Integrating support for undo with exception handling

Avraham Shinnar!, David Tarditi, Mark Plesko, and Bjarne Steensgaard

December 2004

Technical Report
MSR-TR-2004-140

One of the important tasks of exception handling is to restore program state and invariants. Studies
suggest that this is often done incorrectly. We introduce a new language construct that integrates
automated memory recovery with exception handling. When an exception occurs, memory can
be automatically restored to its previous state. We also provide a mechanism for applications
to extend the automatic recovery mechanism with callbacks for restoring the state of external
resources. We describe a logging-based implementation and evaluate its effect on performance.
The implementation imposes no overhead on parts of the code that do not make use of this feature.

Microsoft Research
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052

http://www.research.microsoft.com

The work by Avraham Shinnar was done during an internship at Microsoft Research.

1 Introduction

Exception handling is used for error handling in many
programming languages. A problem with excep-
tion handling is that programmers are responsible for
restoring program state and invariants and freeing re-
sources when an exception occurs. This can be hard
to implement correctly and be difficult to test since
programs may fail at unexpected points or in unex-
pected ways. This results in programs that have error
handling code, but when errors occur either fail im-
mediately or eventually.

To help improve program reliability, we propose
adding to imperative programming languages an
undo feature that is integrated with exception han-
dling. The undo feature automates the restoration of
program state after an exception occurs. In this pa-
per, we describe the design of this feature and discuss
initial implementation and optimization results. We
have implemented this feature in Bartok, an optimiz-
ing ahead-of-time research compiler and runtime sys-
tem for Common Intermediate Language (CIL) pro-
grams, and have extended the C# programming lan-
guage with this feature. We evaluate the implementa-
tion using programs that include microbenchmarks,
C# versions of SPEC95 benchmarks, and optimiza-
tion phases from the Bartok compiler. We demon-
strate that this feature can be used in imperative
code. Code speed ranges from 28% to 100% of the
speed of the original code. There is no change in
speed for code that does not use this feature.

A code block can be declared to be a try.all block.
If an exception occurs in the code that is not caught
before reaching the scope of the try.all, the program
state is restored to the value that it had when exe-
cution of the block began. Try.all blocks can contain
arbitrary code and can be nested. To support auto-
matically freeing resources and restoring state asso-
ciated with the external world, i.e. libraries and the
operating system, programmers can register “undo”
functions during program execution. If state rollback
occurs, these functions are invoked in the reverse or-
der that they were registered. The design allows ex-
ternal libraries and calls to be wrapped, so that the
undo code needs to be written only once.

We focus on the design of undo with exception han-
dling for single-threaded programs. We assume that
for multi-threaded programs, some other mechanism
is used to prevent data races. A concurrency control
mechanism for preventing data races is beyond the
scope of this paper.

Our implementation supports all the features of
CIL, including virtual calls, garbage collection, stack-
allocated structs, pointers, and unsafe code. The im-

plementation keeps a stack of lexically active try.all
blocks. Within each try.all block, the old values of
memory locations are logged before the memory lo-
cations are modified. This is amenable to optimiza-
tion because the original value of a memory location
needs to be recorded only once within an undo block.
To avoid imposing a logging cost on code that does
not use undo, the compiler clones and instruments
code reachable from try_all blocks. We assume that
we have the whole program.

To achieve adequate performance, the implemen-
tation incorporates a number of optimizations. First,
we organized the logs as linked lists of arrays, so
that logs could grow without incurring a copying cost.
Second, we modified the generational copying collec-
tor to treat logs as root sets for garbage collection
to eliminate write barrier checks. Third, the com-
piler uses a static analysis to avoid logging stores to
objects that are newly allocated in an undo block.
Fourth, the runtime system detects writes to mem-
ory locations that have been logged previously in the
current undo block.

The rest of the paper is organized as follows. Sec-
tion 2 describes the semantics of undo and provides
some examples. Section 3 describes the basic imple-
mentation of undo and Section 4 describes further
optimizations. Section 5 evaluates the implementa-
tion. Section 6 discusses related work.

2 Semantics

To support automatic error recovery, we propose
adding a new keyword, try.all, to the C# program-
ming language. Syntactically, try.all has identical us-
age as the existing try keyword. Try.all blocks behave
similarly to try blocks, with the added feature that
they restore memory back to its initial state if an ex-
ception reaches the scope of a try.all block. We first
present the basic semantics of this mechanism and
then discuss extensions to support more advanced
functionality.

2.1 Basic Semantics

The semantics of try.all can be thought of as a mem-
ory checkpoint followed by a try block, with the
added property that if an exception is propagated
up to the scope of the try block, memory is reverted
back to the checkpointed state.

2.1.1 DMotivating Example

In the example shown in Figure 1, an object is moved
from one queue to another. If an error happens while

try_all {
// code that may throw an exception

} catch(ExceptionSubClass ex) {
// this code runs before memory is reverted
// and is itself reverted

}
void move(Queue to, Queue from) { // ... other catch handlers
catch {
try_all { i .
// this code runs before memory is reverted
to.Enqueue (from.Dequeue) ; e
} // and is itself reverted
} finally {

}

// this code runs after memory is reverted
// and effects of the code are not reverted
Figure 1: Moving an item from one queue to another 1}
with transparent recovery

Figure 3: Try.all Syntax

adding the item to the “to” queue, memory is auto-
matically reverted by the try.all mechanism, and obj
is restored to its original place in the “from” queue.
The caller of the move function can then try to re-
cover, knowing that at least the data is consistent
(and has not been lost).

