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1 Introduction

Naive Bayes models [1] have been successfully employed for a variety of classifi-
cation tasks. Typically, the model parameters are estimated using a maximum
likelihood criterion in conjunction with simple smoothing techniques. However,
the maximum likelihood estimation criterion is not directly related to the per-
formance of the model in terms of classification accuracy. A better training
criterion is the conditional maximum likelihood one which is expected to be
more correlated with the classification performance of the model.

We present a parameter estimation technique for Naive Bayes probability
models that maximizes the conditional likelihood of a given training set. The
algorithm employs a generalization of the Baum-Eagon inequality from polyno-
mials defined over a domain of probability distributions to rational functions [2].

The main advantage of the technique over other re-estimation procedures
such as gradient ascent is that the parameter values are guaranteed to be in the
desired domain of probability distributions at each iteration.

The report is organized as follows: we first introduce conditional models
that rely on a Naive Bayes assumption, mostly for fixing notation. Section 3
presents the re-estimation procedure under the conditional maximum likelihood
criterion, including a few refinements that improve the convergence speed and
stability. Section 4 presents text classification experiments on the Air Travel
Information System (ATIS) [3] data.

2 Conditional Models Relying on a Naive Bayes
Assumption

In many practical applications one seeks to model a conditional probability
P (y|x), y ∈ Y, x ∈ X . A common situation is that in which we identify a set
of features deemed relevant for building the model. Since we are interested in
building a conditional model that relies on a Naive Bayes assumption, we will
restrict our attention to features whose support is included in X ; the features are
binary valued indicator functions f(x) : X → {0, 1}. Let F = {fk, k = 1 . . . F}
be the set of features chosen for building a particular model P (y|x).

For any given event (x, y) one constructs a binary valued feature vector
listing the values each feature takes at this particular point:

f(x) = (f1(x), . . . , fF (x))

For convenience we denote fi(x) = 1 − fi(x).
Assuming a Naive Bayes model for the feature vector and the predicted

variable (f(x), y),

P (f(x), y) = θy

F∏
k=1

θky
fk(x)θky

fk(x)
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the conditional probability P (y|x) can be calculated as:

P (y|x; θ) = Z(x; θ)−1 · θy

F∏
k=1

θky
fk(x)θ

fk(x)

ky (1)

where:

• θy ≥ 0,∀y ∈ Y,
∑

y∈Y θy = 1;

• θky ≥ 0, θky ≥ 0, θky + θky = 1,∀k = 1, F , y ∈ Y;

• Z(x; θ)−1 =
∑

y P (f(x), y)

We note that P (x, y) = P (f(x), y) does not result in a proper probability
model since different (x, y) values may map to the same (f(x), y) value. Also,
since the model uses one free parameter θky for each different y ∈ Y, one could
represent the model equivalently using the usual fk(x, y) = fk(x) · δ(y) features.

2.1 Relationship with Log-Linear Models

A simple re-parameterization of the conditional model presented above results
in a log-linear model.

First let’s note that:

P (f(x), y) = θy ·
F∏

k=1

θky
fk(x) · θky

fk(x)

can be rewritten as:

P (f(x), y) = θy ·
F∏

k=1

θky ·
F∏

k=1

[
θky

θky

]fk(x)

Setting:

• fk(x, y) = fk(x) · δ(y)

• λky = log( θky

θky
);

• λ0y = log(θy ·
∏F

k=1 θky);

• f0(x, y) = f0(y)

we have:

P (y|x;λ) = Z(x;λ)−1 · exp(
F∑

k=0

λkyfk(x, y)) (2)

which is the familiar log-linear model arrived at in maximum entropy probability
estimation [4]. Consequently, the estimation procedure presented in the next
section is applicable to this class of log-linear models as well, resulting in an
alternative to the usual estimation techniques employed for log-linear models.
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3 Conditional Maximum Likelihood Estimation
of Naive Bayes Models

It is desirable to estimate the model parameters θ = {θy, θky, θky,∀y and k}
such that the conditional likelihood H(T ; θ) =

∏T
j=1 P (yj |xj) assigned by the

model to a set of training samples T = {(x1, y1) . . . (xT , yT )} is maximized:

θ∗ = arg max
θ

H(T ; θ) (3)

It is easy to note that H(T ; θ) is a ratio of two polynomials with real coef-
ficients, each defined over a set × of probability distributions:

