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Abstract

We show that if a sequence of dense graphs Gn has the property that for every fixed
graph F , the density of copies of F in Gn tends to a limit, then there is a natural “limit
object”, namely a symmetric measurable function W : [0, 1]2 → [0, 1]. This limit object
determines all the limits of subgraph densities. Conversely, every such function arises as a
limit object. We also characterize graph parameters that are obtained as limits of subgraph
densities by the “reflection positivity” property.

Along the lines we introduce a rather general model of random graphs, which seems to
be interesting on its own right.

1 Introduction

Let Gn be a sequence of simple graphs whose number of nodes tends to infinity. For every fixed
simple graph F , let hom(F,G) denote the number homomorphisms of F into G (edge-preserving
maps V (F ) → V (G)). We normalize this number to get the homomorphism density

t(F,G) =
hom(F,G)
|V (G)||V (F )| .

This quantity is the probability that a random mapping V (F ) → V (G) is a homomorphism.
Suppose that the graphs Gn become more and more similar in the sense that t(F, Gn) tends

to a limit t(F ) for every F . Let T denote the set of graph parameters t(F ) arising this way. The
goal of this paper is to give characterizations of graph parameters in T . (This question is only
interesting if the graphs Gn are dense (i.e., they have Ω(|V (Gn)|2) edges); else, the limit is 0 for
every simple graph F with at least one edge.)

One way to characterize members of T is to define an appropriate limit object from which
the values t(F ) can be read off.

For example, let Gn be a random graph with density 1/2 on n nodes. It can be shown that
this converges with probability 1. A natural guess for the limit object would be the random
countable graph. This is a very nice object, uniquely determined up to automorphism. However,
this graph is too “robust”: the limit of random graphs with edge-density 1/3 would be the same,
while the homomorphism densities have different limits than in the case of edge-density 1/2.

The main result of this paper is to show that indeed there is a natural “limit object” in
the form of a symmetric measurable function W : [0, 1]2 → [0, 1] (we call W symmetric if
W (x, y) = W (y, x)). Conversely, every such function arises as the limit of an appropriate graph
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sequence. This limit object determines all the limits of subgraph densities: if F is a simple graph
with V (F ) = [k] = {1, . . . , k}, then

t(f, W ) =
∫

[0,1]n

∏

ij∈E(F )

W (x1, xj) dx1 . . . dxn. (1)

The limit object for random graphs of density p is the constant function p.
Another characterization of graph parameters t(F ) that are limits of homomorphism densities

can be given by describing a complete system of inequalities between the values t(F ) for different
finite graphs F . One can give such a complete system in terms of the positive semidefiniteness of
a certain sequence of matrices which we call connection matrices (see section 2.3 for details). This
property is related to reflection positivity in statistical mechanics. Our results in this direction
can be thought of as analogues of the characterization of homomorphism density functions given
in [5] in the limiting case.

We can also look at this result as an analogue of the well known characterization of moment
sequences in terms of the positive semidefiniteness of the moment matrix. A “2-variable” version
of a sequence is a graph parameter, and representation in form of moments of a function (or
random variable) can be replaced by the integral representation (1). The positive semidefiniteness
of connection matrices is analogous to the positive semidefiniteness of moment matrices.

Every symmetric measurable function W : [0, 1]2 → [0, 1] gives rise to a rather general model
of random graphs, which we call W -random. Their main role in this paper is that they provide
a graph sequence that converges to W ; but they seem to be interesting on their own right.

We show that every random graph model satisfying some rather natural criteria can be
obtained as a W -random graph for an appropriate W .

The set T was introduced by Erdős, Lovász and Spencer [4], where the dimension of its
projection to any finite number of coordinates (graphs F ) was determined.

Limit objects of graph sequences were constructed by Benjamini and Schramm [1] for se-
quences of graphs with bounded degree; this was extended by Lyons [10] to sequences of graphs
with bounded average degree. (The normalization in that case is different.)

