

Extending the SDSS Batch Query System
to the National Virtual Observatory Grid

María A. Nieto-Santisteban,
William O'Mullane

Nolan Li

Tamás Budavári

Alexander S. Szalay
Aniruddha R. Thakar

 Johns Hopkins University

Jim Gray
Microsoft Research

 February 2004

Technical Report
MSR-TR-2004-12

Microsoft Research
Microsoft Corporation

One Microsoft Way
Redmond, WA 98052

Nieto-Santisteban, O’Mullane, Gray, Li, Budavári, Szalay, Thakar 1

Extending the SDSS Batch Query System
to the National Virtual Observatory Grid

María A. Nieto-Santisteban1, William O'Mullane1, Jim Gray2, Nolan Li1,

Tamás Budavári1, Alexander S. Szalay1, Aniruddha R. Thakar1

Abstract. The Sloan Digital Sky Survey science database is approaching 2TB. While the vast majority of queries
normally execute in seconds or minutes, this interactive execution time can be disproportionately increased by a small
fraction of queries that take hours or days to run; either because they require non-index scans of the largest tables or
because they request very large result sets. In response to this, we added a multi-queue job submission and tracking
system. The transfer of very large result sets from queries over the network is another serious problem. Statistics
suggested that much of this data transfer is unnecessary; users would prefer to store results locally in order to allow
further cross matching and filtering. To allow local analysis, we implemented a system that gives users their own
personal database (MyDB) at the portal site. Users may transfer data to their MyDB, and then perform further analysis
before extracting it to their own machine.

We intend to extend the MyDB and asynchronous query ideas to multiple NVO nodes. This implies development, in
a distributed manner, of several features, which have been demonstrated for a single node in the SDSS Batch Query
System (CasJobs). The generalization of asynchronous queries necessitates some form of MyDB storage as well as
workflow tracking services on each node and coordination strategies among nodes.

1. Sloan Digital Sky Survey – SkyServer
Web access to the SDSS databases via the SkyServer3 has been publicly available since June 2001. The SkyServer front
end is coded in ASP on a Microsoft.Net server and backed by a SQL Server database. The current database, Data
Release 1 (DR1), is over 1TB (with indexes), the release in preparation is 2TB, and subsequent releases will bring this
to at least 6TB of catalog data in SQL Server. In fact there will be up to 50 TB of pixel and catalog data and more of
this may be put in the database. For example, the data points for all SDSS4 spectra were recently loaded into a separate
database. Hence the database could become much larger than 6TB. The SkyServer site allows interactive queries in
SQL5. The results of some of these queries are large, averaging millions of rows. The site averages 2M hits per month.
Considering it is running on a $10k server, the site performs extremely well. However in certain circumstances we have
experienced problems. Complex queries can swamp
the system and erroneous queries may run for a long
time but never complete.

1.1. SkyServer Statistics
Figure 1 indicates that the SkyServer execution times
and result set sizes follow a natural power law.
Hence there is no particularly obvious point at which
queries could be cut off. All queries currently run at
the same priority - there is no effective query
governor or priority scheduling system built into
SQL Server. While this may not be a problem in
itself, long queries can slow down the system,
causing what should be quick queries to take much
longer. Some long queries spend most of their time
returning large result sets to a user over the Internet.
We have seen as many as twelve million rows

1 The Johns Hopkins University
2 Microsoft Research
3 http://skyserver.sdss.org
4 Sloan Digital Sky Survey
5 Structured Query Language

Figure 1: Log-log plot of Frequency of SkyServer queries
using n seconds, n cpu seconds, or returning n rows over
100 hour period.

(20GB) downloaded in one hour and single result sets typically of 1M rows each. These large transfers are often
unnecessary; this data is often used only to make comparisons against a small local set or is used in the next stage of an
interactive query session exploring the data.

2. Batch System
We developed a simple batch processing system6 to address these problems. It provides query distribution by size,
allows rudimentary load balancing across multiple machines, guarantees query completion or termination, provides
local storage for users, and separates database query from data extraction and download. This will be pertinent for the
Virtual Observatory as the SkyNode protocol begins to mature (Yasuda et al. 2004, Budavári et al. 2004).

