
Probabilistic Models for Relational Data

David Heckerman, Christopher Meek, and Daphne Koller∗

Microsoft Research and ∗Stanford University
heckerma@microsoft.com, meek@microsoft.com, koller@cs.stanford.edu

March 2004

Technical Report
MSR-TR-2004-30

Microsoft Research

Microsoft Corporation

One Microsoft Way

Redmond, WA 98052

http://www.research.microsoft.com

Abstract

We introduce a graphical language for relational data called the probabilistic entity-

relationship (PER) model. The model is an extension of the entity-relationship model,

a common model for the abstract representation of database structure. We concentrate

on the directed version of this model—the directed acyclic probabilistic entity-relationship

(DAPER) model. The DAPER model is closely related to the plate model and the proba-

bilistic relational model (PRM), existing models for relational data. The DAPER model is

more expressive than either existing model, and also helps to demonstrate their similarity.

In addition to describing the new language, we discuss important facets of modeling rela-

tional data, including the use of restricted relationships, self relationships, and probabilistic

relationships. Many examples are provided.

Keywords: relational modeling, relational data, plate models, probabilistic relational mod-

els.

1

1 Introduction

For over a century, statistical modeling has focused primarily on “flat” data—data that can

be encoded naturally in a single two-dimensional table having rows and columns. The dis-

ciplines of pattern recognition, machine learning, and data mining have had a similar focus.

Notable exceptions include hierarchical models (e.g., Good, 1965) and spatial statistics (e.g.,

Besag, 1974). Over the last decade, however, perhaps due to the ever increasing volumes

of data being stored in databases, the modeling of non-flat or relational data has increased

significantly. During this time, two graphical languages for relational data have emerged:

plate models (e.g., Buntine, 1994; Spiegelhalter, 1998) and probabilistic relational models

(PRMs) (e.g., Friedman, Getoor, Koller, and Pfeffer, 1999; Getoor, Friedman, Koller, and

Pfeffer, 2002). These models are to relational data what ordinary graphical models (e.g.,

directed-acyclic graphs and undirected graphs) are to flat data.

Although graphically quite different, the two languages are similar in their ability to

represent or express probabilistic relationships (i.e., conditional independence) in relational

data. Nonetheless, plate models have been used almost exclusively by statisticians, whereas

PRMs have been used mostly by computer scientists. In this paper, we demonstrate the

similarity among these languages with the hope of fostering greater communication and

collaboration among researchers in these two disciplines.

We demonstrate the similarity between the plate model and PRM by introducing a third

language—the probabilistic entity-relationship (PER) model—that is similar to both. This

new model class is an extension of the entity-relationship (ER) model, a common model

for the abstract representation of database structure. As we shall see, this language not

only serves to make connections between plate models and PRMs, but it also enhances

the expressiveness of these languages. Unlike plates models or PRMs, PER models make

relationships first class objects in the language. This feature of the language makes it

particularly easy to model relational data.

In this paper, we concentrate on a particular type of PER model—the directed acyclic

probabilistic entity-relationship (DAPER) model—in which all probabilistic arcs are di-

rected, although we discuss extensions near the end of the paper. It is this version of PER

model that is most similar to the plate model and PRM. We define new versions of the

plate model and PRM such their expressiveness is equivalent to the DAPER model, and

then compare the new and old definitions. Consequently, we both demonstrate the simi-

larity among the original languages as well as enhance their abilities to express conditional

independence in relational data.

In Section 2, we review (ordinary) directed acyclic graphical models. In Section 3,

2

we present the basics of our relational language. First, we introduce the PER model by

example. Then, we introduce our definitions for the plate model and PRM by providing a

mapping from any DAPER model to an equivalent plate model and from any DAPER model

to an equivalent PRM. In Section 4, we examine DAPER models in detail, examining issues

such as the representation of restricted relationships, self relationships, and probabilistic

relationships. In Sections 5 and 6, we examine plate models and PRMs, respectively, and

discuss how our definitions differ from and improve upon the existing ones. In Section 7,

we describe extensions to the DAPER model including versions that encode undirected

and hyperedge models. In the Appendix, we provide formal definitions and theorems.

Throughout the paper, we concentrate on the PER model as a language for representing

conditional independence in relational data. We pay little attention to issues of learning

such models from data or of performing probabilistic inference with such models.

We should emphasize that the languages we discuss are neither meant to serve as a

database schema nor meant to be built on top of one. In practice, database schemas

are built up over a long period of time as the needs of the database consumers change.

Consequently, schemas for real databases are often not optimal or are completely unusable

as the basis for statistical modeling. The languages we describe here are meant to be used

as statistical modeling tools, independent of the schema of the database being modeled.

This work borrows heavily from concepts surrounding PRMs described in (e.g.) Fried-

man et al. (1999) and Getoor et al. (2002). Where possible, we use similar nomenclature,

notation, and examples.

2 Background: Graphical Models

As mentioned, we shall concentrate on directed models in this paper. Accordingly, we first

review (ordinary) directed acyclic models.

A directed acyclic graphical (DAG) model for a finite set of attributes X = (X1, . . . , Xn)

with joint distribution p(x) has two components: (1) a directed acyclic graph—sometimes

referred to as the structure of the model—that encodes a set of conditional independencies

among the attributes, and (2) a collection of local distributions. The nodes in the directed

acyclic graph are in one-to-one correspondence with the attributes in X. To keep notation

simple, we use Xi to refer to the node corresponding to attribute Xi. Whether Xi refers

to an attribute or node will be clear from context. The absence of arcs in the directed

acyclic graph encode probabilistic independencies that allow the joint distribution for X to

be written as

p(x) =
n∏

i=1

p(xi|pai), (1)

3

where pai are the attributes corresponding to the parents of node Xi. The local distributions

of the DAG model is the set of conditional probability distributions p(xi|pai), i = 1, . . . , n.

Thus, a DAG model for X specifies the joint distribution for X.

An example DAG model structure for attributes (X, Y, Z, W) is shown in Figure 1a. The

structure (i.e., the missing arcs) encode the independencies (1) X and Z are independent

given Y , and (2) (Y, Z) and W are independent given X. We note that DAG models can be

interpreted as a generative model for the data. In our example, we can generate a sample

for (X, Y, Z, W) by first sampling X, then Y and W given X, and finally Z given Y .

As we shall see, when working with relational data, it is often necessary to express

constraints or restrictions among attributes. Such restrictions can be encoded in a DAG

model, which we review here.

As a simple example, suppose we have generative story for binary (0/1) attributes

X, Y, Z, and W that can be described by the DAG model structure shown in Figure 1a. In

addition, suppose we know that at most two of these attributes take on the value one. We

can add this restriction to the model as shown in Figure 1b. Here, we have added a binary

node named R. Associated with this node (not shown in the figure) is a local distribution

wherein R = 1 with probability one when at most two of its parents take on value one, and

with probability zero otherwise. To encode the restriction, we set R = 1. Note that R is a

deterministic attribute. That is, given the parents of R, R is known with certainty. As is

commonly done in the graphical modeling literature, we indicate deterministic nodes with

double ovals.1

Assuming that the restriction always holds—that is, R is always equal to one—it is

not meaningful to work with the joint distribution p(x, y, z, w, r). Instead, the appropriate

distribution to make inferences with is

p(x|r = 1) = p(x) p(y|x) p(z|y) p(w|x) p(r = 1|x, y, z, w). (2)

Readers familiar with directed factor-graph models (Frey, 2003) will recognize that this

distribution for (X, Y, Z, W) can be encoded by a directed factor-graph model in which

node R is replaced by the factor f(x, y, z, w) = p(r = 1|x, y, z, w). More generally, the

factor-graph model is perhaps a more natural model for situations having both a generative

component and restrictions. In this paper, however, we use the DAG representation of

restrictions so that we remain within the class of DAG models and thereby simplify the

presentation.
1DAG models can also be used to encode “soft” restrictions. For example, if we know that zero, one,

two, three, and four of the attributes X take on the value one with probabilities p0, p1, p2, p3, and p4,

respectively, we can encode this soft restriction using the DAG model structure in Figure 1b where R is no

longer deterministic and has the appropriate local probability distribution.

4

X

W

Z

Y

X

W

Z

Y

R

(a) (b)

Figure 1: (a) A DAG model. (b) A similar DAG model with an added restriction among

the attributes.

3 The Basic Ideas

Before we describe languages for the statistical modeling of relational data, we begin with a

description of a language for modeling the data itself. The language we discuss is the entity-

relationship (ER) model, a commonly used abstract representation of database structure

(e.g., Ullman and Widom, 2002). The creation of an ER model is often the first step in

the process of building a relational database. Features of anticipated data and how they

interrelate are encoded in an ER model. The ER model is then used to create a relational

schema for the database, which in turn is used to build the database itself.

It is important to note that an ER model is a representation of a database structure,

not of a particular database that contains data. That is, an ER model can be developed

prior to the collection of any data, and is meant to anticipate the data and the relationships

therein.

When building ER models, we distinguish between entities, relationships, and attributes.

An entity corresponds to a thing or object that is or may be stored in a database or

dataset2; a relationship corresponds to a specific interaction among entities; and an attribute

corresponds to a variable describing some property of an entity or relationship. Throughout

the paper, we use examples to illustrate concepts.

Example 1 A university database maintains records on students and their IQs, courses

and their difficulty, and the courses taken by students and the grades they receive.

In this example, we can think of individual students (e.g., john, mary) and individual
2In what follows, we make no distinction between a database and a dataset.

5

courses (e.g., cs107, stat10) as entities.3 Naturally, there will be many students and courses

in the database. We refer to the set of students (e.g., {john,mary,. . .}) as an entity set.