2 Definitions and main results

2.1 Weighted graphs and homomorphisms

A weighted graph G is a graph with a weight αG(i) associated with each node and a weight
βG(i, j) associated with each edge ij. (Here we allow that G has loops, but no multiple edges.)
In this paper we restrict our attention to positive real weights between 0 and 1. An edge with
weight 0 will play the same role as no edge between those nodes, so we could assume that we only
consider weighted complete graphs with loops at all nodes (but this is not always convenient).
The adjacency matrix of a weighted graph is obtained by replacing the 1’s in the adjacency
matrix by the weights of the edges. An unweighted graph is a weighted graph where all the node-

3



and edgeweights are 1. We set

αG =
∑

i∈V (G)

αG(i).

Recall that for two unweighted graphs F and G, hom(F, G) denotes the number of homo-
morphisms (adjacency preserving maps) from F to G. We extend this notion to the case when
G is a weighted graph. To every φ : V (F ) → V (G), we assign the weights

αφ =
∏

u∈V (F )

αG(φ(u)),

and

homφ(F, G) =
∏

uv∈E(F )

βG(φ(u), φ(v)).

We then define the homomorphism function

hom(F, G) =
∑

φ: V (F )→V (G)

αφhomφ(F, G). (2)

and the homomorphism density

t(F,G) =
hom(F, G)

α
|V (F )|
G

.

We can also think of t(F, G) as a homomorphism function after the nodeweights of G are scaled
so that their sum is 1.

It will be convenient to extend the notation homφ as follows. Let φ : V ′ → V (G) be a map
defined on a subset V ′ ⊆ V (F ). Then define

αφ =
∏

u∈V ′
αG(φ(u)),

and

homφ(F, G) =
∑

ψ:V (F )→V (G)
ψ extends φ

αψ

αφ
homψ(F, G).

If V ′ = ∅, then αφ = 1 and homφ(F,G) = hom(F,G).

2.2 Convergence of graph sequences

Let (Gn) be a sequence of weighted graphs. We say that this sequence is convergent, if the
sequence (t(F,Gn)) has a limit as n → ∞ for every simple unweighted graph F . (Note that it
would be enough to assume this for connected graphs F .) We say that the sequence converges
to a finite weighted graph G if

t(F,Gn) −→ hom(F,G)
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for every simple graph F . A convergent graph sequence may not converge to any finite weighted
graph; it will be our goal to construct appropriate limit objects for convergent graph sequences
which do not have a finite graph as a limit.

A graph parameter is a function defined on simple graphs that is invariant under isomorphism.
Every weighted graph G defines graph parameters hom(., G), inj(., G), t(., G) and t0(., G).

Often we can restrict our attention to graph parameters f satisfying f(K1) = 1, which we
call normalized. Of the four parameters above, t(., G) and t0(., G) are normalized. We say that a
graph parameter f is multiplicative, if f(G1G2) = f(G1)f(G2), where G1G2 denotes the disjoint
union of two graphs G1 and G2. The parameters hom(., G) and t(., G) are multiplicative.

The same graph parameter hom(., G), defined by a weighted graph G, arises from infinitely
many graphs. Replace a node i of G by two nodes i′ and i′′, whose weights are chosen so that
α(i′) + α(i′′) = α(i); define the edge weights β(i′j) = β(i′′j) = β(ij) for every node j; and keep
all the other nodeweights and edgeweights. The resulting weighted graph G′ will define the same
graph parameter hom(., G′) = hom(., G). Repeating this operation we can create arbitrarily
large weighted graphs defining the same graph parameter.

If we want to stay among unweighted graphs, then the above operation cannot be carried out,
and the function hom(., G) in fact determines G [8]. But for the t(., G) parameter, the situation
is different: if we replace each node of an unweighted graph G by N copies (where copies of two
nodes are connected if and only if the originals were), then t(., G) does not change.

In particular, if we consider a convergent graph sequence, we need not assume that the
number of nodes tends to infinity: we could always achieve this without changing the limit.

2.3 Reflection positivity

A k-labeled graph (k ≥ 0) is a finite graph in which k nodes are labeled by 1, 2, . . . k (the graph
can have any number of unlabeled nodes). For two k-labeled graphs F1 and F2, we define the
graph F1F2 by taking their disjoint union, and then identifying nodes with the same label, and
then cancelling the resulting multiplicities of edges. Hence for two 0-labeled graphs, F1F2 is just
their disjoint union.