2.1. Queues
We have multiple queues based on query length. Jobs in the shortest jobs queue are processed as soon as possible on a
first come, first serve basis. Jobs in all other queues are redirected and executed sequentially (limited concurrent
execution is allowed) on different machines each mirroring a separate copy of the data. Query execution time is strictly
limited by the limit assigned to a particular queue. A job may take only as long as the limit of its queue or it will be
terminated. Hence there are no ghost jobs hanging around for days, nor can a long query hinder execution of a shorter
one.

2.2. Query Estimation
There is a query estimator in SQL server however its accuracy is questionable and for the first version of this system
we decided not to guess query execution time. This responsibility is left to the users; they decide how long they think
their queries will take and choose the appropriate queue accordingly. As mentioned previously, queries exceeding
queue time limit will be canceled. We do provide autocomplete functionality that moves a query to the next queue if it
times out in its original queue. In a future release we may use the statistics gathered on jobs to develop a heuristic for
estimating query lengths and automatically assigning them to queues.

2.3. MyDB - Local Storage
Queries submitted to the longer queues must write results to local storage, known as MyDB, using the standard SQL
select-into syntax e.g.

select top 10 *
into MyDB.rgal
from galaxy
where r < 22 and r >21

The MyDB idea is similar to the AstroGrid MySpace (Walton et al. 2004) notion. We create a SQL Server
database for the user dynamically the first time MyDB is used in a query. Upon creation, appropriate database links and
grants are made such that the database will work in queries on any database. Since this is a normal database the user
may perform joins and queries on tables in MyDB as with tables in any other database. The user is responsible for this
space and may drop tables from it to keep it clear. We initially assign each user 100MB but this is configurable on a
system and per user basis.

2.4. Groups
Some users may wish to share data in their MyDBs. Any user with appropriate privileges may create a group and invite
other users to join the group. An invited user may accept group membership. A user may then publish any of his
MyDB tables to the groups of which he is a member. Other group members may access these tables by using a pseudo
database name consisting of the word group followed by the id of the other user followed by the table name. For
example, if the cosmology user published the table rgal and if you were a cosmology group member, you could access
this table using the name GROUP.cosmology.rgal in your queries.

6 http://skyservice.pha.jhu.edu/devel/casjobs

2.5. Import/Export Tables
Tables from MyDB may be requested in FITS (Hanisch et al. 2001), CSV, or VOTable7 format. Extraction requests are
queued as a different job type and have their own processor. File extraction is done on the server. A URL to the file is
put in the job record upon completion. Group tables also appear in the extraction list. Users may also upload a CSV file
of data to an existing table in MyDB. Having the table created before upload gives appropriate column names right type
conversions, for examples integers, floats and dates are recognized. Without this schema information all data would be
treated as strings and the table would have column names like col5. We hope the ability to upload data and the group
system will reduce some of the huge downloads from our server.

2.6. Jobs
Apart from the short jobs, everything in this system is asynchronous and requires job tracking. The tracking is done by
creating and updating a row in a Jobs table in the administrative database. However this also requires users to be
identified and associated with the jobs. Identification is also required for authoring and resolving access to MyDB.
Representing jobs in a database makes it easy to implement management, scheduling, and query operations. A user may
list all previous jobs and get the details of status, time submitted, started, finished, etc. The user may also resubmit a
job.

2.7. Ferris Wheel
A future experiment we will try is to batch full table scan queries together. We will piggy-back queries in SQL Server
so that a single sequential scan is made of the data instead of several. Ideally we would like to not have to wait for a set
of queries to finish scanning to join the batch. Rather we would like some set of predefined entry points where a new
query could be added to the scan. Conceptually one may think of this as a Ferris wheel where no matter which bucket
you enter you will be given one entire revolution.

3. SOAP Services
We found that SOAP and WSDL Web services provide a very clean API for any system. In this system the Web site
sits upon a set of SOAP-WSDL services. Any user may access these services directly using a SOAP toolkit in their
preferred programming language. Most of our clients are in C# and JavaScript, but we have successfully used Python
and Java (AXIS) clients for Web services. Others have written Perl clients. More information on this is available at the
IVOA Web site8.

4. MyDB for NVO
We are extending the MyDB and asynchronous query ideas to multiple NVO nodes. This implies development of
multi-node generalization of the CasJobs features. The introduction of asynchronous queries necessitates some form of
MyDB storage as well as workflow tracking facilities.