The set of courses (e.g., {cs107,stat10,. . . }) is another entity set. Most important, because

an ER model can be built before any data is collected, we need the concept of an entity

class—a reference to a set of entities without a specification of the entities in the set. In

our example, the entity classes are Student and Course.

A relationship is a list of entities. In our example, a possible relationship is the pair

(john, cs107), meaning that john took the course cs107. Using nomenclature similar to

that for entities, we talk about relationship sets and relationship classes. A relationship

set is a collection of like relationships—that is, a collection of relationships each relating

entities from a fixed list of entity classes. In our example, we have the relationship set of

student-course pairs. A relationship class refers to an unspecified set of like relationships.

In our example, we have the relationship class Takes.

The IQ of john and the difficulty of cs107 are examples of attributes. We use the term

attribute class to refer to an unspecified collection of like attributes. In our example, Stu-

dent has the single attribute class Student.IQ and Course has the single attribute class

Course.Diff. Relationships also can have attributes; and relationship classes can have at-

tribute classes. In our example, Takes has the attribute class Takes.Grade.

An ER model for the structure of a database graphically depicts entity classes, relation-

ships classes, attribute classes, and their interconnections. An ER model for Example 1

is shown in Figure 2a. The entity classes (Student and Course) are shown as rectangular

nodes; the relationship class (Takes) is shown as a diamond-shaped node; and the attribute

classes (Student.IQ, Course.Diff, and Takes.Grade) are shown as oval nodes. Attribute

classes are connected to their corresponding entity or relationship class, and the relation-

ship class is connected to its associated entity classes. (Solid edges are customary in ER

models. Here, we use dashed edges so that we can later use solid edges to denote proba-

bilistic dependencies.)

An ER model describes the potential attributes and relationships in a database. It says

little about actual data. A skeleton for a set of entity and relationship classes is specification

of the entities and relationships associated with a particular database. That is, a skeleton for

a set of entity and relationship classes is collection of corresponding entity and relationship

sets. An example skeleton for our university-database example is shown in Figure 2b.

An ER model applied to a skeleton defines a specific set of attributes. In particular, for

every entity class and every attribute class of that entity class, an attribute is defined for
3In a real database, longer names would be needed to define unique students and courses. We keep the

names short in our example to make reading easier.

6

every entity in the class; and, for every relationship class and every attribute class of that

relationship class, an attribute is defined for every relationship in the class. The attributes

defined by the ER model in Figure 2a applied to the skeleton in Figure 2b are shown in

Figure 2c. In what follows, we use ER model to mean both the ER diagram—the graph in

Figure 2a—and the mechanism by which attributes are generated from skeletons.

A skeleton still says nothing about the values of attributes. An instance for an ER

model consists of (1) a skeleton for the entity and relationship classes in that model, and (2)

an assignment of a value to every attribute generated by the ER model and the skeleton.

That is, an instance of an ER model is an actual database.

Let us now turn to the probabilistic modeling of relational data. To do so, we introduce

a specific type of probabilistic entity-relationship model: the directed acyclic probabilistic

entity-relationship (DAPER) model. Roughly speaking, a DAPER model is an ER model

with directed (solid) arcs among the attribute classes that represent probabilistic depen-

dencies among corresponding attributes, and local distribution classes that define local

distributions for attributes. Recall that an ER model applied to a skeleton defines a set

of attributes. Similarly, a DAPER model applied to a skeleton defines a set of attributes

as well as a DAG model for these attributes. Thus, a DAPER model can be thought of

as a language for expressing conditional independence among unrealized attributes that

eventually become realized given a skeleton.

As with the ER diagram and model, we sometimes distinguish between a DAPER di-

agram, which consists of the graph only, and the DAPER model, which consists of the

diagram, the local distribution classes, and the mechanism by which a DAPER model de-

fines a DAG model given a skeleton.

Example 2 In the university database (Example 1), a student’s grade in a course depends

both on the student’s IQ and on the difficulty of the course.

The DAPER model (or diagram) for this example is shown in Figure 3a. The model ex-

tends the ER model in Figure 2 with the addition of arc classes and local distribution classes.

In particular, there is an arc class from Student.IQ to and arc class from Takes.Grade and

from Course.Diff to Takes.Grade. These arc classes are denoted as a solid directed arc. In

addition, there is a single local distribution class for Takes.Grade (not shown).

Just as we expand attribute classes in a DAPER model to attributes in a DAG model

given a skeleton, we expand arc classes to arcs. In doing so, we sometimes want to limit the

arcs that are added to a DAG model. In the current problem, for example, we want to draw

an arc from attribute c.Diff for course c to attribute Takes(s, c′).Grade for course c′ and any

student s, only when c = c′. This limitation is achieved by adding a constraint to the arc

7

Course

Student

Takes

Diff

Grade

IQ

(a) (b)

(c)

Takes

stat10mary

cs107mary

cs107john

CourseStudent

cs107.Diff

T(mary.stat10).G

mary.IQjohn.IQ

stat10.Diff

T(mary,cs107).GT(john,cs107).G

mary

john

Student

stat10

cs107

Course

Figure 2: (a) An entity-relationship (ER) model depicting the structure of a university

database. (b) An example skeleton for the entity and relationship classes in the ER model.

(c) The attributes defined by the application of the ER model to the skeleton. The attribute

names are abbreviated.

8

class—namely, the constraint course[Diff] = course[Grade] (see Figure 3a). Here, the terms

“course[Diff]” and “course[Grade]” refer to the entities c and c′, respectively—the entities

associated with the attributes at the ends of the arc.

The arc class from Student.IQ to Takes.Grade has a similar constraint: student[IQ] =

student[Grade]. This constraint says that we draw an arc from attribute s.IQ for student

s =student[IQ] to Takes(s′, c).Grade for student s′=student[Grade] and any course c only

when s = s′. As we shall see, constraints in DAPER models can be quite expressive—for

example, they may include first-order expressions on entities and relationships.

Figure 3c shows the DAG (structure) generated by the application of the DAPER model

in Figure 3a to the skeleton in Figure 3b. (The attribute names in the DAG model are

abbreviated.) The arc from stat10.Diff to Takes(mary,cs107).Grade (e.g.) is disallowed by

the constraint on the arc class from Course.Diff to Takes.Grade.

Regardless of what skeleton we use, the DAG model generated by the DAPER model

in Figure 3a will be acyclic. In general, as we show in the Appendix, if the attribute

classes and arc classes in the DAPER diagram form an acyclic graph, then the DAG model

generated from any skeleton for the DAPER model will be acyclic. Weaker conditions are

also sufficient to guarantee acyclicity. We describe one in the Appendix.

In general, a local distribution class for an attribute class is a specification from which

local distributions for attributes corresponding to the attribute class can be constructed,

when a DAPER model is expanded to a DAG model. In our example, the local distribution

class for Takes.Grade—written p(Takes.Grade|Student.IQ, Course.Diff)—is a specification

from which the local distributions for Takes(s, c).Grade, for all students s and courses c, can

be constructed. In our example, each attribute Takes(s, c).Grade will have two parents: s.IQ

and c.Diff. Consequently, the local distribution class need only be a single local probability

distribution. We discuss more complex situations in Section 4.

Whereas most of this paper concentrates issues of representation, the problems of prob-

abilistic inference, learning local distributions, and learning model structure are also of

interest. For all of these problems, it is natural to extend the concept of an instance to that

of a partial instance; an instance in which some of the attributes do not have values. A

simple approach for performing probabilistic inference about attributes in a DAPER model

given a partial instance is to (1) explicitly construct a ground graph, (2) instantiate known

attributes from the partial instance, and (3) apply standard probabilistic inference tech-

niques to the ground graph to compute the quantities of interest. One can improve upon

this simple approach by utilizing the additional structure provided by a relational model—

for example, by caching inferences in subnetworks. Koller and Pfeffer (1997), for example,

have done preliminary work in this direction. With regards to learning, note that from a

9

Course

Student

Takes

Diff

Grade

IQ

(a) (b)

(c)

cs107.Diff

T(mary.stat10).G

mary.IQjohn.IQ

stat10.Diff

T(mary,cs107).GT(john,cs107).G

de]course[Gra
f]course[Dif =

ade]student[Gr
]student[IQ =

Takes

stat10mary

cs107mary

cs107john

CourseStudent

mary

john

Student

stat10

cs107

Course

Figure 3: (a) A directed acyclic probabilistic entity-relationship (DAPER) model showing

that a student’s grade in a course depends on both the student’s IQ and the difficulty of

the course. The solid directed arcs correspond to probabilistic dependencies. These arcs

are annotated with constraints. (b) An example skeleton for the entity and relationship

classes in the ER model (the same one shown in the previous figure). (c) The DAG model

(structure) defined by the application of the DAPER model to the ER skeleton.

10

Bayesian perspective, both learning about both the local distributions and model structure

can be viewed as probabilistic inference about (missing) attributes (e.g., parameters) from

a partial instance. In addition, there has been substantial research on learning PRMs (e.g.,

Getoor et al., 2002) and much of this work is applicable to DAPER models.

We shall explore PER models in much more detail in subsequent sections. Here, let us

examine two alternate languages for relational data: plate models and PRMs.

Plate models were developed independently by Buntine (1994) and the BUGS team

(e.g., Spiegelhalter 1998) as a language for compactly representing graphical models in

which there are repeated measurements. We know of no formal definition of a plate model,

and so we provide one here. This definition deviates slightly from published examples of

plate models, but it enhances the expressivity of such models while retaining their essence

(see Section 5).

According to our definition, plate and DAPER models are equivalent. The invertible

mapping from a DAPER to plate model is as follows. Each entity class in a DAPER model

is drawn as a large rectangle—called a plate. The plate is labeled with the entity-class

name. Plates are allowed to intersect or overlap. A relationship class for a set of entity

classes is drawn at the named intersection of the plates corresponding to those entities. If

there is more than one relationship class among the same set of entity classes, the plates

are drawn such that there is a distinct intersection for each of the relationship classes.