Compare this with the example shown in Figure
2 of the same function coded without the use of the
try.all keyword. Attempting manual error recovery
is considerably more complicated. If something goes

void move(Queue to, Queue from) { wrong after removing obj from the “from” queue, it

object obj = from.Dequeue(); may not be possible to return obj to its original lo-
try { cation.

to.Enqueue (obj) ; The distinguishing feature of this example is the

} catch(Exception ex) { interdependence of the two queues. More generally, a

// try to add the object back to the old gusuenotivation for designing this language extension

try { was code that modifies interdependent data struc-

// most queues don’t even support this tures and needs to keep them consistent in the face
// operation as it breaks queue semantiasf.errors.
from.AddToBack(obj) ;

} catch(Exception ex) {
// what do we do now? obj is lost
System.Exit(-1);

2.2 Integration with exception han-
dling

} Try.all blocks are syntactically identical to try blocks,

by except for the leading keyword. They can be fully

b nested within each other and within try blocks. Like
try blocks, try.all blocks may have associated catch
handlers. Catch handlers associated with a try.all
block are run in the context of the try.all block. In
the event of an exception, the corresponding (as per
the usual C# definitions) catch handler is run, after
which the try.all block (including the catch handler)
is aborted. If the catch handler returns normally,
control resumes, after the try_all block is aborted, af-
ter the try.all block. If the catch handler throws a
new exception or rethrows the original exception, the

Figure 2: Moving an item from one queue to another
without transparent recovery

exception continues propagating up, after the try.all
block is aborted, looking for catch handlers associ-
ated with higher-level try or try.all blocks.

Try.all blocks may also have associated finally han-
dlers. These are executed after the try.all block and
outside of its context. So, in the case of an exception,
the try.all block is aborted first before the finally han-
dler is run as usual. The general syntax is shown in
Figure 3. Note again the similarity to the normal
syntax used by try blocks.

Exception objects that are created inside of a try.all
block must be allowed to propagate outside of the
try.all block without being reverted. To do this, ex-
ceptions leaving the scope of an aborted try.all block
are cloned before memory is reverted. Because it dif-
ficult for the system to know how deeply to clone an
exception object, we add a protected cloneForUndo
method to the Exception base class. This allows Ex-
ception classes to specify how they should be cloned.
This method is called in a context where logging
is disabled by the NoLoggingForUndo attribute (see
Section 2.3), ensuring that the new Exception object
it creates and returns is not reverted by the try.all
mechanism. As with all NoLoggingForUndo meth-
ods, this method must be coded carefully.

2.3 Tracing and Profiling:
gingForUndo

NoLog-

In many applications there are operations that the
programmer does not wish undone when an error
happens. Two common examples are tracing and
profiling. When an error occurs, the programmer
would like to preserve the information already gath-
ered, especially if the programmer is gathering infor-
mation about what happens in exceptional circum-
stances. To support this, we allow programmers to
mark methods as being unaffected by any enclosing
try.all block. We use the C# attribute mechanism
to do this. We define a new attribute NoLogging-
ForUndo that can be used to mark methods and
classes. Modifications to memory in these methods
and classes are not undone.

When a method marked as NoLoggingForUndo
calls another method, that method is executed in a
NoLoggingForUndo context, no matter how it was
marked. Because of this, programmers need to be
careful about calling methods that may modify non-
local memory from NoLoggingForUndo methods.

2.3.1 Example

Figure 4 shows an example use of NoLogging-
ForUndo. The figure contains code from a class that

class ExceptionTracker {
[NoLoggingForUndo]
public void Add(Exception ex) {
exList.Add(clone(ex));
}
private Exception clone(Exception ex) {
// clone the exception

private ArrayList exList =

}

new ArrayList();

Figure 4: Keeping a list of exceptions

keeps a list of exceptions that have occurred. The
intended usage is that there will be a globally acces-
sible object of type ExceptionTracker and that the
Add method of this object will be called by all ex-
ception handlers.

In this example the Add function stores a clone of
the exception, rather than the passed in reference.
Because the clone is created within the context of
Add, a NoLoggingForUndo method, the clone is pro-
tected against having its contents being reverted by
a try.all block.event of an exception.

2.3.2 Interaction of NoLoggingForUndo with
try_all

Consider what happens if NoLoggingForUndo code
and normal code in a try.all block write to the same
memory location and the try.all block aborts. It
is unclear what state memory should be put into.
The obvious choices are: the state before the try.all,
the state after the NoLoggingForUndo method com-
pletes, and its current state (don’t change it). Three
possible ways to handle this are:

1. Declare that it leads to undefined behavior.
Type safety is maintained, but the state of mem-
ory after a try.all block aborts may be any of the
values that it has assumed since the start of the
try.all block (including its original state).

2. Dynamically check to make sure that this situa-
tion never occurs. If it does, signal an error. The
difficulties with this are that it would be expen-
sive to check all writes to memory and that it
could cause an unexpected failure in a program.

3. Statically ensure that this situation can’t arise.
The simplest method would be to use separate
memory pools.

public interface IUndo {
void Undo();
}

Figure 5: IUndo interface

We chose the first option in our implementation:
overlapping writes lead to undefined behavior. This
avoids the runtime overhead of dynamic checking.
Static checking via separate memory regions would
probably be a better choice if it were supported by
CIL, but it is not.