× = {θ : θy ≥ 0,∀y ∈ Y and
∑

y

θy = 1; θky ≥ 0, θky ≥ 0 and θky+θky = 1,∀y ∈ Y,∀k = 1 . . . F}

Following the development in [2] one can iteratively estimate the model
parameters using a growth transform for rational functions on the domain ×.
The re-estimation equations take the form:

θ̂y = N−1θy(
∂ log H(T ; θ)

∂θy
+ Cθ) (4)

N = Cθ +
∑

y

θy
∂ log H(T ; θ)

∂θy

θ̂ky = N−1
y θky(

∂ log H(T ; θ)
∂θky

+ Cθ) (5)

θ̂ky = N−1
y θky(

∂ log H(T ; θ)
∂θky

+ Cθ)

Ny = Cθ + θky
∂ log H(T ; θ)

∂θky
+ θky

∂ log H(T ; θ)
∂θky

where Cθ > 0 is chosen such that

∂ log H(T ; θ)
∂θy

+ Cθ > ε,∀y (6)

∂ log H(T ; θ)
∂θky

+ Cθ > ε,∀k and y

∂ log H(T ; θ)
∂θky

+ Cθ > ε,∀k and y

with ε > 0 suitably chosen, see [2] for details.
The main advantage of the growth transform re-estimation procedure is that

the model parameters are renormalized at each iteration, maintaining them
in the parameter space ×; using traditional gradient ascent techniques would
require extra care.

The technique is widely used in discriminative training of Hidden Markov
models for speech recognition [5], [6].
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3.1 Smoothing and Initialization

When experimenting with the model we found that smoothing improves the per-
formance of the model. The model parameters θ are initialized using maximum
likelihood estimates smoothed using MAP:

θy =

∑T
i=1 δ(y, yi) + α 1

|Y|
T + α

(7)

θky =
∑T

i=1 fk(xi)δ(y, yi) + α 1
2∑T

i=1 δ(y, yi) + α
(8)

θky =
∑T

i=1 fk(xi)δ(y, yi) + α 1
2∑T

i=1 δ(y, yi) + α

The optimal value for the MAP weight α is determined such that it maximizes
classification accuracy on cross validation data.

As for reestimating the model parameters using the above smoothing scheme,
it is convenient to note that Eq. (8) can be equivalently written as linear inter-
polation between the relative frequency estimate for θky, θky and the uniform
distribution (1

2 ).
If we denote counts of various events by #(), we can rewrite Eq. (8) as:

θky = λy · #(k, y)
#(y)

+ λy · 1
2

(9)

λy =
#(y)

#(y) + α

λy =
α

#(y) + α

Based on Eq. (1) the model can be re-parameterized as:

P (y|x; θ) = Z(x; θ)−1 · θy

F∏
k=1

(λy · θky + λy · 1
2
)fk(x)(λy · θky + λy · 1

2
)fk(x) (10)

where:

• θy ≥ 0,∀y ∈ Y,
∑

y∈Y θy = 1;

• θky ≥ 0, θky ≥ 0, θky + θky = 1,∀k = 1, F , y ∈ Y;

• λy ≥ 0, λy ≥ 0, λy + λy = 1,∀y ∈ Y;

• Z(x; θ)−1 =
∑

y P (f(x), y)

We note that under the parameterization for P (y|x) in Eq. (10), the con-
ditional likelihood H(T ; θ) =

∏T
j=1 P (yj |xj) is still a ratio of polynomials as

required by [2].
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3.2 Model Parameter Updates

Calculating the partial derivatives in Eq. (5) we obtain:

θ̂ky = N−1
ky · θky ·

{
1 + βθ

λy

λy · θky + λy · 1
2

T∑
i=1

fk(xi)[δ(y, yi) − p(y|xi; θ)]

}
(11)

θ̂ky = N−1
ky · θky

{
1 + βθ

λy

λy · θky + λy · 1
2

T∑
i=1

fk(xi)[δ(y, yi) − p(y|xi; θ)]

}

where N−1
ky is a normalization constant that ensures that θ̂ky + θ̂ky = 1, βθ =

1/Cθ and δ() is the Kronecker delta operator, δ(y, yi) = 1 for y = yi, 0 otherwise.

3.2.1 Model Parameter Initialization

The θy, θky parameters are initialized to their ML values (relative frequency).
The MAP weight α, common for all classes y, is calculated by line search such
that the conditional likelihood on cross-validation data is maximized. The re-
sulting interpolation weight λy for each class y is fixed to the value determined
using Eq. (9).