Attribute classes of an entity class are drawn as ovals inside the rectangle corresponding

to the entity but outside any intersection. Attribute classes associated with a relationship

class are drawn in the intersection corresponding to the relationship class. Arc classes and

constraints are drawn just as they are in DAPER models. In additon, local distribution

classes are specified just as they are in DAPER models.

The plate model corresponding to the DAPER model in Figure 3a is shown in Figure 4a.

The two rectangles are the plates corresponding to the Student and Course entity classes.

The single relationship class between Student and Course—Takes—is represented as the

named intersection of the two plates. The attribute class Student.IQ is drawn inside the

Student plate and outside the Course plate; the attribute class Course.Diff is drawn inside

the Course plate and outside the Student plate; and the attribute class Takes.Grade is drawn

in the intersection of the Student and Course plate. The arc classes and their constraints

are identical to those in the DAPER model.

Probabilistic Relational Models (PRMs) were developed in (e.g.) Friedman et al. (1999)

explicitly for the purpose of representing relational data. The PRM extends the relational

model—another commonly used representation for the structure of a database—in much

the same way as the PER model extends the ER model. In this paper, we shall define

11

Diff

Grade

IQ

Course

Student

Diff

Course

IQ

Student

Course
Student

Grade

Takes

(a) (b)

Takes

de]course[Gra
f]course[Dif =

ade]student[Gr
]student[IQ =

de]course[Gra
f]course[Dif =

ade]student[Gr
]student[IQ =

Figure 4: A plate model (a) and probabilistic relational model (b) corresponding the

DAPER model in Figure 3a.

directed PRMs such that they are equivalent to DAPER models and, hence, plate models.

This definition deviates from the one given by (e.g.) Friedman et al. (1999), but enhances

the expressivity of the language as previously defined (see Section 6).

The invertible mapping from a DAPER model to a directed PRM (by our definition)

takes place in two stages. First, the ER-model component of the DAPER model is mapped

to a relational model in a standard way (e.g., Ullman and Widom, 2002). In particular, both

entity and relationship classes are represented as tables. Foreign keys—or what Getoor et

al. 2002 call reference slots—are used in the relationship-class tables to enocde the entity-

relationship connections in the ER model. Attribute classes for entity and relationship

classes are represented as attributes or columns in the corresponding tables of the relational

model. Second, the probabilistic components of the DAPER model are mapped to those of

the directed PRM. In particular, arc classes and constraints are drawn just as they are in

the DAPER model.

The directed PRM corresponding to the DAPER model in Figure 3a is shown in Fig-

ure 4b. (The local distribution for Takes.Grade is not shown.) The Student entity class

and its attribute class Student.IQ appear in a table, as does the Course entity class and its

attribute class Course.Diff. The Takes relationship and its attribute class Takes.Grade is

shown as a table containing the foreign keys Student and Course. The arc classes and their

constraints are drawn just as they are in the DAPER model.

12

4 Probabilistic Entity-Relationship Models

We now examine DAPER models in detail. After reviewing the fundamentals, we discuss the

representation of restricted relationships, self relationships, and probabilistic relationships.

In what follows, we use the following conventions in our notation. We use either capi-

talized friendly names (e.g., Student, Course) or tokens (e.g., E) for entity classes. We use

non-capitalized friendly names or abbreviations (e.g., student[Grade], s) for corresponding

entities. Similarly, we use capitalized friendly names (e.g., Takes) or tokens (e.g., R) for

relationship classes. We use (e.g.) R(s, c) to say that entities s and c are a relationship

associated with the relationship class R. We use X to refer to an arbitrary class when the

distinction between an entity and relationship class is unimportant. We use expressions

such as X.A to represent a attribute class of class X, and x.A to represent an (ordinary)

attribute of entity x.

4.1 Fundamentals

A DAPER model can be viewed as a macro language—a language that, given a skeleton,

expands to a DAG model. We use the term ground graph to refer to the structure of the

DAG model created by the expansion of a DAPER model given a skeleton. An important

part of this expansion is the drawing of arcs in the ground graph. Because the DAPER

model is so compact, a mechanism is needed to constrain the drawing of arcs. Without

such a mechanism, important conditional independence relations could not be expressed.

As we have seen, this mechanism in a DAPER model takes the form of constraints on

arc classes. To better understand how these constraints work, consider the following four

related examples.

Example 3 A database contains diseases and symptoms for a given patient. Every disease

is a potential cause of every symptom.

The DAPER model for this example is shown in Figure 5a. The entity classes Disease

and Symptom have attribute classes Disease.Present and Symptom.Present, respectively,

and there are no relationship classes. In the diagram, the arc class from Disease.Present

to Symptom.Present has no constraint. Because there is no constraint, the ground graph

generated by the application of this DAPER model to any given skeleton is a full bipartite

graph. The bipartite graph generated by the DAPER model applied to a skeleton in which

there are three diseases and three symptoms is shown in Figure 5b.

We give this example first to emphasize that arc classes need not have constraints. Now,

let us see what happens when we include such constraints.

13

Disease

Symptom

Present

Present

(a) (b)

Present.1d Present.2d Present.3d

Present.1s Present.2s Present.3s

Figure 5: (a) A DAPER model for a complete bipartite graph between symptoms and

diseases. (b) A ground graph (a DAG model structure) generated from the DAPER model

given a skeleton with three diseases and symptoms.

Example 4 Extending Example 3, suppose a physician has identified the possible causes

of each symptom.

The DAPER model for Example 4 is shown in Figure 6a. With respect to the model in

Figure 5a, there is now the relationship class Causes, where Causes(d, s) is true if the physi-

cian has identified disease d as a possible cause of symptom s. Also new is the constraint

Causes(d, s) on the arc class. This constraint says that, when we expand the DAPER model

to a DAG model given a skeleton, we draw an arc from d.Present to s.Present only when

Causes(d, s) holds. Note that, in the diagram we use “d” and “s” to refer to the entities as-

sociated with Disease.Present and Symptom.Present, respectively. In what follows, we will

continue to make strong abbreviations as in this example, although such abbreviations are

not required and may be undesirable for computer implementations of the PER language.

In the next two examples, we consider more complex constraints.

Example 5 Extending Example 3 in a different way, suppose the physician has identified

both primary (major) and secondary (minor) causes of disease.

The DAPER model for Example 5 is shown in Figure 7a. There are now two relationship

classes—Primary (1o) Causes and Secondary (2o) Causes—between the two entity classes,

and the constraint is a disjunctive one: 1oCauses(d, s) ∨ 2oCauses(d, s). This constraint

says that, when the DAPER model is expanded to a DAG model given a skeleton, an arc is

drawn from d.Present to s.Present only when d is a primary and/or secondary cause of s.

Example 6 Extending Example 3 in a different way, suppose that both diseases and symp-

toms have category labels—labels drawn from the same set of categories. The possible causes

of a symptom are diseases that have at least one category in common with that symptom.

14

Disease

Symptom

Causes

Present

Present

),(Causes sd

(a)

s2d2

s3d1

s2d1

s1d1

s3d3

SymptomDisease

Causes

Present.1d

(b) (c)

Present.2d Present.3d

Present.1s Present.2s Present.3s

Figure 6: (a) A DAPER model for incomplete bipartite graph of diseases and symptoms.

(b) A possible skeleton identifying diseases, symptoms, and potential causes of symptoms.

(c) A DAG model resulting from the expansion of the DAPER model to the skeleton.

The DAPER model for this example is shown in Figure 7b. Here, we have introduced a

third entity class—Category—whose entities have relationships with Disease and Symptom.

In particular, R1(d, c) holds when disease d is in category c; and R2(s, c) holds when

symptom s in category c. In this model, the arc class has the constraint ∃cR1(d, c)∧R2(c, s),

where c is an arbitrary entity in Category. Thus, when the DAPER model is expanded to

a DAG given a skeleton, an arc will be drawn from d.Present to s.Present only when d and

s share at least one category.

To understand how constraints are written and used in general, consider a DAPER

model with an arc class from X.A to Y.B. When this model is expanded to a ground

graph given a skeleton, depending on the constraint, we might draw an arc from x.A to

y.B for any x and y in the skeleton. To determine whether we do, we look at the tail

and head entities associated with this putative arc. The tail entities of the putative arc

from x.A to y.B is the set of entities associated with x. If X is an entity class, then the

tail entity is just the entity x. If X is a relationship class, then the tail entities are those

entities in the relationship tuple x. Similarly, the head entities of this arc is the set of

entities associated with y. For example, given the DAPER model and skeleton in Figure 3

for the university database, the tail and head entities of the putative arc from john.IQ to

Takes(john,cs107).Grade are (john) and (john,cs107), respectively. A constraint on the arc

class from X.A to Y.B in a DAPER model is any first-order expression involving entities

and relationship classes in the DAPER model such that the expression is bound when the

tail and head entities are taken to be constants. To determine whether we draw an arc

from x.A to y.B, we evaluate the first-order expression using the tail and head entities of

15

Disease

Symptom

1o Causes

Present

Present

(b)

2o Causes),(Causes2
),(Causes1

o

o

sd
sd ∨

Disease

Symptom

Present

Present

),(
),(

2

1

csR
cdRc ∧∃

Category

R1

R2

(a)

Figure 7: (a) A disjunctive constraint. (b) A constraint containing the existence quantifier.

the putative arc. It must evaluate to true or false. We draw the arc from x.A to y.B only

if the expression is true. Continuing with the same university database example, let us

determine whether to draw an arc from john.IQ to Takes(john,cs107).Grade. The relevant

constraint—“student[IQ] = student[Grade]”—references the tail entity student[IQ] = john

and the head entity student[Grade] = john. Thus, the expression evaluates to true and we

draw the arc.