Let f be any graph parameter defined on simple graphs. For every integer k ≥ 0, we define
the connection matrix M(k, f) as follows. This is infinite matrix, whose rows and columns are
indexed by (isomorphism types of) k-labeled graphs. The entry in the intersection of the row
corresponding to F1 and the column corresponding to F2 is f(F1F2). We say that the parameter
f is reflection positive, if M(k, f) is positive semidefinite for every k ≥ 0.

In [5], a related matrix was defined. In that paper, the test graphs F may have multiple
edges and the target graphs G have arbitrary edgeweights. Let us call a graph parameter
defined on graphs which may have multiple edges a multigraph parameter. The only difference in
the definition of the connection matrix is that edge multiplicities are not cancelled when F1F2 is
defined. It was shown that hom(., G) as a multigraph parameter is reflection positive for every
weighted graph G, and the matrix M(f, k) has rank at most |V (G)|k. It was also shown that
these two properties characterize which multigraph parameters arise in this form. (In this paper
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we restrict our attention to simple test graphs F and edge-weights between 0 and 1. See also
section 6.2.)

For graph parameters defined on simple graphs, there is a simpler matrix whose positive
semidefiniteness could be used to define reflection positivity. Let M0(k, f) denote the submatrix
of M(k, f) formed by those rows and columns that are indexed by k-labeled graphs on k nodes (so
that every node is labeled). The equivalence of these definitions (under some further conditions)
will follow from our main theorem.

We could combine all these matrices into single matrix M0(f): the rows and columns of
M0(f) are indexed by all finite graphs whose nodes form a finite subset of N. To get the entry
in the intersection of row F1 and column F2, we take the union F1 ∪ F2, and evaluate f on this
union. Clearly every M0(k, f) is a minor of M0(f), and every finite minor of M0(f) is a minor of
M0(k, f) for every large enough k. So M0(f) is positive semidefinite if and only if every M0(k, f)
is.

2.4 Homomorphisms, subgraphs, induced subgraphs

Sometimes it is more convenient to work with injective maps. For two unweighted graphs F and
G, let inj(F, G) denote the number of injective homomorphisms from F to G (informally, the
number of copies of F in G). We also introduce the injective homomorphism density

t0(F,G) =
inj(F, G)

(|V (G)|)|V (F )|

(where (n)k = n(n− 1) · (n− k + 1)).
From a graph-theoretic point of view, it is also important to count induced subgraphs. More

precisely, if F and G are two unweighted graphs, then let ind(F, G) denote the number of
embeddings of F into G as an induced subgraph. We define the induced homomorphism density
by

t1(F,G) =
ind(F, G)

(|V (G)|)|V (F )|
.

If G is weighted, then we define inj(F, G) by the same type of sum as for homomorphisms:

inj(F, G) =
∑

φ

αφhomφ(F,G),

except that the summation is restricted to injective maps. Let

t0(F,G) =
inj(F, G)

(αG)|V (F )|

(where for a sequence α = (α1, . . . , αn), (α)k denotes the k-th elementary symmetric polynomial
of the αi). Note that the normalization was chosen so that t(F, G) = t0(F,G) = 1 if F has no
edges.

We also extend the ind function to the case when G is weighted: we define

indφ(F, G) =
∏

uv∈E(F )

βG(φ(u), φ(v))
∏

uv∈E(F )

(1− βG(φ(u), φ(v)))
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(here F denotes the complement of the graph F ),

ind(F, G) =
∑

φ

αφindφ(F,G),

and

t1(F,G) =
ind(F,G)
(αG)|V (F )|

.

In the definition of convergence, we could replace t(F, G) by the number t0(F, G) of embed-
dings (injective homomorphisms); this is more natural from the graph theoretic point if view.
This would not change the notion of convergence or the value of the limit, as the following simple
lemma shows:

Lemma 2.1 For every weighted graph G and unweighted simple graph F , we have

|t(F, G)− t0(F,G)| < 1
|V (G)|

(|V (F )|
2

)
.

We could also replace the hom function by ind function. Indeed,

inj(F, G) =
∑

F ′⊃F

ind(F ′, G)

(where F ′ ranges over all supergraphs of F on the same set of nodes), and by inclusion-exclusion,

ind(F, G) =
∑

F ′⊃F

(−1)|E(F ′)\E(F )|ind(F ′, G).