2.4 Dealing with the external world

Applications are rarely self-contained: they generally
need to obtain resources from the operating system
and request that the operating system change the
state of these resources. A common example is files.
Many programs obtain a file handle from the oper-
ating system and then invoke system calls to read,
write, and seek around in that file. Although some
file systems are transactional, and thus support undo
semantics, most are not. As a result, it is necessary
to provide a mechanism for allowing the user to spec-
ify how to undo the effects of system calls. In theory,
the catch handlers associated with try.all blocks can
be used for this, however this requires that users of
libraries that make system calls know how to undo
their effects. A more modular solution is to allow
a library itself to specify how those system calls are
undone.

2.4.1 Recovery Call-backs: RegisterForUndo

To deal with this problem, we allow the programmer
to register call-back methods with the undo system.
If a try.all context containing the point of registration
is reverted, the registered call-back will be invoked to
allow reversal of external state. The RegisterForUndo
method may be called at any point with an argument
object implementing the IUndo interface shown in
Figure 5. In the event of a try.all block aborting,
the IUndo derived objects registered will be called in
the reverse order of their registration. When they are
called, memory will have been reverted to the state it
was in at the time the object was registered. This al-
lows the writer of IUndo derived classes to easily store
references to needed information with the assurance
that the memory pointed to by those references will
be in the same state in case of an abort, regardless of
later writes to memory.

class SeekUndo : IUndo {
public SeekUndo(File f, int bytes) {
this.f = f;
this.bytes = bytes;
}

public void Undo() {
f.Seek(-bytes);
}

private File f;
private int bytes;

Figure 6: SeekUndo class

class SmartFile {

int ReadInt() {
int ret = f.ReadInt();

TryAllManager.RegisterForUndo(new SeekUndo(f, 4));

return ret;

3

private File f;

}

Figure 7: Smart File Wrapper.

2.4.2 Example

In Figure 7 a fragment of a SmartFile class is pre-
sented. This class is intended as a wrapper for the
File class. After invoking any system calls, such as
ReadlInt, it registers an Undo object that can undo
the effects of the system call. In this case, the undo
object is an instance of the SeekUndo class, given in
Figure 6. This object is capable of seeking backwards
in the file to restore the file position to the state it
was in before the read.

try_all {

undoObject.Undo () ;

throw new FakeException();
} catch(FakeException) {
}

Figure 8: Undoing the Undo

2.4.3 Undoing an undo

Strange as this may seem, the memory changes of the
Undo method are themselves undone. When a try.all
block detects an error and starts reverting memory,
the registered objects’ Undo methods are invoked. In
our implementation the methods are invoked within
the context of a new try all block, which is guaranteed
to terminate with an exception, as is illustrated in
Figure 8.

Undo methods are themselves undone so they do
not break the semantics of nested try.all blocks by
modifying memory. To resynchronize the state of ex-
ternal resources with (reverted) memory, Undo meth-
ods may need to call methods that modify the state of
memory while setting up various system calls. By in-
voking the Undo methods inside of try all blocks that
always abort, we can allow programmers to use arbi-
trary methods from within an Undo method without
having to worry about the effect of those methods on
memory.

2.4.4 When an undo method throws an ex-
ception

Because Undo methods can run arbitrary code, they
may throw exceptions. Defining a reasonable seman-
tics for this case is difficult because this is a case of
an error handler failing. Three choices are:

1. Ignore the exception.

2. Terminate the Undo in progress. This would
leave the program in an undefined state. It
would, in general, be extremely difficult for the
application to recover at this point.

3. Keep a list of failures and propagate this infor-
mation to other Undo handlers. When the try.all
block finishes aborting, this list could be made
available to the application via a special handler
attached to the try.all block.

Our implementation ignores exceptions thrown
from Undo handlers. It is expected that Undo han-
dlers are to be coded defensively and should not
throw exceptions. This keeps the design simple and
understandable without imposing an unreasonable
burden on the programmer.

2.5 Concurrency

Concurrency control mechanisms and try.all blocks
should be able to coexist without a problem. The
main effect of the try.all blocks from a concurrency
standpoint is that if an error occurs, the try.all mech-
anism may write to any memory written to in the

context of the try.all block in order to return mem-
ory to its prior state. So a locking scheme, for exam-
ple, would need to ensure exclusive access to memory
accessed in try.all contexts.

3 Basic Implementation

We implemented try.all support in Bartok, an opti-
mizing ahead-of-time research compiler and runtime
system for CIL. Bartok takes one or more CIL files
and generates stand-alone native x86 executable pro-
grams. Bartok is the successor compiler to Marmot
[4].

We extended the runtime system to store and ma-
nipulate state needed by try.all. The data is stored
in normal, garbage collected memory, simplifying the
implementation. We also extended the compiler to
understand try.all blocks and to instrument the pro-
gram to support them. Like most of Bartok, try.all
support is implemented entirely in (mostly safe) C#
code.

3.1 Goals

We had the following implementation goals:

e Code that does not use try.all blocks should not
be slowed down by try.all blocks.

e Try all blocks should be cheap to enter and exit
normally. We want programmers to be able to
use them for small blocks of code without wor-
rying about large overheads.

e Tryall blocks should support all the language
features available in C#, including pointers, un-
safe code, stack-allocated structures, and virtual
calls.

e We should allow the use of common garbage
collection techniques such as copying collection,
with minimal changes for the sake of efficiency.

e Code should be executed efficiently within a
try.all block.