Next, let us consider the local distribution class. A local distribution class for attribute

class X.A is any specification from which the local distributions for attribute x.A, for any

entity or relationship x in class X, may be constructed. In Figure 3c, each attribute for a

student’s grade in a course has two parents—one attribute corresponding to the difficulty

of the course and another corresponding to the IQ of the student. Consequently, the local

distribution class for Takes.Grade in the DAPER model can be a single (ordinary) local

distribution. In general, however, a more complicated specification is needed. For example,

in the ground graph of Figure 6c, the attribute s1.Present has one parent, whereas the

attributes s2.Present and s3.Present have two parents. Consequently, the local distribution

class for Symptom.Present must be something more than a single local distribution.

In general, a local distribution class for X.A may take the form of an enumeration of

local distributions. In our example, we could specify a local distribution for every possible

parent set of s.Present for every symptom s in every possible skeleton. Of course, such

enumerations are cumbersome. Instead, a local distribution class is typically expressed as

a canonical distribution such as noisy OR, logistic, or linear regression. Friedman et al.

16

(1999) refer to such specifications as aggregators.

So far, we have considered only DAPER models in which all attributes derive from at-

tributes classes. In practice, however, it is often convenient to include (ordinary) attributes

in a DAPER model. For example, in a Bayesian approach to learning the conditional prob-

ability distribution of Takes.Grade given Student.IQ and Course.Diff in Example 2, we may

add to the DAPER model an ordinary attribute θ corresponding to this uncertain distribu-

tion as shown in Figure 8a. (If Grade is binary, e.g., θ would correspond to the parameter

of a binomial distribution.) The ground graph obtained from this DAPER model applied

to the skeleton in Figure 8b is shown in Figure 8c. Note that the attribute θ appears only

once in the ground graph and that, because there is no annotation on the arc class from θ

to Takes.Grade, there is an arc from θ to each grade attribute.

Although this view makes DAPER models easy to understand, formally, we do not allow

such models to contain (ordinary) attributes. Instead, we specify that, for any DAPER

model, (1) there is an entity class—Global—that is not drawn; (2) for any skeleton, this

entity class has precisely one entity; and (3) every attribute class not connected explicitly

to some visible entity class is connected to Global. This view is equivalent to the informal

one just presented, but leads to simpler definitions and notation in our formal treatment of

DAPER models in the Appendix.

4.2 Restricted Relationships

We now consider restricted relationships or, more precisely, restricted relationship classes.

A relationship class R in an ER (or PER) model is restricted when some skeletons for

the entity and relationship classes of the ER model are prohibited. In practice, many ER

models contain restricted relationship classes; and graphical notation has been developed

for common restrictions (e.g., Ullman and Widom, 2002). Similarly, restricted relationship

classes are an extremely useful tool for modeling with PER models. In this section, we

consider several examples.

Example 7 A binary outcome O is measured on patients in multiple hospitals. Each

patient is treated in exactly one hospital. It is believed that outcomes in any given hospital

h are i.i.d. given binomial parameter h.θ; and that these binomial parameters are themselves

i.i.d. across hospitals given hyperparameters α.

A DAPER model for this example is shown in Figure 9a. Here, entity classes Patient

and Hospital are related by the relationship class In. The ground graph for a skeleton

containing m hospitals and ni patients in hospital i is shown in Figure 9b. This ground

17

Course

Student

Takes

Diff

Grade

IQ

(a) (b)

[G][D] cc =

[G][IQ] ss =

θ

cs107.Diff

T(mary.stat10).G

mary.IQjohn.IQ

stat10.Diff

T(mary,cs107).GT(john,cs107).G

(c)

θ

Takes

stat10mary

cs107mary

cs107john

CourseStudent

mary

john

Student

stat10

cs107

Course

Figure 8: A modification to Figure 3 in which the local distribution for Takes.Grade given

Student.IQ and Course.Diff is uncertain. (a) The DAPER model. (b) A skeleton (identical

to the one in Figure 3). (c) The ground graph.

18

graph is the DAG model (structure) of what is often called a hierarchical model in the

Bayesian literature (e.g., Gelman, Carlin, Stern, and Rubin, 1995).

In this example, the relationship class In is restricted in the sense that (patient,hospital)

pairs are many to one—each patient is in exactly one hospital. This restriction is repre-

sented graphically by a curved arrowhead on the edge from In to Hospital in Figure 9a.

The curved arrowhead is a standard notation in the language of ER models (e.g., Ullman

and Widom, 2002); and we adopt this same notation for PER models. In general, given an

ER or PER model with relationship class R connecting entity classes E1, . . . , En, if know-

ing entities in classes E1, . . . , Ei−1, . . . , Ei+1, . . . , En uniquely determines entity Ei for any

allowed skeleton, then a curved arrowhead is attached to the edge from R to Ei.

Note that, due to the many-to-one restriction in this problem, we could equivalently

attach the attribute class O to In rather than to Patient. A DAPER model equivalent to

the one in Figure 9a is shown in Figure 9c.

Example 8 The occurrence of words in a document are used to infer its topic. The occur-

rence of words are mutually independent given document topic. Document topics are i.i.d.

given multinomial parameters θt. The occurrence of word w in a document with topic t is

i.i.d. given t and binomial parameters θw|t.

This example is commonly referred to a binary Naive-Bayes classification (e.g., McCal-

lum and Nigam, 1998). A DAPER model for this problem is shown in Figure 10. The entity

classes Document and Word are related by the single relationship class F. The attribute

classes are Document.Topic representing the topic of a document, Word.θw|t representing

the set of binomial parameters θw|t for a word, and F(d, w).In representing whether word

w is in document d. The relationship class F is restricted to be a Full relationship class.

That is, in any allowed skeleton, all pairs (document,word) must be represented.4 We in-

dicate this restriction on the DAPER diagram by placing the annotation Full next to the

relationship class. As we shall see in what follows, the Full restriction is useful in many

situations.

4.3 Self Relationships

Self relationships are relationships that relate like entities (and perhaps other entities as

well). A self-relationship class is one that contains self relationships. Examples of self

relationship classes are common in databases: people are managers of other people, cities
4In a practical database implementation, this relationship would be encoded sparsely, despite the Full

restriction. That is, relationship (d, w) would be stored in the database only when word w appears in

document d.

19

α

h1.θ hm.θ

p11.O pm1.O… …

…

Hospital

Patient

In

θ

O

Hospital

Patient

In

θ

O

(a)

∩

α

(b)

(c)

∩

α

Op n .
11 Op

mmn .

),(In ph

][][Ohh =θ

Figure 9: (a) A DAPER model for patient outcomes across multiple hospitals (Example 7).

(b) The ground graph (a hierarchical model structure) for a skeleton containing m hospitals

and ni patients in hospital i applied to the DAPER model in (a). (c) A DAPER model

equivalent to the one in (a).

20

Document

Word

F

Topic

In

θw|t

Full

]In[]T[dd =

]In[][| ww tw =θ

Figure 10: A DAPER model for binary Naive-Bayes document classification.

are near other cities, timestamps follow timestamps, and so on. ER models can represent

self relationships in a natural manner. The extension to PER models is also straightforward,

as we illustrate with the following three examples.

Example 9 In the university-database example (Example 2), a student’s grade in a course

depends on whether an advisor of the student is a friend of a teacher of the course.

The ER model for the data in this example is shown in Figure 11a. With respect to

the ER model in Figure 2a, Professor is a new entity class and Advises, Teaches, and F are

new relationship classes. Advises(p, s) means that professor p is an advisor of student s.

Teaches(p, c) means that professor p teaches course c. (Students may have more than one

advisor; and courses may have more than one teacher.)

The relationship class F is introduced to model whether one professor is a friend of

another. F is our first example of a self-relationship class—it contains relationships between

professor pairs. The two dashed lines connecting F and the Professor entity class in the

diagram indicate that F is a self-relationship class. F has one attribute class F.Friend,

where the attribute F(p, pf).Friend is true if professor pf is a friend of professor p. Note

that F has the Full constraint so that we can model whether any one professor is a friend

of another. Also note that F(p1, p2).Friend may be true while F(p2, p1).Friend may be false.

The DAPER model for this example, including the new probabilistic relationship be-

tween F.Friend and Takes.Grade, is shown in Figure 11b. The constraint on the arc class

from F.Friend to Takes.Grade is Teaches(p, c) ∧ Advises(pf , s). Thus, in any ground graph

generated from this model, there is an arc from attribute F(p, pf).Friend to attribute

Takes(s, c).Grade whenever a teacher of the course is p and an advisor of the student is

pf—precisely the additional dependence described in the example.

21

In the diagram, note that the relationship class F has the label “F(p, pf)”. The ordered

pair (p, pf) following F is introduced to unambiguously identify the different roles of the

entity class in the self relationship. In this case, “p” and “pf” refer to the roles of professor

and professor’s friend, respectively. This added notation in DAPER models is needed for

the unambiguous specification of constraints. For example, suppose we had written the

constraint on the arc class from F.Friend to Takes.Grade as Teaches(pf , c) ∧ Advises(p, s).

This constraint means something different than the previous one—namely, that the student’s

grade depends on whether the student’s teacher is a friend of the course’s advisor.

Although not a standard convention for ER models, we allow an alternative representa-

tion for self relationships. Namely, we allow entity classes participating in a self-relationship

class to be copied. The DAPER model in Figure 11b drawn with this alternative convention

is shown in Figure 11c. Here, there are two instances of the Professor entity class named

“Professor (Teacher)” and “Professor (Advisor).” Note that copying allows us to annotate

the role that each copy of the entity class plays in the self-relationship class. Models drawn

with this copy convention are sometimes (but not always) more transparent. A similar

convention is used in PRMs (e.g., Friedman et al., 1999).