Hence it follows that

t1(F,G) =
∑

F ′⊃F

(−1)|E(F ′)\E(F )|t0(F ′, G).

It will be convenient to introduce the following operator: if f is any graph parameter, then f†

is the graph parameter defined by

f†(F ) =
∑

F ′⊃F

(−1)|E(F ′)\E(F )|f(F ′).

Thus t1 = t†0.
(There is a similar precise relation between the numbers of homomorphisms and injective

homomorphisms as well, but we will not have to appeal to it.)

2.5 The limit object

We’ll show that every convergent graph sequence has a limit object, which can be viewed as
an infinite weighted graph on the points of the unit interval. To be more precise, for every
symmetric measurable function W : [0, 1]2 → [0, 1], we can define a graph parameter t(.,W ) by

t(F,W ) =
∫

[0,1]k

∏

ij∈E(F )

W (xi, xj) dx1 . . . dxk
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(where F is a simple graph with V (F ) = [k]).
Let φ : V ′ → [0, 1] is a map defined on a subset V ′ ⊆ [k]. Similarly as in the case of

homomorphisms into finite graphs, we define tφ as follows. Let, say, V ′ = [k′] (1 ≤ k′ ≤ k), and
xi = φ(i) (i = 1, . . . , k′). Define

tφ(F,W ) =
∫

[0,1]k−k′

∏

ij∈E(F )

W (xi, xj) dxk′+1 . . . dxk.

It is easy to see that for every weighted finite graph H, the simple graph parameter t(.,H) is a
special case. Indeed, define a function WH : [0, 1]2 → [0, 1] as follows. Let αi be the nodeweights
of H and βij , the edgeweights of H. We may assume that

∑
i αi = 1. For (x, y) ∈ [0, 1]2, let a

and b determined by

α1 + · · ·+ αa−1 ≤ x < α1 + · · ·+ αa,

α1 + · · ·+ αb−1 ≤ y < α1 + · · ·+ αb,

and let

WH(x, y) = βab.

The main result in this paper is the following. Recall that T denotes the set of graph
parameters f that are limits of graph parameters t(., G); i.e., there is a convergent sequence of
simple graphs Gn such that

f(.) = lim
n→∞

t(., Gn)

for every simple graph F .

Theorem 2.2 For a simple graph parameter f the following are equivalent:

(a) f ∈ T ;

(b) There is a symmetric measurable function W : [0, 1]2 → [0, 1] for which f = t(.,W ).

(c) The parameter f is normalized, multiplicative and reflection positive.

(d) The parameter f is normalized, multiplicative and M0(f) is positive semidefinite.

(e) The parameter f is normalized, multiplicative and f† ≥ 0.

Remarks 1. The theorem gives four characterizations of the set T : one analytic, two algebraic
and one combinatorial. Characterizations (c), (d) and (e) are closely related (even though a
direct proof of the equivalence of (c) and (d) is not easy). Any of these three on the one hand,
and (b) on the other, form a “dual” pair in the spirit of NP-coNP: (b) tells us why a graph
parameter is in T , while (c) (or (d) or (e)) tells us why it is not.

2. Corollary 2.6 below shows that finite weighted graphs are limits of simple unweighted
graphs. This implies that in the definition of T , we could take convergent sequences of weighted
graphs instead of unweighted graphs.
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3. We could define a more general limit object as a probability space (Ω,A, π) and a sym-
metric measurable function on W : Ω × Ω → [0, 1]. This would not give rise to any new
invariants. However, some limit objects may have a simpler or more natural representation on
other σ-algebras (cf. Corollary 2.3 below).

4. One might think that (c) and (d) are equivalent for the more direct reason that M0(k, f)
is positive semidefinite if and only if M(k, f) is. This implication, however, does not hold for a
fixed k (even if we assume that f is normalized and multiplicative). For example, M0(1, f) is
positive semidefinite for every normalized multiplicative graph parameter, but M(1, f) is not if
f(F ) is the number of matchings in F .

5. In the case when f = hom(F, G) for some finite graph G, f† ≥ 0 in condition (e) expresses
that counting induced subgraphs in G we get non-negative values.