3.2 Overview

Our initial implementation uses logging. Inside a
tryall block, changes to memory are logged. If a
try.all block needs to revert memory, it uses these
logs to restore memory to its original state. The im-
plementation has three high-level parts:

e The compiler inserts code to log the original
value of a memory location before it is changed
within a try.all block. If a try.all block fails, the
runtime system uses the log to set memory back
to its original state.

e The runtime system keeps a stack of active try.all
blocks. When a try_all block begins, the runtime
system records the point in the log where the
block began.

e If a try.all block ends normally, it is popped from
the stack of try.all blocks. The log keeps growing
until the outer-most try.all block is popped, at
which point the log is cleared.

3.3 Rejected Alternatives to Logging

The logging approach allows for a simple implemen-
tation of nested try_all blocks. Similarly, it also sim-
plifies ensuring that Undo functions are invoked with
memory in the same state as when they were regis-
tered. Because logging is by nature incremental, it is
relatively simple to revert to an intermediate memory
state.

We considered two alternative approaches for al-
lowing memory to be reverted:

1. Checkpoint the state of memory when entering
a tryall block. When a try.all block exits nor-
mally, release the checkpointed memory. When
an exception occurs, revert memory to its check-
pointed state.

2. Inside of a try.all block, write memory modifi-
cations to a different address space. Attempts
to access data will read from the new space if
the data is there, otherwise they will read from
the old space. When a try.all block exits nor-
mally, the two address spaces are merged to-
gether. When an exception occurs, the new
memory space is discarded.

Because one of our goals is to allow try_all blocks to
be cheap to enter and exit normally, the first choice,
checkpointing all of memory, is not practical. The
second choice imposes an overhead on every memory
read. The overhead will be proportionally greater
when only a small fraction of each page is modified.
Because of these problems, we chose the logging based
implementation.

3.4 Logging: Runtime Support

This section discusses the runtime support for log-
ging. The compiler modifies code that can (directly

void mutator(ref int x) { // call with a reference

x = 3;

}

class IntWrapper {
int 1 = 5;

}

void call_mutator() {
IntWrapper heap_int_wrapper =
int stack_intl = 6;
try_all {
int stack_int2 = 6;

mutator (ref heap_int_wrapper.i); //first call

mutator (ref stack_int2); // second call
mutator (ref stack_intl); // third call
throw new Exception(); // force an error

Figure 9: Stack v. Heap Memory

or indirectly) run inside of a try.all block by inject-
ing logging instructions before operations that modify
memory.

3.4.1 Log Structures

There are actually four different arrays that store log-
ging information. Where information goes depends
on the type of the memory. Memory is split up into
the following categories:

1. Memory has value type and is on the heap.
2. Memory has reference type and is on the heap.
3. Memory has value type and is not on the heap.

4. Memory has reference type and is not on the
heap.

It is important to differentiate between memory
that is on the heap and memory that is not on the
heap. In particular, memory that is on the stack must
be differentiated from memory that is on the heap.
Figure 9 shows an example illustrating the need for
this distinction. The mutator method must log its
modifications as it is called in a try.all context. But,
if we always restore the old value of memory when
the try_all block aborts, the second invocation of the
mutator method may lead to a problem. The memory
that was changed may no longer be on the stack frame
and writing to it may be illegal. We thus have to
check to see if stack based memory is still valid. As
we see from the third invocation, we still have to log

new IntWrapper();

(and sometimes restore) stack based memory. As a
result of these considerations, we maintain separate
arrays for heap and non-heap memory.

Because C# is a garbage collected language, it is
important that the try.all runtime system interact
well with the garbage collector. Many garbage collec-
tors need to differentiate between GC managed point-
ers, which they trace, and unmanaged data, which
they do not trace. For that reason, we differenti-
ate between memory representing a value type from
memory representing a (traced) reference type.

log structures used to store this data.

Interior Pointers Many garbage collectors either
do not support storing interior pointers in heap data
structures or impose an additional cost associated
with their use. For these reasons, the logging struc-
tures store references to the base object and offsets
into it, rather the interior pointer to the modified
memory. These values are easily computable at the
point where a store to memory is being done.

Independence of the Arrays Although there are
four different logging arrays, it is important to realize
that a given memory location will always be mapped
to the same array. This frees the runtime system from
having to timestamp entries. A memory location is
mapped consistently because the properties that de-
termine which array it belongs in do not change over
time. Clearly, whether or not a memory location is
on the heap will not change. Additionally, the same
memory will not be accessed both as a value type and
as a reference type. Doing so will cause problems with
the garbage collector.

3.5 Logging: Compiler Transforma-

tions

All operations that can modify memory may poten-
tially be logged, if they are executed within the con-
text of a try.all block. It is easy to determine if an
operation is lexically enclosed within a try.all block.
If it is, then an appropriate log operation is injected
into the instruction stream before the operators.

These simple changes suffice for code that is lexi-
cally contained within a try.all block. However, try.all
blocks may invoke arbitrary methods. Invoked meth-
ods must also be modified appropriately to log any
modified data. However, one of the goals of this im-
plementation is that code not running within a try.all
block should not incur any overhead. Modifying all
methods to support logging would add the overhead
of logging (or at least a test) to that code.

3.5.1 Method Cloning

To avoid this problem, methods transitively called
from within a try.all context are cloned. The cloned
methods are modified to support logging. All calls
to the methods made from within a try.all context
are changed to instead call the instrumented cloned
methods. Method invocations within any of these
clones are dealt with similarly. Note that only one
clone of a method is ever created; all invocations from
a try.all context call the same modified clone. If a
method is marked as NoLoggingForUndo (see Sec-
tion 2.3), the method is not cloned and the call site
is left unchanged.