Example 10 A hidden Markov model (HMM) has hidden attributes slice.H, observed

attributes slice.X, and uncertain parameters θh and θx|h.

A DAPER model for such an HMM is shown in Figure 12a. The only entity class

in the model is Slice. Its entities correspond to the time slices in the HMM. The only

relationship class in the model—Next—is a restricted, self-relationship class. Next(s, s+1)

holds precisely when time slice s+1 immediately follows time slice s. Thus, Next is an

example of a relationship class whose constraint induces a total order on its entities. We use

Order to annotate this restriction. The attributes H and X correspond to the hidden and

observed attributes in the HMM, respectively. The attribute classes θh and θx|h (connected

to the Global entity class, which is not shown) represent the uncertain distributions.

Because arc classes can have constraints, DAPER models may contain arc classes that

are self arcs—arcs whose head and tail nodes are the same.5 In this example, the self arc

is used to represent the Markov chain of hidden attributes H. Another graphical model—

Markov transition diagrams—use self arcs in the much the same way. When a self arc

appears in a DAPER model, it is not clear which way to draw arcs when expanding the

model to a DAG model. In our example, do we draw arcs from s.H to s+1.H, or in the

opposite direction? To remove the ambiguity, we use bar–hat notation. In this example,
5We use the term “self arc” to refer both to arc classes and to arcs. The use will be clear from context.

22

Professor

Course

Student

Teaches

Takes

Diff

Grade

IQ

θ

F(p,pf) Friend

Advises

(b)

Professor

Course

Student

Teaches

Takes

Diff

Grade

IQ

F Friend

Advises

(a)

Full Full

),(Advises
),(Teaches
sp

cp

f

∧

][G][D cc =

]G[][IQ ss =

Professor
(Teacher)

Course

Student

Teaches

Takes

Diff

Grade

IQ

θ

F(p,pf) Friend

Advises

Professor
(Advisor)

(c)

Full

),(Advises
),(Teaches
sp

cp

f

∧

][G][D cc =

]G[][IQ ss =

Figure 11: (a) An ER model showing Student, Course, and Professor entities and rela-

tionships among them. (b) A DAPER model showing that a student’s grade in a course

depends on whether the course’s teacher likes the student’s advisor. (c) The same model in

(b) in which the Professor entity class has been copied.

23

the constraint is written Next(s̄, ŝ+1) indicating that the arc in drawn from s.H to s+1.H.

In general, we use a bar and hat to denote head and tail entities, respectively.

When this DAPER model is expanded to a ground graph, the attribute s0.H—where s0

corresponds to the first time slice—has no parents. In contrast, the attribute s.H where s

corresponds to any other slice has one parent. Consequently, the local distribution class for

Slice.H may be specified by two (ordinary) local distributions: p(s0.H) and p(si+1.H|si.H)

for i > 0.

A DAPER model using the copy convention for the HMM is shown in Figure 12b. Note

that the attribute class Slice.X need be represented in only one copy of the entity class.

The probabilistic dependencies between s.H and s.X, for all slices s, are captured by the

inclusion of X in one copy. Also note that, in this example and in any diagram where the

copy convention is used, the bar–hat notation is not needed.

Example 11 A gene is transmitted through inheritance. The gene-allele frequencies θ are

uncertain.

A DAPER model for this example is shown in Figure 13a. The model contains a single

entity class Person and a single three-way, restricted, self relationship class Family. The

relationship Family(pc, pm, pf) holds when child pc has mother and father pm and pf , re-

spectively. The relationship class has the 2DAG constraint, meaning that each child has

at most two parents and can not be his or her own ancestor. The constraint on the sin-

gle arc class indicates that only the gene of a child’s mother and father influences the

gene of the child. Note that the local distribution class for Gene has three components:

(1) p(gene|no parents) = θ, (2) p(gene|one parent), and (3) and p(gene|two parents). Fig-

ure 13b shows the same model in which the entity class Person appears three times.

When a DAPER model contains self relationships, its expansion can produce an invalid

DAG model—in particular, one with a ground graph that contains directed cycles. For

example, suppose we have a DAPER model where entity class E has a self relationship

class R, and E.A has a self arc with no constraint. Then when we expand this model

given a skeleton containing R(e, e), the ground graph will contain the self arc from e.A

to e.A. In general, we need to insure the ground graph is ayclic given all skeletons under

consideration. In the Appendix, we describe sufficient conditions (including the absence of

self relationships) that guarantee the acyclicity of ground graphs. In general, to determine

whether DAPER model produces only acyclic ground graphs for a given set of skeletons,

one can check each ground graph individually.

24

(a)

(b)

Slice

H

X

Order

θx|h

),(Next 1+ss

θh

Slice (+1)H

][][XsHs =

Slice

Next(s,s+1)

H

X

Order

θx|h

)ˆ,(Next 1+ss

θh

][][XsHs =

Next(s,s+1)

Figure 12: (a) The DAPER-model representation of a hidden Markov model. (b) The same

model in which Slice is copied.

25

(a)

(b)

Person

Family(pc,pm,pf)

Gene

2DAG

θ

),,ˆ(Fam
),,ˆ(Fam

fmcf

fmcm

pppp
pppp

∃
∨∃

Person
(Child)

Person
(Mother)

Person
(Father)

Gene

Gene

Gene

),,(Fam fmcm pppp∃

),,(Fam fmcf pppp∃

θ

Family(pc,pm,pf)

2DAG

Figure 13: (a) The DAPER model for gene transmission through inheritance. (b) The same

model in which Person is copied.

26

4.4 Probabilistic Relationships

In many situations, relationships may be uncertain or random. In this section, we consider

several examples and how they are represented with DAPER models.

Example 12 (Relationship existence) A database contains academic papers and cita-

tions for a subset of those papers. Using the citations we have, we model how the topics of

two papers influence whether one paper cites the other.6

If each paper in the database came with its citations, we could model this database with

the ER model shown in Figure 14a. Here, the single (copied) entity class Paper has the

self-relationship Cites, where Cites(pcg, pcd) holds when pcg is the citing paper and pcd is the

cited paper. In our example, however, we are uncertain about the citations of papers whose

citations have not been recorded. That is, we are uncertain about the relationships in the

relationship class Cites. To model this uncertainty, we use a DAPER model in which Cites

is a Full relationship class with attribute class Cites.Exists, where Cites(pcg, pcd).Exists is

true when paper pcg cites paper pcd. In addition, to model how the topics of two papers

influence this existence, we add the attribute class Paper.Topic and the arc classes as shown

in Figure 14b.

In general, if we have a relationship class R that is uncertain, we model it in a DAPER

model by making that relationship class Full and adding the attribute class R.Exists.

Getoor et al. (2002) discuss this type of uncertainty under the name existence uncertainty

and use a similar mechanism to represent it in PRMs.

In many situations, relationship classes can be both probabilistic and restricted. In the

remainder of this section, we consider two examples.

Example 13 Modifying Example 12, we now know that the database was constructed such

that contains at most ten citations from the bibliography of any paper.7

The DAPER model in Figure 15 shows the DAPER model for this example, where the

Cites relationship class is both uncertain and restricted. As discussed in Section 2, we encode

the restrictions using instantiated deterministic nodes. With respect to Figure 14b, we have

added a binary, attribute class Paper. <= 10. The double oval associated with this attribute

class indicates that this attribute expands to deterministic attributes in a ground graph. In

particular, a ground graph attribute p. <= 10 will have parents Cites(pcg, pcd).Exists, for

all pcd, and will be true exactly when ten or fewer of these parents are true. To encode the
6We assume that citation lists for papers are missing at random.
7We assume that citations above ten in number were censored at random.

27

Paper
(Citing)

Paper
(Cited)

Topic

Exists

Topic

Paper
(Citing)

Paper
(Cited)

Cites

(a) (b)

]E[]T[cgpp =

]E[]T[cdpp =

Full

Cites(pcg,pcd)

Figure 14: (a) An ER model for a citation database. (b) A DAPER model for the situation

where citations are uncertain.

restriction, we set p. <= 10 to true for every p when performing inference in the ground

graph.

Example 14 (Partial Relationship Existence) Modifying Example 12 once again, the

citation database now has a complete set of citations, but some of citations are so garbled

that the identity of some of the cited papers are uncertain.

One way to think about this uncertainty is that the relationships Cites(pcg, pcd) are

uncertain only in their second argument. Getoor et al. (2002) refer to this uncertainty as

reference uncertainty and present a special mechanism for representing it in PRMs. We

take an approach that, although equivalent to their method, uses only concepts that we

have already discussed.

A DAPER model for this example is shown in Figure 16. With respect to the DAPER

model in Figure 14b, we have added the entity class Cites, and the relationship classes R1

and R2 between Paper and Cites. An entity pair in Cites correspond to a citation—a citing

and a cited paper. R1(pcg, c) holds when paper pcg is the citing paper in c, and R2(pcd, c)

holds when pcd is the cited paper in c. The relationship class R1 is a restricted (many-to-

one) relationship class. In contrast, the relationship class R2 is probabilistic relationship

class, restricted to be Full. The uncertainty in this relationship class is encoded with the

attribute class R2.Exists, where R2(pcd, c).Exists is true precisely when citation c cites paper

pcd. To model the restriction that the possible cited papers of c are mutually exclusive,

we first introduce the deterministic, attribute class Cites.MutEx. In any ground graph

obtained from this DAPER model, c.MutEx will be true exactly when one of its parents

28

Paper
(Citing)

Paper
(Cited)

Topic

Exists

Topic

<=10
]10[]E[<== ppcg

]E[]T[cgpp =

]E[]T[cdpp =

Full

Cites(pcg,pcd)

Figure 15: A DAPER model for the situation where citations are uncertain and limited to

ten per paper.