Only the θky, θky parameters are re-estimated using the RFGT transform.
The interpolation weights λy and the class priors θy are not re-estimated since
the model performance is not very sensitive to their values.

3.3 Refinements

The choice of βθ = 1/Cθ where Cθ satisfies Eq. (6) is problematic:

• the correct value of ε that will ensure monotonic increase in conditional
likelihood H(T ; θ) is hard to determine, see [2]. Large values for ε will
slow down convergence whereas small values may result in non-monotonic
increase of the conditional likelihood.

• assuming that we choose βθ such that Eq. (6) is satisfied for a small non-
negative value of ε, that value for βθ may still be very small. In practice we
noticed that typically there exists a pair of (k, y) values that will require
a very small βθ value which will make the updates for other (k, y) pairs
very small, slowing down convergence. Fortunately, as pointed out in [2],
one can use different βθ values for different probability distributions in ×,
in our case making it sensitive to the (k, y) value: βθ = βθ(k, y). We have
exploited this flexibility as explained later.

3.3.1 Dependency on Training Data Size

Since the sums in the above equations run over the entire training data, it is
useful to normalize with respect to training data size, namely use βθ =

γθ

T in
Eq. (11)
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3.3.2 Dependency on Class Count

It can be easily noted that the update Eqns. (11) could be made dimensionally
correct if one let βθ ·

∑T
i=1 fk(xi)[δ(y, yi) − p(y|xi; θ)] have the dimension of a

probability θky. We can achieve this by using βθ =
ζθ(y)

#(y) . In practice we noticed
that this parameterization results in a considerable convergence speedup.

We note that setting ζθ(y) = #(y)
T ·γθ would result in the exact same update

equations under either the γ or the ζ updates. Since #(y)
T = θy < 1.0∀y, the

speed-up observed in practice can thus be partly attributed to using a higher
step-size in the ζ-based updates. However, in our experimental setup the prior
distribution θy = #(y)

T is highly skewed towards one particular class (θFLIGHT =
0.74) so we believe that not all of the convergence speed improvement comes
from the difference in step size (see Fig. 1) although a direct comparison of the
relative performance of the two parameter update equations is difficult.

3.3.3 Choosing γθ, ζθ

As explained in [2] one can use a separate value γθ for each probability distri-
bution in ×. Our scheme for determining γθ(k, y) — one for each (k, y) pair —
is as follows:

• for each pair (k, y)

– set γθ(k, y) = γmin

– for the (k, y) values where the previous choice does not meet Ineq. (6),
set γθ(k, y) lower such that we have equality in (6)

– ∀(k, y) set γθ(k, y) = (1−e−7)·γθ(k, y) such that the margin by which
the (k, y) pairs satisfy Ineq. (6) for ε = 0 is increased. We note that
choosing ε = 0 or very small doesn’t guarantee monotonic increase of
the conditional log-likelihood on training data, as outlined in [2] and
confirmed by our experiments

The value γmin as well as the number of re-estimation iterations are chosen such
that they maximize classification accuracy on cross validation data.

A similar procedure is followed in the case of parameter updates based on
ζθ.

4 Experiments

We applied the Naive Bayes classifier to the problem of text classification in the
ATIS domain. The Naive Bayes classifier was trained under both the maximum
likelihood (ML) and conditional maximum likelihood (CML) criteria. We have
compared the CML NB classifier against a MaxEnt one [7].
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4.1 Experimental Setup

We have extracted the class A sentences from the ATIS II and ATIS III cor-
pora [3]. As class labels we have used the SQL queries that accompany each
sentence to extract class labels:

<s.G01011SX.SQL.0> class=flight
<s> show me the one way flights from detroit to westchester county </s>

( SELECT DISTINCT flight.flight_id FROM flight WHERE (
flight.from_airport IN ( SELECT airport_service.airport_code FROM
airport_service WHERE airport_service.city_code IN ( SELECT
city.city_code FROM city WHERE city.city_name = ’DETROIT’ ))
AND ( flight.to_airport IN ( SELECT airport_service.airport_code
FROM airport_service WHERE airport_service.city_code IN ( SELECT
city.city_code FROM city WHERE city.city_name = ’WESTCHESTER COUNTY’
)) AND flight.flight_id IN ( SELECT flight_fare.flight_id FROM
flight_fare WHERE flight_fare.fare_id IN ( SELECT fare.fare_id FROM
fare WHERE ( fare.round_trip_required = ’NO’ AND 1 = 1 )))))) ;

As training data we have used all the class A sentences in ATIS II and ATIS
III, a total of 5822 sentences. As test data we have used the class A sentences
from the 1993 and 1994 ATIS evaluation test sets, a total of 914 sentences.