Virtual Methods Virtual methods complicate the
cloning of methods. A single method cannot just
be cloned, because, at runtime, an override of the
method may be called instead. We instead per-
form an analysis to determine all overrides of a given
method. We then clone all of the overrides as well as
the method that is explicitly being invoked.

3.5.2 Local Variables

Changes to local variables, for the most part, do not
have to be logged. The compiler inserts code that
saves the values of all local variables live upon abnor-
mal exit from a try-all block. The code for aborting
a try-all block restores the values of those local vari-
ables from the saved values.

3.6 Try.all Blocks: Runtime Support

The runtime system stores a stack of try.all block
records. Each one keeps markers into the logging
arrays that indicate when they started. This allows
for easy support of nested try_all blocks. The runtime
support has methods to begin and terminate try.all
blocks.

3.6.1 Start

The Start method starts a new, possibly nested,
try.all block. Tt creates a new block record, sets the
log array markers to point to the current end of each
of the log arrays. It then pushes the new record onto
the try.all blocks stack.

3.6.2 Commit

The Commit method pops the top record off of the
try_all block stack. If it was a top-level try_all block
(the stack is empty; note that in our implementation

this is a dynamic runtime concept, not a static lexi-
cal one), it also frees the memory associated with the
log arrays and the IUndo registry. Note that if it is
not a top-level block, the parent try all block inherits
the log data by popping the record off. If the parent
try.all block later aborts, it will need to revert mem-
ory that was modified during this block, even though
this block committed successfully.

3.6.3 Abort

The Abort method is the most complicated of these
methods. It is called when an exception reaches a
try.all block, and is responsible for reverting memory
back to its original state. It then pops the top record
from the try.all block stack, just like commit.

Abort goes backwards through the four log arrays,
restoring the original values of modified memory lo-
cations using the values preserved in the logs. It does
this in each array until it reaches the corresponding
marker stored in the block record.

This basic algorithm is complicated by the possi-
ble presence of registered IUndo derived objects. See
Section 3.8.1 for details.

3.7 Try.all Blocks:

formations

Compiler Trans-

The compiler injects a call to Start at the beginning
of the try.all block in order to create a new block. It
then inserts a Commit call right before each normal
exit from the try.all block. It modifies the catch han-
dlers associated with the block to call Abort right be-
fore any normal exits. It also wraps the whole try.all
block and its associated catch handler in the equiva-
lent of a new try block, which has a provided catch
handler. This handler catches any exceptions, clones
the exception, calls Abort, and, finally, throws the
exception clone.

3.7.1 Cloning the Exception

If a try.all block is being exited via an exception, the
runtime system clones the exception as described in
Section 2.2. Specifically, the runtime system calls the
cloneForUndoMethod for the exception class, which
by default does a shallow copy.

3.8 IUndo

To support the registration and invocation of IUndo
derived objects, the runtime system stores an array of
undo records. Each record stores a registered object,
as well as markers into the logging arrays. This allows
the system to track when the object was registered.

3.8.1 Modifying Abort

The abort algorithm of Section 3.6.3 must be mod-
ified to support registered objects during a try.all
abort, Before the IlUndo.Undo method of a registered
object is invoked, memory is reverted back to the
state it was in when the object was registered. This
is done by going backwards through all four logging
arrays until the markers stored in the undo record
are encountered. The IUndo.Undo method is then
invoked. If there are more registered IUndo objects
for the try all block, Abort continues going backwards
through the arrays until it encounters either the place
for the next IUndo object was registered or the begin-
ning of the block (as determined from the markers).

3.8.2 Calling IUndo.Undo

The IUndo.Undo method is not invoked directly, but
rather via a helper function that wraps the invocation
in a new try.all block that always aborts, as required
by the design (described in Section 2.4.3).

Note that Abort will be called recursively, since if
Abort calls the Undo method on a registered IUndo
object, it will in turn abort the try.all section that is
created, as was just described. This in turn calls the
Abort method.

3.9 Concurrency

All of the runtime data structures described above
are stored on a per-thread basis. Operations on these
data structures reference the appropriate thread-local
versions. Thus, the notion of a point in time in the
log structures, as described above, makes sense, since
logs are relative to a single thread, which has a single
stream of execution.

With our current implementation, programs must
implement a higher-level policy for concurrency con-
trol. Specifically, for locking, any locks needed by
a given thread should be acquired before entering a
try.all block and should be released afterward.

4 Further optimizations

Further improvements to the implementation are di-
vided into three areas: improving the logging im-
plementation, eliminating unnecessary logging oper-
ations at compile time, and eliminating unnecessary
logging data at run time.

4.1 Improving the logging implemen-
tation

Instead of implementing each log as an array, as de-
scribed in the previous section, we implement each
log as a linked list of array buckets. When a log fills,
a new array is allocated and the previous array is
added to the linked list. The cost of this is amortized
by choosing a suitable array size (currently 128 ele-
ments, although we could use an adaptive strategy).
We modified the runtime operations that used an in-
dex in the log to instead use a pair consisting of the
array and an offset into the array. Using a linked list
of arrays is more efficient than using a single array
to represent the log. When the single array fills, a
new array has to be allocated and the contents of the
original copied to that array.

We also modified the garbage collector to treat the
log data specially. In this paper, we use a genera-
tional copying collector in the Bartok runtime sys-
tem.! We treat the log data specially because each
log element contains a pointer to the object being
modified. In addition, log elements for memory loca-
tions containing reference types contain pointers to
the original reference (object) type. Without special
treatment, each logging operation needs one or two
write barrier operations in a generational collector.