R2(pcd, c).Exists is true. For any inference we perform with the ground graph, we set

c.MutEx to true for every citation c.

5 Plate Models

In this section, we revisit our definition of the plate model, give examples, and describe how

our definition differs from previously published examples.

As discussed in Section 3, we define the plate model by giving an invertible mapping

from DAPER to plate model. Thus, the two model types are equivalent in the sense that

they can represent the same conditional independence relationships for any given skeleton.

Summarizing the mapping from DAPER to plate model given in Section 3, entity classes

are drawn as large named rectangles called plates; a relationship class for a set of entity

classes is drawn at the named intersection of the corresponding plates; attribute classes

are drawn inside the rectangle corresponding to its entity or relationship class; and arc

classes and constraints are drawn just as they are in DAPER models. For example, as

we have discussed, the DAPER model in Figure 3a has the corresponding plate model in

Figure 4a. As another example, the DAPER model for the HMM shown in Figure 12b

has the corresponding plate model in Figure 17. Note that, because plate models represent

relationship classes as the intersection of plates, plates (corresponding to entity classes)

must be copied when the model contains self-relationship classes.

The plate model corresponding to the DAPER model for the patient-hospital example

in Figure 3a is shown in Figure 18a. In this plate model, there are no attributes in the

29

Paper
(Citing)

Paper
(Cited)

Topic

Topic

Cites

R1

R2 Exists

Full

MutEx

∩

),(1 cpR

]M[]E[cc =

]E[]T[pp =

Figure 16: A DAPER model for the situation where only the cited papers are uncertain.

θh H

Xθx|h

H

Slice
Slice (+1)

Next(s,s+1)
Order

),(Next 1+ss

][][XsHs =

Figure 17: A plate model for an HMM corresponding to the DAPER model in Figure 12b.

30

Patient plate outside the intersection. Thus, one can move the Patient plate fully inside the

Hospital plate, yielding the diagram in Figure 18b. We allow this nesting in our framework.

Furthermore, plates may be nested to arbitrary depth. This convention corresponds to one

found in published examples of plate models.

There are three differences between plate models as we have defined them and traditional

plate models—plates models as they have been described in the literature. In all three cases,

our definition provides a more expressive language. One, in traditional plate models, a arc

class emanating from a attribute class in a plate can not leave that plate. Given this

constraint, any arc class from attribute class E.X must point either to attribute class E.Y

or to attribute class R.Y , where R is nested inside E.

Two, when a traditional plate model is expanded to a ground graph, arcs are drawn only

between attributes corresponding to the same entity. To be more precise, consider a plate

model containing the arc class from E.X to E.Y . In a traditional plate model, the arc class

implicitly has the constraint e[X] = e[Y]. Similarly, consider a plate model containing the

arc class from E.X to R.Y where R is nested inside E, possibly many levels deep. Because R

in nested inside E, for any relationship r ∈ R, the entities associated with r must uniquely

determine an e ∈ E. Let r(e) be the set of the relationships r that uniquely determine

e. Now, when this traditional plate model is expanded to a ground graph, arcs are drawn

from e.X to r.Y only when r ∈ r(e). As an example, consider Figure 18c, which shows the

traditional plate model for the patient–hospital example. Here, E=Hospital, R=In, and

r(h) = ∪p{(h, p)} for all hospitals h. Thus, the arc class from Hospital.θ to In(h, p).O has

the constraint h[θ] = h[O]. This constraint is implicit (see Figure 18c).

Three, traditional plate models contain no arc-class constraints other than the implicit

ones just described.

The DAPER and plate model (as we have defined them) are equivalent. Nonetheless,

in some situations, a DAPER model may be easier to understand than an equivalent plate

models, and vice versa. When there are many entity and relationship classes (plates and

intersections), DAPER models are often easier to understand. In particular, drawing in-

tersections when there are many plates can be difficult (although not impossible; see Gil,

Howse, Kent, and Taylor, 2000). In contrast, when there are few entities and the nesting

convention can be used, plates are often easier to understand.

6 Probabilistic Relational Models (PRMs)

In this section, we examine directed PRMs.

Recall that, as in the case of the plate model, we have specified an invertible mapping

31

θ

O

Hospital

Patient

In

θ

O

Hospital

Patient/In

α α

θ

O

Hospital

Patient/In

α

(a) (b) (c)

][][Ohh =θ][][Ohh =θ

Figure 18: (a) A plate model corresponding to the DAPER model in Figure 12a. (b) An

equivalent plate model illustrating the graphical convention of nesting. (c) A traditional

plate model, equivalent to the one in (b), in which the constraint h[θ] = h[O] is implicit.

from a DAPER model to a directed PRM. Thus, DAPER models, plate models, and directed

PRMs are equivalent. As described earlier, the mapping from a DAPER to directed PRM

takes place in two stages: the ER-model component of the DAPER model is mapped to a

relational model, and then the probabilistic component of the DAPER model is mapped to

the directed PRM. In the first stage, entity classes are mapped to tables; relationship classes

are mapped to tables with foreign keys making the connections to entities; and attribute

classes are mapped to attributes (columns) in relational tables. In the second stage, arc

classes and constraints are drawn just as they are in DAPER model.

There is one important difference between the directed PRM by our definition and

the traditional PRMs as defined by Friedman et al. (1999). The difference is not in the

relational-model component. This component for a PRM and traditional PRM are identical.

Rather, the difference lies in how the probabilistic component is specified. In our PRM,

the probabilistic component is a graphical augmentation of the relational model. In a

traditional PRM, the probabilistic component takes the form of a list of arc classes. To

illustrate this difference, compare the PRM in Figure 4b with the corresponding traditional

PRM in Figure 19. In the latter figure, the arc classes pointing to Takes.Grade are specified

in a separate list consisting of Takes.Course.Diff → Takes.Grade and Takes.Student.IQ →
Takes.Grade.

32

Takes.Course.Diff � Takes.Grade

Takes.Student.IQ � Takes.Grade

Diff

Course

IQ

Student

Course

Student
Grade

Takes

Figure 19: A traditional PRM corresponding to the model in Figure 4b.

The terms Takes.Course.Diff and Takes.Student.IQ are examples of what Friedman et

al. (1999) call slot chains. In general, a slot chain is a sequence of foreign key (or inverse

foreign key) references. The linear nature of slot chains makes them less expressive than the

first-order constraints in (our) PRMs. For example, in Example 9 where a student’s grade

in a course depends on whether the course’s teacher likes the student’s advisor (Example 9),

there are two “relationship paths” from F.Friend to Student.Grade: one through Advises

and one through Takes. This double path cannot be represented by a slot chain.

In practice, we find both DAPER models and PRMs easy to understand. Database

designers who prefer ER models over relational models may prefer DAPER models over

PRMs, and vice versa. We note, however, that the purpose of DAPER models and PRMs

is not the implementation of mechanisms for data storage, but rather the modeling of

probabilistic dependencies. Consequently, even those who prefer to design databases with

relational models may prefer the DAPER model for probabilistic modeling, as DAPER

models elevate the relationship class to a first-class object in the language.

7 Extensions and Future Work

In this paper, we have concentrated on the DAPER model, a model that expands into

a DAG model given a skeleton. In this section, we examine classes of PER models that

expand into graphical models other than traditional DAG models. Many of the ideas here

are preliminary and provide opportunities for future work.

33

Z

X

Y

1=Y

Figure 20: A contingent DAG model (structure) showing the context-specific independence

X and Z are independent given Y = 0, but dependent given Y = 1.

An important limitation of traditional graphical models is their inability to represent

context-specific independence. An example of such independence is the pair of indepen-

dencies (1) X and Z are independent given Y = 0, and (2) X and Z are dependent given

Y = 1. Many extensions to graphical models have been developed that can represent par-

ticular classes of context-specific independence including decision-tree/DAG-model hybrids

(e.g., Boutlier, Friedman, Goldszmidt, and Koller, 1996), contingent DAG models (Fung

and Shachter, 1990), and similarity networks (e.g., Heckerman, 1991).

Let us consider a variation on contingent DAG models that uses notation slightly dif-

ferent from that in Fung and Shachter (1990). To understand this model class, consider the

context-specific independence described in the previous paragraph: X and Z are indepen-

dent given Y = 0, but dependent given Y = 1. Figure 20 shows a contingent DAG model

(structure) for this independence. This contingent DAG model has a state constraint on

the arc from Y to Z that reads X = 1. This constraint means that there is a dependence of

Y on Z only when X = 1. In general, state constraints in contingent DAG models function

much the way constraints do in DAPER models. In DAPER models, constraints are first-

order expressions over entities that control the expansion to a DAG model. In contingent

DAG models, state constraints are Boolean expressions over attribute–states that control

the expression of conditional independence.

Now consider the contingent DAPER model—a model that expands to a contingent

DAG model. The model is identical to an ordinary DAPER model, except that arc classes

are now annotated with an order pair. The first component of the ordered pair is a constraint

just as is found in the ordinary DAPER model. The second component is a state constraint

class that specifies the state constraints to be written during the expansion to a contingent

DAG model. The state constraint class is a Boolean expression over attribute-states that

may take head and tail entities as arguments.

34

Example 15 (Identity Uncertainty) We have video images of multiple cars of different

colors. We know how many cars there are and have zero or more observations of each car’s

color, but we are uncertain about what observations go with what cars.