The class vocabulary contained 14 classes extracted as described above.
From the training data we constructed a word vocabulary containing all the
780 words seen in the training data.

The features fk(x) were taken to identify whether a given word wk in the vo-
cabulary is present or not in a given sentence x. We have then built a conditional
Naive Bayes model for estimating the probability that a sentence x belongs to a
class y, P (y|x). The model parameters were estimated using both the maximum
likelihood (ML) and conditional maximum likelihood (CML) criteria described
above.

Each test sentence x was assigned to the most likely class, y∗ = arg maxy P (y|x).
The training data was randomly split into main (70% of train) and check

(30% of train). The check data was used for determining the MAP smoothing
weight α, see Eq.(7-8), the γmin, ζmin values as well as the number of CML
training iterations. Once these are fixed to the values that yield maximum
classification accuracy on check data, the entire training data is used to estimate
the final parameter values for both ML and CML.

4.2 Convergence Speed Experiments

We have studied the effect of the choice for γmin, ζmin on the convergence of
the CML training algorithm. Figures (1-2) show the gain in convergence speed
brought by using the re-estimation equations using the ζ rather than γ updates
— first 300 training iterations are shown.
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Figure 1: Convergence Speed Improvement γmin(−) = ζmin(−−) = 0.1 and
ζmin(·) = 0.075

As can be seen the improvement in convergence speed when measured as log-
likelihood increase of training/held-out data for a given number of iterations is
quite significant for both γmin = ζmin = 0.5 and 0.1. When using ζmin = 0.5
the re-estimation is stopped after 92 iterations due the fact that the conditional
log-likelihood on training data is no longer monotonically increasing.

A higher value for the γmin = ζmin parameter does lead to faster increase in
conditional log-likelihood.

4.3 Classification Experiments

We have run classification experiments in the above training/test setup. The
optimal α, ζmin values as well as the number of CML training iterations were
determined such that they yield maximum classification accuracy on check data,
approximatively 30% of the training data. The value α = 0.14 was found using
line search 1:0.01:0; ζmin = 0.1 as well as the optimal number of CML iterations
(275) were determined using line search 0.5:0.1:0 when running at most 500
training iterations.
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Figure 2: Convergence Speed Improvement γmin(−) = ζmin(−−) = 0.5
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Table 1 shows the classification results. The CML trained Naive Bayes clas-
sifier reduces the classification error rate of the ML baseline by 40%. Although
theoretically equivalent, MaxEnt and CML Naive Bayes do not perform equally
well. A few reasons that could explain the performance gap are:

• the model parameterization is slightly different due to smoothing; in the
case of the MaxEnt model smoothing results in a slightly modified ob-
jective function which has an extra term besides the conditional log-
likelihood, see [8]

• for the log-linear (MaxEnt) model the objective function is convex in the
model parameters (see Eq. 2) whereas this is not true in the Naive Bayes
parameterization

• the RFGT estimation procedure has an extra free parameter that is set
on cross-validation data (γmin or ζmin) whereas the GIS,IIS algorithms [9]
typically used for estimating the MaxEnt model do not.

Training Objective Function Smoothing Class Error Rate (%)
ML smoothed 11.3
CML not smoothed 8.5
CML smoothed 6.7
MaxEnt smoothed 4.9

Table 1: Classification Error

Class Frequency ML CER (%) CML CER (%)
FLIGHT 0.740 5.0 3.0
FARE 0.055 38.0 22.0
GROUND SERVICE 0.048 2.3 2.3
AIRLINE 0.046 28.6 16.7
AIRCRAFT 0.035 15.6 3.1
AIRPORT 0.024 22.7 22.7
FARE BASIS 0.014 7.7 23.1
AIRPORT SERVICE 0.010 11.1 11.1
CITY 0.009 50.0 87.5
FOOD SERVICE 0.008 57.1 0.0
CLASS OF SERVICE 0.004 100.0 50.0
RESTRICTION 0.004 0.0 0.0
DAYS 0.003 100.0 100.0
FLIGHT STOP 0 0.0 0.0

Table 2: Classification Error: Error Analysis
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Table 2 compares the performance of the ML and the CML classifier on different
classes, respectively. The most notable improvement is the reduction in error
rate by 41% on the FLIGHT class, which occurs 74% of the test data. The
CML training does not reduce the error rate across all classes.
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