We will specify a generic SOAP-WSDL interface for these tasks. This will allow heterogeneous data and job
engines to have a common interface for submission and querying of jobs. CasJobs shows that providing local space on
a node is trivial. Still even in that trivial case we needed security and naming mechanisms to allow selective sharing.
However, distributed job execution requires user identification/authentication beyond simple passwords. We want to be
authenticated once and then not challenged at further nodes. The nodes would of course still perform their own
authorization. Hence some form of distributed authentication and certificate system is required. Such systems are
widely deployed in the commercial space (e.g. Passport, Liberty), and others are under development in the Grid and the
Web services communities – these seem to finally be converging, making it an opportune moment for us to exploit this
technology.

We are exploring a distributed system whereby multiple nodes form a trusted network (Virtual Organization) and
users with an account (i.e. authentication) on one node will be accepted at other nodes without needing to register.
Interaction with other initiatives similar to MyDB, such as AstroGrid’s MYSPACE will allow us to experiment with
issues such as how exactly the Virtual Organization will work i.e. if I am allowed MyDB by NVO should AstroGrid

7 http://www.us-vo.org/VOTable/
8 http://www.ivoa.net/twiki/bin/view/IVOA/WebgridTutorial

allow MYSPACE? We foresee then a user having datasets in multiple “spaces” on multiple machines. We are
investigating how to build a portal and appropriate protocols to enable the display of what data and jobs a given user
has on which machines and the status of the workflow.

Some other interesting issues we need to explore are how to automatically join data and results from different
spaces and bring them into MyDB, and how to validate the data and track the workflow. SDSS has already in place an
automatic loading system, the sqlLoader, which imports data stored in CSV files into the SkyServer database (Thakar,
Szalay, Gray 2004).

4.1. sqlLoader
The sqlLoader is a distributed workflow system of SQL modules that check, load, validate and publish the data to the
SDSS databases. The workflow is described by a directed acyclic graph whose nodes are the processing modules. Each
node has an undo compensation step in case the job has to be canceled. It is designed for parallel loading and is
controlled from a Web interface (Load Monitor). The validation stage represents a systematic and thorough scrubbing
of the data. The different data products are merged into a set of linked tables that can be efficiently searched with
specialized indices and pre-computed joins. Although the system currently collects the data from files stored locally,
we could easily make it generic and collect the data from any given space as long as the nodes provide the necessary
data delivery services. Other than that, all the validation and workflow tracking steps would remain the same. This
would be an excellent test case for Yukon, the next version of Sql Server, which will provide native Web services
support in the database. The sqlLoader could consume the data directly from the Web services provided by the
SkyNodes.

5. Summary
 The CasJobs system provides a good test bed for a single-node Virtual Observatory. It provides job queuing and
scheduling, it provides local data storage for users that reduces network traffic and speeds query execution. It provides
a primitive security system of groups and selective sharing.

Each of these features will be very useful in the more general context of a multi-archive Virtual Observatory portal
spread among multiple geographically distributed nodes. We are in the process of designing and implementing these
generalizations.

6. References
Budavári, T., et al. 2004, Open SkyQuery - VO Compliant Dynamic Federation of Astronomy Archives, Proceedings of

Astronomical Data Analysis Software and Systems XIII. [In print].
R. J. Hanisch, A. Farris, E. W. Greisen, W. D. Pence, B. M. Schlesinger, P. J. Teuben, R. W. Thompson, and A.

Warnock. Definition of the flexible image transport system (FITS). Astronomy and Astrophysics, 376 pp.
359--380, September 2001.

Thakar, A., Szalay, A., Gray, J. 2004, sqlLoader - From FITS to SQL, Proceedings of Astronomical Data Analysis
Software and Systems XIII. [In print].

Yasuda, N., et al. 2004, Astronomical Data Query Language: Simple Query Protocol for the Virtual Observatory,
Proceedings of Astronomical Data Analysis Software and Systems XIII. [In print].

Walton, A., et al. 2004, AstroGrid: Initial Deployment of the UK’s Virtual Observatory, Proceedings of Astronomical
Data Analysis Software and Systems XIII. [In print].