The generational collector treats the log data for
each thread as part of the root set when a collection
of the nursery is done. To scan only the new log
data added since the previous garbage collection, the
system maintains a low water mark for each log. The
low water mark is the earliest point in a log that
has been modified since the previous collection. It is
easy to incorporate this tracking into the try all block
operations described in Section 3.6.

4.2 Eliminating logging operations at
compile time

Logging has three interesting properties from a
compile-time optimization perspective. First, modifi-
cations to data that are allocated since a try.all block
began do not have to be logged. Note that if the data
are modified within a nested try.all block, the data
does not count as newly allocated since that try.all
block began. Second, only the first modification to a
memory location in a try.all block has to be logged.
Third, it is correct to log a memory location earlier
than necessary, as long as the logging is done after
the enclosing try.all begins.

1The Bartok runtime system has several garbage collector
implementations

To take advantage of the first property, we have an
interprocedural analysis that tracks newly-allocated
data and eliminates logging operations on stores to
that data. The analysis tracks when a variable is
bound to newly allocated data. The analysis is flow-
sensitive within a function and flow-and-context in-
sensitive interprocedurally. The information about
data being newly allocated is killed at the beginning
of a try_all block.

It is possible to take advantage of the second and
third properties by modifying code motion and re-
dundancy elimination optimizations. The rules for
code motion are simple: a logging operation cannot
be moved before a try.all block begins or after a try.all
block ends. In addition, a logging operation cannot
be moved after any modifications to the memory loca-
tion being logged. The modifications to redundancy
elimination are similarly straightforward: logging op-
erations in a try all block that are dominated by other
logging operations that must log that memory loca-
tion can be eliminated. Even further optimizations
are possible by combining these optimizations with
object-level logging, where an entire object is logged
instead of just a single location within the object.

4.3 Eliminating unnecessary logging
data at run time

A simple implementation of logging will use space
proportional to the number of times heap data is
modified in a try.all block (i.e. proportional to run-
ning time), as opposed to space proportional to the
amount of data modified. For long-running try.all
blocks, this can be problematic. Thus, it is impor-
tant to have strategies for eliminating redundant log
entries or compressing log data.

The problem of detecting redundant log entries is
similar to the problem detecting redundancy in re-
membered sets for generational garbage collectors,
which has been well studied. A remembered set
tracks all pointers from older generations to a younger
generation.

We chose to use a hash-table based filtering mecha-
nism that tracks the memory locations that have been
logged recently. The filtering is done as part of the
logging process. The hash function for memory loca-
tions is cheap to compute. When collisions occur, we
overwrite the hash table entry with the most recent
memory location. One issue is that garbage collec-
tion, which may move data, invalidates the hash ta-
ble. We currently allow the hash table to be repopu-
lated and do not rehash existing log entries when this
happens. The default size of the table is 2,048 entries.
It can be overriden manually on a per-application

basis. Obviously an adaptive scheme that monitors
misses in the cache and the benefit from increasing
the cache size could be used to determine the appro-
priate hash table size.

5 Evaluation

In this section, we first evaluate our implementation
qualitatively and then evaluate it quantitatively.

The performance of a try.all implementation de-
pends on several factors: the amount of data live on
entry at the beginning of a try_all, the number of heap
writes as a proportion of instructions executed dur-
ing a try.all, the number of distinct heap locations
written during the try.all, and the amount of data
allocated during the try.all. A try.all implementation
must retain all data live on entry at the beginning
of a try.all block, unless it uses an escape analysis to
determine data that is dead after the try.all.

Our implementation will do well for short-running
try.all blocks, try_all blocks not containing too many
heap writes, or try.all blocks that write to a small
number of heap locations.

Our implementation may not do well for long-
running try.all blocks or try.all blocks that modify
many heap locations. It will retain most data al-
located in a try.all, unless the data is used only in
initializing writes (that is, in a functional style). It
will also need space for log entries for each distinct
heap location that is written.

5.1 Benchmarks
setup

and experimental

Table 1 shows the benchmarks that we used to eval-
uate the logging implementation. The programs in
the first section (compress through wc) are originally
Java programs from the IMPACT/NET project [12,
11]. They were hand-translated to C#. The second
section includes the Bartok inlining phase and an im-
plementation of quicksort. As described in Table 1,
we modified each benchmark to use try.all. This is
crucial choice in evaluating try.all. We purposefully
chose to place try.all blocks to enclose large parts of
the benchmarks to stress our implementation.

Our most realistic benchmark is the Bartok inliner.
The Bartok inline phase does a bottom-up traversal
of the call graph, inlining into each method. If it
does inlining in a method, it calls various per-function
clean up optimizations. We modified the inline phase
to wrap the processing of each method in a try.all
block. One might do this because of concern about
optimizations or the inliner itself failing.

10

Because the inlining phase makes extensive use of
other compiler components such as the IR and clean
up opimizations, we only present a conservative esti-
mate of the line count. We are able to self-compile
the Bartok compiler using a pass of inlining where
each per-method inline is undone using try.all.

We measure performance on a Dell Precision Work-
Station 450. The processor is a 3.06 Ghz Xeon (tm)
with an 8Kbyte first-level cache and a 512 KByte
second-level cache. It has 2 Gbytes of RAM The op-
erating system is Windows XP Professional (tm) with
Service Pack 2. The version of the CLR is 1.1.4322.

5.2 Effect of logging on program
speed

Table 2 shows the effect of logging on program speed.
The first column is the speed of the original pro-
grams when run by the CLR. The second column is
the speed of the original programs when compiled by
Bartok and run as stand-alone executable. The third
column shows the speed of the programs modified to
use try.all. All columns are normalized to the speed of
the original programs when compiled by Bartok (the
second column). The speed of the CLR versions of
these programs demonstrates that Bartok produces
code competitive with a production system.