Pasula and Russell (2001) describe this example as having identity uncertainty. We

can represent this example using the contingent DAPER model in Figure 21a. The two

entity classes, Car and Observation, are related by the relationship class Of, where Of(o, c)

holds when observation o corresponds to car c. The probabilistic relationship Of has the

many-to-one restriction: an observation is associated with exactly one car. As in previous

examples, the many-to-one restriction is represented by the Full relationship class Of,

together with the attribute class Of.Exists and the deterministic node MutEx (which is set

to true). The arc class from Car.Color to Observation.Color is annotated with the ordered

pair (Of(o, c), Of(o, c).Exists = true). The first component says that we draw an arc from

c.Color to o.Observation only when Of(o, c) is true. (In this case, this constraint is vacuous

because the relationship class F is Full.) The second component says that, when we draw

such an arc, we add to it the state constraint Of(o, c).Exists = true. Figure 21b shows

the expansion of this contigent DAPER model to a contingent DAG model for a skeleton

containing one car and two observations. Note that, because there is only one car, the

MutEx nodes are redudant and can be omitted.

In this example, we know how many cars there are. If we do not, we can place a

probability distribution on the number of cars and stipulate that the DAPER model in

Figure 21a should be applied to each possible number of cars.

Let us now discuss possibilities for relational modeling with undirected models. A com-

monly used (non-relational) undirected model is the undirected graphical (UG) model. This

model class has more than one definition—definitions that coincide only for positive distri-

butions (Lauritzen, 1996). Here, we define an UG for attributes X with joint distribution

p(x) as a model having two components: (1) an undirected graph (the model structure)

whose nodes are in one-to-one correspondence with X, and (2) a collection of non-negative

clique functions φm(xm), m = 1, . . . , M , where m indexes the maximal cliques of the graph

and Xm are the attributes in X in the mth maximal clique, such that

p(x) = c
M∏

m=1
φm(xm), (3)

The term c is a normalization constant. As is the case for the DAG model, the UG model for

X defines the joint distribution for X. The clique functions are sometimes called potentials.

An UG model for (X, Y, Z) is shown in Figure 22a. The graph has a single maximal

clique consisting of all three attributes, and hence represents an arbitrary distribution for

35

Car

Observation

Of

Color

Exists

Color

Full

MutEx

)trueExists).,(Of),,(Of(=coco)E()M(oo =

c.Color

o1.Color o2.Color

Of(c,o1).Exists

Of(c,o2).Exists

o1.MutEx

o2.MutEx

trueExists).,(Of 1 =co
trueExists).,(Of 2 =co

(a)

(b)

Figure 21: (a) A contingent DAPER model for Example 15, and example of identity uncer-

tainty. (b) A contigent DAG model resulting from the expansion of the model in (a) given

a skeleton containing one car and two observations.

36

(a) (b) (c)

X

Y Z

X

Y Z

X

Y Z

Figure 22: (a) An UG model structure. (b) An equivalent HLLG model structure. (c) An

HLLG model that encodes pairwise interactions.

these attributes.

A related but more general undirected model is the hierarchical log-linear graphical

(HLLG) model. An HLLG model is a model having two components: (1) a undirected

hypergraph (the model structure) whose nodes are in one-to-one correspondence with X,

and (2) a collection of potentials φh(xh), h = 1, . . . , H, where h indexes the hyperarcs of

the graph and xh are the attributes in X of the hth hyperarc, such that

p(x) = c
H∏

h=1

φh(xh). (4)

Again, an HLLG model for X defines the joint distribution for X. In this paper, we

represent a hyperarc as a triangle connecting multiple nodes with undirected edges. For

example, Figure 22b shows an HLLG model with a single hyperedge.

By virtue of Equations 3 and 4, both UG and HLLG model structures define factorization

constraints on distributions. In this sense, HLLG models are more general than UG models.

That is, given any UG model structure, there exists an HLLG model structure that can

encode the same factorization constraints, but not vice versa. For example, the UG structure

in Figure 22a has the equivalent HLLG model structure shown in Figure 22b. In contrast,

the HLLG model structure shown in Figure 22c, encodes the factorization constraint

p(x, y, z) = c φ1(x, y) φ2(y, z) φ3(x, z),

which cannot be represented by an UG model structure. Also, we note that the factorization

constraints of any HLLG model can be encoded with a factor-graph model (Kschischang,

Frey, Loelinger, 01) in which all potentials are non-negative.

Turning to relational modeling, let us consider the hierarchical log-linear probabilistic

entity-relationship (HELPER) model. A model in this class expands into an HLLG model.

37

Like the DAPER model, a HELPER model is an extension of an ER model. In contrast to

the DAPER model, the probabilistic component of a HELPER model is expressed as hyper-

edge classes and potential classes on those hyperedges. Hyperedge classes are expanded to

an hyperedges according to constraints. These constraints, in turn, may be any first-order

expression that is bound given the entities associated with the endpoints of the hyperedge.

Example 16 An arbitrary hierarchical log-linear graphical model with at most two-way

interactions.

The HELPER diagram for this example is shown in Figure 23a. There is a single entity

class Variable corresponding to the attributes in the hierarchical log-linear model, a single

attribute class X, and a single self relationship class Neigh, where Neigh(v1, v2) if v1.X and

v2.X have a pairwise interaction. The only hyperedge class in the model is a self edge that

connects Variable.X with itself. The constraint on this hyperedge class is such that v1.X

and v2.X will be neighbors in the ground graph only when Neigh(v1, v2) holds. Note that

the Neigh relationship class is restricted to be upper triangular so that the expanded graph

has no self arcs and has at most one arc between any two attributes.

A sample skeleton for three attributes and the resulting hierarchical log-linear model is

shown in Figures 23a and b, respectively.

Whereas HLLG models have a natural relational counterpart, UG models do not. To

understand this point, imagine a PER model that expands to an UG model. Such a model

would need a mechanism for specifying potentials in the ground graph. Such potentials,

however, are not defined until the maximal cliques of the ground graph are determined, and

these cliques will depend on the skeleton used to expand the PER model.

Finally, there are numerous classes of graphical models that we have not yet explored,

including mixed directed and undirected models (e.g., Lauritzen, 1996), directed factor-

graph models (e.g., Frey, 2003), influence diagrams (e.g., Howard and Matheson, 1981),

and dependency networks (e.g., Heckerman, Chickering, Meek, Rounthwaite, and Kadie,

2000). The development of PER models that expand to models in these classes also provide

opportunities for research.

Acknowledgments

We thank David Blei, Tom Dietterich, Brian Milch, and Ben Taskar for useful comments.

38

Variable X

Neigh(v1,v2)

),(Neigh 21 vvUpperT

Neigh

cb

ca

ba

v2v1

b

c

a

Variable

a.X

b.X c.X

(a) (b) (c)

Figure 23: (a) An HELPER model for an arbitrary hierarchical log-linear model with at

most two-way interactions. (b) An example skeleton. (c) The hierarchical log-linear model

resulting from the model in (a) applied to the skeleton in (b).

References

[Besag, 1974] Besag, J. (1974). Spatial interaction and the statistical analysis of lattice

systems. Journal of the Royal Statistical Society, B, 36:192–236.

[Boutlier et al., 1996] Boutlier, C., Friedman, N., Goldszmidt, M., and Koller, D. (1996).

Context-specific independence in Bayesian networks. In Proceedings of Twelfth Con-

ference on Uncertainty in Artificial Intelligence, Portland, OR, pages 115–123. Morgan

Kaufmann.

[Buntine, 1994] Buntine, W. (1994). Operations for learning with graphical models. Journal

of Artificial Intelligence Research, 2:159–225.

[Frey, 2003] Frey, B. (2003). Extending factor graphs so as to unify directed and undirected

graphical models. In Proceedings of Nineteenth Conference on Uncertainty in Artificial

Intelligence, Acapulco, Mexico, pages 257–264. Morgan Kaufmann.

[Friedman et al., 1999] Friedman, N., Getoor, L., Koller, D., and Pfeffer, A. (1999). Learn-

ing probabilistic relational models. In Proceedings of the Sixteenth International Joint

39

Conference on Artificial Intelligence, Stockholm, Sweden, pages 1300–1309. International

Joint Conference on Artificial Intelligence.

[Fung and Shachter, 1990] Fung, R. and Shachter, R. (1990). Contingent belief networks.

[Gelman et al., 1995] Gelman, A., Carlin, J., Stern, H., and Rubin, D. (1995). Bayesian

Data Analysis. Chapman and Hall.

[Getoor et al., 2002] Getoor, L., Friedman, N., Koller, D., and Pfeffer, A. (2002). Learning

probabilistic relational models of link structure. Journal of Machine Learning Research,

3:679–707.

[Gill et al., 2000] Gill, J., Howse, J., Kent, S., and Taylor, J. (2000). Projections in venn-

euler diagrams. In Proceedings of the IEEE Symposium on Visual Languages (VL2000),

Seattle, WA, pages 119–126. IEEE Computer Society Press.

[Good, 1965] Good, I. (1965). The Estimation of Probabilities. MIT Press, Cambridge,

MA.

[Heckerman, 1991] Heckerman, D. (1991). Probabilistic Similarity Networks. MIT Press,

Cambridge, MA.

[Heckerman et al., 2000] Heckerman, D., Chickering, D., Meek, C., Rounthwaite, R., and

Kadie, C. (2000). Dependency networks for inference, collaborative filtering, and data

visualization. Journal of Machine Learning Research, 1:49–75.

[Howard and Matheson, 1981] Howard, R. and Matheson, J. (1981). Influence diagrams.

In Howard, R. and Matheson, J., editors, Readings on the Principles and Applications

of Decision Analysis, volume II, pages 721–762. Strategic Decisions Group, Menlo Park,

CA.

