrainBi(Bi, α = β) ;
Bi := EliminateBi(Bi, α)

end for
end fun

fun Find(in-out G : EGraph, e : Expr, �B : AbstractDomain[ ], in-out �B :
Elt[ ]) : SymVal =

let t : Term in
case e of
x then t := x

| f(�e′) then t := let �α = Find(in-out G, �e′, �B, in-out �B) in f(�α)
end case;
if G contains a mapping t �→ β then
β

else
let β be a fresh symbolic value in
add t �→ β to G ;
for i := 0 ; i < | �B| ; i++ do

if UnderstandsBi(f, �e
′) then

Bi := ConstrainBi(Bi, t = β)
end if

end for
β

end if
end fun

Rename. We write G\t for removing t from the domain of G .

fun Rename(〈G, �B〉 : Elt, oldvar : Var,newvar : Var) : Elt =
if oldvar ∈ domain(G) then

〈(G\oldvar)[newvar �→ G(oldvar)], �B〉
else

〈G, �B〉
end if

end fun

Eliminate.

fun Eliminate(〈G, �B〉 : Elt, x : Var) : Elt = 〈G\x, �B〉

D Soundness and Relative Completeness of JoinG

In this section, let G = JoinG(G0, G1). Let W be the workset and M0,M1 be
the mappings defined in the join algorithm. To simplify the notation, let �·�0

and �·�1 denote M0 and M1 , respectively. Furthermore, let �·, ·� be an inverse
mapping of M0 and M1 defined in the following manner:

�α0, α1� = γ if M−1
0 (α0) ∩M−1

1 (α1) = {γ}
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D.1 Soundness

Lemma 3 The following facts are invariants of the algorithm.

a. If 〈x, α0, α1〉 ∈W , then G0(x) = α0 and G1(x) = α1 .
b. If 〈f(�β), α0, α1〉 ∈W , then G0(f(��β�

0 )) = α0 and G1(f(��β�
1 )) = α1 .

c. If G(x) = γ , then G0(x) = �γ�0 and G1(x) = �γ�1

d. If G(f(�β)) = γ , then G0(f(��β�
0 )) = �γ�0 and G1(f(��β�

1 )) = �γ�1

Proof. For (a) and (b), items are only added into the workset on lines 5 and 16
and only when they satisfy these properties. For (c) and (d), G is initially empty,
so the statements are vacuously true then. G is modified only on lines 9 and 14.
In the first case, the guard on the conditional along with (a) and (b) ensure the
desired result. In the second case, the line above that updates �·�0 and �·�1 so
that these properties hold (along with the invariant on the workset given by (a)
and (b)). �	
Lemma 4 If G � e ⇓ γ , then G0 � e ⇓ �γ�0 and G1 � e ⇓ �γ�1 .

Proof. By induction on the structure of D :: G � e ⇓ γ .

Case 1 (var).

D =
G(x) = γ

G � x ⇓ γ var

By Lemma 3(c), we have that G0(x) = �γ�0 and G1(x) = �γ�1 . Then by var ,
we get G0 � x ⇓ �γ�0 and G1 � x ⇓ �γ�1 , as required.

Case 2 ( fun).

D =
G � e0 ⇓ β0 · · · G � en−1 ⇓ βn−1 G(f(β0, β1, . . . , βn−1)) = γ

G � f(e0, e1, . . . , en−1) ⇓ γ
fun

By the i.h., we have that G0 � e0 ⇓ �β0�0 , . . . , G0 � en−1 ⇓ �βn−1�0 and
G1 � e0 ⇓ �β0�1 , . . . , G1 � en−1 ⇓ �βn−1�1 . By Lemma 3(d), we have that
G0(f(��β�

0 )) = �γ�0 and G1(f(��β�
1 )) = �γ�1 , so we get G0 � f(�e) ⇓ �γ�0

and G1 � f(�e) ⇓ �γ�1 by applying fun , as required. �	
Theorem 1 (Soundness of JoinG ) If G � e0 = e1 , then G0 � e0 = e1 and
G1 � e0 = e1 .

Proof. By induction on the structure of D :: G � e0 = e1 .