We see that our initial logging implementation has
a wide range of effect on program speed, ranging from
no effect (for othello) to reducing speed to 28% of the
original speed (for compress). Othello is an example
where filtering works very well: the program’s state
consists of small game board. There is no effect of
logging on performance.

Compress and linpack are benchmarks where log-
ging individual memory writes works poorly. Each
benchmark is modifying a large in-memory array.
The entire array or object could be logged before ex-
ecuting the core loops of these programs. This sug-
gests pursuing a strategy that uses programmer hints
or profiling to decide what kinds of log operations to
place and where to place them.

For our most realistic benchmark, the Bartok in-
liner, we found that its speed with logging was 49%
of the original speed.

5.3 Effect of logging on space usage

Table 3 shows the effect of logging on working set.
Memory usage is measured using the peak working
set, as reported by the operating system. We nor-
malize the peak working set for logging to the peak
working set for the original programs. In some cases,
logging has no effect. The xlisp program allocates

Name LOC | Description Modifications
compress 2,998 | C# version of SPEC95 compress_129 compressing | Wrap compress/decompress function in try.all
and decompressing large arrays of synthetic data.
xlisp 8,950 | C# version of SPEC95 1i_130 Interpet each LISP file in a separate try.all
go 31,860 | C# version of SPEC95 go_099 Place entire game play in a try.all
cmp 244 | C# version of IMPACT benchmark cmp on two Place entire compare method in try.all
large files
linpack 635 | C# version of LINPACK on 1000x1000 matrix Run benchmark in a try_all
othello 562 | C# version of an Othello playing program Play entire game in a try.all
wce 186 | C# version of the UNIX wc utility on a large file | Run benchmark in a try.all
inlining > 20,000 | Bartok inliner (includes cleanup opts) Wrap the per-method code in try.all
qsort 270 | Quicksort array of 4,000,000 pairs of integers Wrap entire sort in try.all
Table 1: Benchmark programs
Name CLR | Original | Logging Name Logging
(%) (%) (%) (% of original peak working set)
compress 94 100 28 compress 491
xlisp 82 100 35 xlisp 1050
go 92 100 56 go 137
cmp 99 100 32 cmp 280
linpack 100 100 24 linpack 437
othello 91 100 100 othello 101
wce 96 100 40 we 152
inlining 125 100 49 inlining 104
gsort 96 100 50 gsort 252

Table 2: Effect of logging on normalized program
speed

a large amount of data that is retained during the
try.all block. The high number of heap locations writ-
ten in compress and linpack programs lead to a large
amount of logging data.

5.4 Code size

Table 3 shows the effect of try_all on code size. We
measure the size of the text segment at the object file
level. We see that code size increases by 1% to 47%.
This could be improved by doing a better static anal-
ysis to determine what virtual methods are callable
from a try.all.

6 Related work

There has been a widespread adoption of exception
handling as a mechanism for dealing with errors in
modern programming environments. There has been
some work done attempting to automate this task.
Additionally, some work has been done integrating
the concept of a transaction, familiar from databases,
into programming languages.

11

Table 3: Effect of logging on normalized peak working
set

6.1 Exception handling

Exception handling in most widely-used program-
ming languages dates back to several 1970s papers.
Goodenough [5] discusses a wide range of existing
and possible semantics for exception handling. He
proposes structured exception handling, which unlike
prior constructs associates handlers lexically with the
statements raising the exception. Structured excep-
tion handling also allows the handler of an exception
to decide either to resume execution after the state-
ment that faulted (resumption semantics) or to termi-
nate execution of the statement that failed. The CLU
language adopted structured exception handling [1].
However, it dropped the notion of resumption seman-
tics because it makes it difficult to prove correctness
of programs and it inhibits optimization. Most sub-
sequent language designs have followed this decision.

Horning et al [10] propose basic recovery blocks.
Recovery blocks try to ensure that a condition is met
by executing a sequence of actions until the condition
becomes true. If an action does not ensure the condi-
tion holds, its changes to state are rolled back. They
have the syntax: ensure condition by action 1 else

Name Logging

(% of original code size)
compress 123
xlisp 143
go 147
cmp 135
linpack 119
othello 118
wce 131
inlining 134
qsort 101

Table 4: Effect of try.all on code size

action 2 else action 3 ... Checkpointing is done by
keeping a cache of old values of memory locations.

Melliar-Smith and Randell [14] describe flaws with
structured exception handling: a programmer has to
anticipate all the points at which an exception may
occur and the types of exceptions that may occur.
They argue that it will be difficult for a programmer
to properly anticipate exception points because they
can occur at so many places. They advocate combin-
ing basic recovery blocks with structured exception
handling. Cristian also argues for combining excep-
tion handling with some form of state rollback [2].

Weimer and Necula [15] analyze common mistakes
in implementing error handlers. They create tools
to automate this analysis, attempting to find code
paths that may not correctly release resources. They
assume that programmers reliably insert error han-
dling code where appropriate, and attempt to ensure
that this code correctly discharges its responsibilities.
They find that all of the programs they analyzed con-
tained at least some paths which did not use resource
safely. To support automating recovery, they intro-
duce compensation stacks Compensation stacks allow
a programmer to specify how to compensate for an ac-
tion, and guarantee that the compensation will take
place. Note that (unlike registered IUndo objects)
compensations are always executed, even if the code
runs without error.