[Koller and Pfeffer, 1997] Koller, D. and Pfeffer, A. (1997). Object-oriented Bayesian net-

works. In Geiger, D. and Shenoy, P., editors, Proceedings of Thirteenth Conference on

Uncertainty in Artificial Intelligence, Providence, RI, pages 302–313. Morgan Kaufmann,

San Mateo, CA.

[Kschischang et al., 2001] Kschischang, F., Frey, B., and Loeliger, H. (2001). Factor graphs

and the sum-product algorithm. IEEE Transactions on Information Theory, 47:498–519.

[Lauritzen, 1996] Lauritzen, S. (1996). Graphical Models. Claredon Press.

40

[McCallum and Nigam, 1998] McCallum, A. and Nigam, K. (1998). A comparison of event

models for naive Bayes text classification. In Workshop on Learning for Text Categoriza-

tion and the Fifteenth Conference of the American Association for Artificial Intelligence,

Madison, WI.

[Pasula and Russell, 2001] Pasula, H. and Russell, S. (2001). Approximate inference in

first-order probabilistic languages. In IJCAI, pages 741–748.

[Spiegelhalter, 1998] Spiegelhalter, D. (1998). Bayesian graphical modelling: A case-study

in monitoring health outcomes. Applied Statistics, 47:115–134.

[Ullman and Widom,] Ullman, J. and Widom, J. A First Course in Database Systems.

Prentice Hall, Upper Saddle River, NJ.

A Appendix

We use E and R to denote the set of entity and relationship classes, respectively. We use E

and R (sometimes with subscripts) to denote an entity and relationship class, respectively,

and X to denote an arbitrary class in E ∪ R. We use σ(E) and σ(R) denote an entity and

relationship set, respectively, and σ(X) to denote an arbitrary σ(E) or σ(R). We use e and

r to denote a particular entity and relationship, respectively, and x to denote an arbitrary

entity or relationship. We use X.A to denote the attribute class A associated with class

X, and A(X) to denote the set of attribute classes associated with class X. We use x.A

to denote an attribute associated with entity or relationship x, and A(x) to denote the

set of attributes associated with x. Each attribute class and attribute is associated with a

domain—a set of possible values. The domain of x.A is the same as the domain of X.A for

every x ∈ X.

First, we define the entity-relationship model in the following series of definitions.

Definition 1 An entity-relationship (ER) diagram for entity classes E , relationship classes

R, and attribute classes A is a graph in which rectangular nodes correspond to entity classes,

diamond nodes correspond to relationship classes, and oval nodes correspond to attribute

classes of entity or relationship classes. The node corresponding to a relationship class

among entities E1, . . . , En ∈ E is connected to the nodes corresponding to these entities

with a dashed edge. attribute classes corresponding to an entity or relationship class are

connected to this class with dashed edges.

Definition 2 A skeleton for entity classes E and relationship classes R—denoted σER—

consists of (1) an entity set σ(E) for every E ∈ E and (2) a relationship set σ(R) for every

41

R ∈ R that is consistent with any constraints imposed by the relationship classes.

Definition 3 An entity-relationship (ER) model for entity classes E , relationship classes

R, and attribute classes A is an ER diagram for E, R, and A that defines a set of (ordinary)

attributes A(σER) for any skeleton σER. In particular, attribute x.A is in A(σER) if and

only if there is an X in E ∪ R and an x ∈ σ(X) such that A is in A(X).

Definition 4 An entity-relationship instance for an ER model for E , R, and A—denoted

IERA—consists of (1) a skeleton σER and (2) a value for every attribute in A(σER).

Now we consider domains wherein attributes may be probabilistic and define the DAPER

model through the following series of definitions.

Definition 5 Given an entity or relationship class X with entity or relationship x, the

ordered set of entities e(x) associated with x is as follows. If X is an entity class, then

e(x) = (x). If X is a relationship class containing relationships R(e1, . . . , en), then e(x) =

(e1, . . . , en).

Note that the set e(x) is ordered to preserve roles associated with self relationship

classes.

Definition 6 Given an ER model with attribute classes X.A and Y.B, the constraint

CAB(e(x), e(y)) for the ordered pair (X.A, Y.B) is a first-order expression that is bound

when the elements of e(x) and e(y) are taken as constants. The atoms of this expres-

sion have the form R(e1, . . . , en) where R is a relationship class connected to entity classes

E1, . . . , En or a predefined relationship class such as equality, less than, greater than, and

first.

Definition 7 A directed probabilistic entity-relationship (DPER) diagram for entity classes

E, relationship classes R, and attribute classes A consists of (1) an ER model for E , R, and

A, and (2) a set of arc classes drawn as solid directed arcs corresponding to probabilistic

dependencies. There can be at most one arc class from attribute class X.A to attribute

class Y.B; and any arc class may have a constraint CAB(e(x), e(y)). The set of arc classes

pointing to X.A is the parent class of X.A, denoted PA(X.A).

Definition 8 A ground graph for a DPER diagram and skeleton σER for E, R, and A is a

directed graph constructed as follows. For every attribute in A(σER), there is a corresponding

node in the graph. For any attribute x.A ∈ A(σER), its parent set pa(x.A) are those

attributes y.B ∈ A(y) such that there is an arc class from Y.B to X.A and the expression

CAB(e(x), e(y)) is true.

42

Definition 9 Given ΣER, a set of skeletons for E, R, and A, a DPER diagram for E, R,

and A is acyclic with respect to ΣER if, for every σER ∈ ΣER, the ground graph for the

DPER diagram and σER is acyclic.

Theorem 1 If the probabilistic arcs of a DPER diagram for E, R, and A form an acyclic

graph, then the DPER diagram is ayclic with respect to ΣER for any ΣER.

Proof: Suppose the theorem is false. Consider a cyclic ground graph for some skeleton. De-

note the attributes in the cycle by (x1.A1 → x2.A2 → . . . → xn.An) where x1.A1 = xn.An.

For each attribute xi.Ai there is an associated attribute class Xi.Ai. From Definition 8, we

know that there must be an edge from Xi.Ai → Xi+1.Ai+1. Because X1.A1 = Xn.An, there

must be a cycle in the DPER diagram, which is a contradiction. Q.E.D.

Friedman et al. (1999) prove something equivalent.

Definition 10 A directed acyclic probabilistic entity-relationship (DAPER) model for en-

tity classes E, relationship classes R, attribute classes A, and skeletons ΣER consists of (1)

an DPER diagram for E , R, and A that is acyclic with respect to every σER ∈ ΣER, and (2)

a local distribution class—denoted P (X.A|PA(X.A))—for each attribute class X.A. Each

local distribution class is collection of information sufficient to determine a local distribu-

tion p(x.A|pa(x.A)) for any x.A ∈ A(σER). For every σER ∈ ΣER, the DAPER model

specifies a DAG model for A(σER). The structure of this DAG model is the ground graph

of the DPER diagram for σER. The local distributions of this DAG model are the local

distributions p(x.A|pa(x.A)).

An immediate consequence of Definition 10 is that, given D, a DAPER model for E , R,

A, and ΣER and a skeleton σER ∈ ΣER, we can write the joint distribution for A(σER) as

follows:

p(IERA|σER,D) =
∏

X∈E∪R

∏

x∈σ(X)

∏

A∈A(X)

p(x.A|pa(x.A)). (5)

In the remainder of this section, we describe a condition weaker than the one in The-

orem 1 that guarantees the creation of acyclic ground graphs from a DAPER model. In

this discussion, we use R(e1, . . . , en) to denote a particular relationship in a relationship set

σ(R).

Definition 11 A relationship class R is a self-relationship class with respect to entity class

E if a relationship in R contains two or more references to entities in the entity class E.

Definition 12 A projected pairwise self-relationship class is obtained from a self-relationship

class by projecting two of the entities in the relationships that are from the same entity class.

43

For example, the Family relationship class is a self-relationship class that can be projected

into the Father-Child relationship class and the Mother-Child relationship class; and both

are projected pairwise self-relationship classes.

Definition 13 Given skeleton σER for E and R, a relationship set σR for a self-relationship

class R is acyclic if there exists a projected pairwise self-relationship class R′ for some entity

set E containing entities e1, . . . , en such that R′(e1, e2), . . . , R′(en−1, en) and R′(en, e1). If

a relationship set is not cyclic, it is acyclic.

Definition 14 A arc class in a DAPER model is called a self arc if both the head and tail

of the arc are the same attribute class.

Theorem 2 If (1) the arc classes excluding the self arcs of a DAPER diagram for E, R,

and A form an acyclic graph, (2) every self arc has a constraint involving a self-relationship

class, (3) no constraint on a self arc is disjunctive, and (4) σ(R) for every self-relationship

class R is acyclic for every σER ∈ ΣER, then the DPER diagram is ayclic with respect to

ΣER.

Proof: Suppose the theorem is false. Consider a ground graph G for some skeleton σER
containing a cycle. Further consider DPER diagram D′ obtained from the original DPER

diagram with all self arc classes removed. By condition 1, D′ is acyclic. Let G′ be the

ground graph obtained from D′ applied to σER. Given D′ is acyclic and Theorem 1, G′

must be acyclic.

Let S be the edges in the cycle that appear in graph G but not G′. S must be non-

empty, because G is cyclic whereas G′ is not. By construction, each arc in S is associated

with a self arc in the DPER diagram; and hence the endpoints of each arc must have the

same attribute class. Consequently, the arcs in S must form a cycle lest D′ would be cyclic.

Because the arcs in S form a cycle, each arc in S must be associated with the same self arc

class.

Given conditions 2 and 3, we know that the self arc class associated with the cycle has

a non-disjunctive constraint involving a self-relationship class—say R. Because S is cyclic,

σ(R) must be cyclic, contradicting condition 4. Q.E.D.

44