Case 1 (eval).

D =
D0

G � e0 ⇓ α
D1

G � e1 ⇓ α
G � e0 = e1

eval

By Lemma 4 on D0 and D1 , we have that G0 � e0 ⇓ �α�0 and G0 � e1 ⇓ �α�0 ,
as well as G1 � e0 ⇓ �α�1 and G1 � e1 ⇓ �α�1 . Thus, by applications of rule
eval , we have G0 � e0 = e1 and G1 � e0 = e1 , as required.
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Case 2 (cong ,refl ,symm , and trans). These cases follow by a straightforward
application of the i.h. followed by the rule or directly by the rule (in the case of
refl). �	

D.2 Relative Completeness

Let Visited0 and Visited1 be the sets defined in the join algorithm upon termi-
nation that track the symbolic values that have been considered in G0 and G1 ,
respectively.

Lemma 5 If G0 � e ⇓ α0 and G1 � e ⇓ α1 , then

a. α0 ∈ Visited0 and α1 ∈ Visited1 ; and
b. G � e ⇓ �α0, α1� .

Proof. By induction on the structure of e . Let D0 denote the derivation of
G0 � e ⇓ α0 and D1 denote G1 � e ⇓ α1 .

Case 1 (var).

D0 =
G0(x) = α0

G0 � x ⇓ α0

var D1 =
G1(x) = α1

G1 � x ⇓ α1

var

a. A pair of symbolic values α0 and α1 are added to Visited0 and Visited1 ,
respectively, exactly when the first 〈t, α0, α1〉 (for some t) is drawn from
the workset (line 15). Thus, it suffices to show that some 〈t, α0, α1〉 is
added to the workset. From D0 and D1 , we see x ∈ domain(G0) and
x ∈ domain(G1), so 〈x, α0, α1〉 must get added to the workset W in line 5.

b. When 〈x, α0, α1〉 is drawn from the workset, G is modified to give a mapping
for x on lines 9 on 14. On line 9, the guard ensures that G(x) = �α0, α1� ,
while on line 14, the previous line updates �·�0 and �·�1 so that G(x) =
�α0, α1� . Then by rule var , we have that G � x ⇓ �α0, α1� .

Case 2 ( fun).

D0 =
G0 � e0 ⇓ δ0 · · · G0 � en−1 ⇓ δn−1 G0(f(δ0, δ1, . . . , δn−1)) = α0

G0 � f(e0, e1, . . . , en−1) ⇓ α0

fun

D1 =
G1 � e0 ⇓ ε0 · · · G1 � en−1 ⇓ εn−1 G1(f(ε0, ε1, . . . , εn−1)) = α1

G1 � f(e0, e1, . . . , en−1) ⇓ α1

fun

a. Following reasoning in the previous case, it suffices to show that 〈f(��δ, �ε�), α0,
α1〉 gets added to the workset W . By the i.h., δ0, δ1, . . . , δn−1 ∈ Visited0 and
ε0, ε1, . . . , εn−1 ∈ Visited1 . Consider the iteration where the last pair δi and
εj gets added to Visited0 and Visited1 and observe that 〈f(��δ, �ε�), α0, α1〉
gets added to the workset W .
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b. By the i.h., we have that

G � e0 ⇓ �δ0, ε0� · · · G � en−1 ⇓ �δn−1, εn−1� .

As in the previous case, when 〈f(��δ, �ε�), α0, α1〉 gets drawn from the work-
set, G is updated so that G(f(��δ, �ε�)) = �α0, α1� . Thus, by rule fun , it is
case that G � f(e0, e1, . . . , en−1) ⇓ �α0, α1� . �	

Theorem 2 (Relative Completeness of JoinG ) If G0 � e0 ⇓ α0 , G0 �
e1 ⇓ α0 , G1 � e0 ⇓ α1 , and G1 � e1 ⇓ α1 , then G � e0 = e1 .

Proof. Direct. By Lemma 5, we get that G � e0 ⇓ �α0, α1� and G � e1 ⇓
�α0, α1� . Thus, G � e0 = e1 by rule eval . �	