Fetzer et al [3] classify methods as either failure
atomic or failure nonatomic. They attempt to auto-
matically find methods that do not properly restore
state and mask the problem by creating a wrapper
that automatically restores state rather then attempt
to find and automatically fix buggy code as they do.

6.2 Programming language support
for transactions

Some programming languages provide support for
transactions. Transactions combine several features:

12

concurrency control to ensure consistent access to
data, state rollback, and committing data to persis-
tent storage. These languages have been too heavy-
weight for many uses. In part, this is because it is
difficult to provide lightweight concurrency control
for data access that provably prevents data races.
In contrast to transactions, we provide a lightweight
mechanism for state rollback that eliminates errors in
sequential code.

Argus [13] introduces the notion of an atomic re-
gions into programming languages. An atomic region
of code is code that is executed in an all-or-nothing
fashion. Because of the cost of ensuring atomicity,
only same objects are made atomic. Consistency is
implemented by acquiring a reader or writer lock for
an object before accessing or modifying any fields of
the object. Rollback is provided by making a copy of
an object before modifying it.

Haines et al [6] add transactions to Standard ML.
They separate transactions into 4 components, one
of which is an undo function. The undo function is
a higher-order function that takes another function
f as an argument and executes f. If f throws an
Abort exception or has an uncaught exception, the
undo method undoes all changes to state. Their undo
function is not integrated with exception handling.
Their implementation, like ours, uses logging of all
changes to state.

More recently, Harris and Fraser [9] add atomic
blocks to Java. An atomic block is essentially treated
as a transaction. This is implemented on top of a soft-
ware transactional memory (STM) system they de-
velop. The STM uses a form of logging to keep track
of old data in case the transaction must be aborted.
It also needs to keep track of other data associated
with each object, such as the current owner. In con-
trast to our implementation, the STM imposes an
additional overhead on both reads and writes. These
atomic blocks are used to allow lockless synchroniza-
tion, as they can be reverted and restarted if a con-
flicting write is detected. Harris separately discusses
[8, 7] possible extensions to better handle external
actions. Atomic blocks guarantee more to the pro-
grammer then try all blocks do, and consequently are
more costly.

References

[1] Russell P. Atkinson, Barbara H. Liskov, and
Robert W. Schiefler. Aspects of implementing
CLU. ACM, 1978.

[2] Flaviu Cristian. A recovery mechanism for mod-
ular software. In Proceedings of the 4th Inter-

[10]

national Conference on Software Engineering,
pages 42-50, Piscataway, NJ, USA, 1979. IEEE
Press.

Christof Fetzer, Pascal Felber, and Karin Hog-
stedt. Automatic detection and masking of
nonatomic exception handling. IEFE Trans.

Softw. Eng., 30(8):547-560, 2004.

Robert Fitzgerald, Todd B. Knoblock, Erik Ruf,
Bjarne Steensgaard, and David Tarditi. Mar-
mot: An optimizing compiler for Java. Software:
Practice and Ezperience, 30(3):199-232, March
2000.

John B. Goodenough. Exception handling: Is-
sues and a proposed notation. Communications
of the ACM, 18(12):683-696, December 1975.

Nicholas Haines, Darrell Kindred, J. Gregory
Morrisett, Scott M. Nettles, and Jeannette M.
Wing. Composing first-class transactions. ACM
Trans. Program. Lang. Syst., 16(6):1719-1736,
1994.

Tim Harris. Design choices for language-based
transactions. Technical report, Computer Lab
Technical Report 572, August 2003.

Tim Harris. Exceptions and side-effects in
atomic blocks. In PODC Workshop on Con-
currency and Synchronization in Java Programs
(CSJP 2004), July 2004.

Tim Harris and Keir Fraser. Language support
for lightweight transactions. In Proceedings of
the 18th annual ACM SIGPLAN conference on
Object-oriented programing, systems, languages,
and applications, pages 388—402. ACM Press,
2003.

J.J. Horning, H.C. Lauer, P.M. Melliar-Smith,
and B. Randell. A program structure for er-
ror detection and recovery. In Proceedings of the
International Symposium on Operating Systems:
Theoretical and Practical Aspects, volume 16 of
Lecture Notes in Computer Science, pages 171—
187, Rocquencourt, France, April 1974. Springer
Verlag.

Cheng-Hsueh A. Hsieh, Marie T. Conte,
Teresa L. Johnson, John C. Gyllenhaal, and
Wen-mei W. Hwu. Optimizing NET compil-
ers for improved Java performance. Computer,
30(6):67-75, June 1997.

13

[12]

[13]

[14]

[15]

Cheng-Hsueh A. Hsieh, John C. Gyllenhaal, and
Wen mei W. Hwu. Java bytecode to native code
translation: The Caffeine prototype and prelim-
inary results. In IEEFE Proceedings of the 29th
Annual International Symposium on Microarchi-
tecture, 1996.

Barbara Liskov and Robert Scheifler. Guardians
and actions: Linguistic support for robust, dis-
tributed programs. ACM Trans. Program. Lang.
Syst., 5(3):381-404, 1983.

P.M. Melliar-Smith and B. Randell. Software
reliability: The role of programmed exception
handling. In Proceedings of the ACM Confer-
ence on Language Design For Reliable Software,
volume 12 of ACM SIGPLAN Notices, pages 95—
100, Raleigh, NC, 1977. ACM Press.

Westley Weimer and George C. Necula. Find-
ing and preventing run-time error handling mis-
takes. In 19th Annual ACM Conference on
Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA 04), Octo-
ber 2004.