As an immediate application of Theorem 2.2, we prove the following fact:

Proposition 2.3 If t1, t2 ∈ T , then t1t2 ∈ T .

This follows from condition (c) in Theorem 2.2, using that positive semidefiniteness is
preserved under Schur product. It may be instructive to see how a representation of the
product of type (b) can be constructed. Let ti = t(.,Wi), and define W as the 4-variable
function W1(x1y1)W2(x2, y2). We can consider W as a function in two variables x, y, where
x = (x1, x2) ∈ [0, 1]2 and y = (y1, y2) ∈ [0, 1]2. Then W gives rise to graph parameter t(.,W ),
and it is straightforward to check that t = t1t2.

2.6 W -random graphs

Given any symmetric measurable function W : [0, 1]2 → [0, 1] and an integer n > 0, we can
generate a random graph G(n,W ) on node set [n] as follows. We generate n independent
numbers X1, . . . , Xn from the uniform distribution on [0, 1], and then connect nodes i and j

with probability W (Xi, Xj).
As a special case, if W is the identically p function, we get “ordinary” random graphs G(n, p).

This sequence is convergent with probability 1, and in fact it converges to the graph K1(p), the
weighted graph with one node and one loop with weight p. The limiting simple graph parameter
is given by t(F ) = p|E(F )|.

More generally, let WH : [0, 1]2 → [0, 1] be defined by a (finite) weighted graph H with
V (H) = [q], whose node weights αi satisfy α1 + · · ·+ αq = 1. Then G(n, WH) can be described
as follows. We open q bins V1, . . . , Vq. Create n nodes, and put each of them independently in
bin i with probability αi. For every pair u, v of nodes, connect them by an edge with probability
βij if u ∈ Vi and v ∈ Vj . We call G(n,WH) a random graph with model H.

We show that the homomorphisms densities into G(n, F ) are close to the homomorphism
densities into W . Let us fix a simple graph F , let V (F ) = [k] and G = G(n,W ).

The following lemma summarizes some simple properties of W -random graphs.

Lemma 2.4 For every simple graph F ,
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(a) E
(
t0(F,G(n, W ))

)
= t(F, W );

(b)
∣∣E(

t(F,G(n,W ))
)− t(F, W )

∣∣ <
1
n

(|V (F )|
2

)
;

(c) Var(t(F,G(n,W ))) ≤ 3
n
|V (F )|2.

This lemma implies, by Chebyshev’s inequality, that

Pr
(|t(F,G(n,W ))− t(F, W )| > ε

) ≤ 3|V (F )|2 1
nε2

.

Much stronger concentration results can be proved for t(F,G), using deeper techniques (Azuma’s
inequality):

Theorem 2.5 Let F be a graph with k nodes. Then for every 0 < ε < 1,

Pr
(
|t0(F,G(n, W ))− t(F, W )| > ε

)
≤ 2 exp

(
− ε2

2k2
n

)
. (3)

and

Pr
(
|t(F,G(n,W ))− t(F, W )| > ε

)
≤ 2 exp

(
− ε2

18k2
n

)
. (4)

From this Theorem it is easy to show:

Corollary 2.6 The graph sequence G(n,W ) is convergent with probability 1, and its limit is the
function W .

Indeed, the sum of the right hand sides is convergent for every fixed ε > 0, so it follows by
the Borell–Cantelli Lemma that t(F,G(n,W )) → t(F, W ) with probability 1. There is only a
countable number of graphs F , so this holds with probability 1 for every F .

This way of generating random graphs is quite general in the following sense. Suppose that
for every n ≥ 1, we are given a distribution on simple graphs on n given nodes, say [n]; in
other words, we have a random variable Gn whose values are simple graphs on [n]. We call this
random variable a random graph model. Clearly, every symmetric function W : [0, 1]2 → [0, 1]
gives rise to a random graph model G(n,W ). The following theorem shows that every model
satisfying rather general conditions is of this form:

Theorem 2.7 A random graph model is of the form G(n,W ) for some symmetric function
W : [0, 1]2 → [0, 1] if and only if it has the following three properties:

(i) the distribution of Gn is invariant under relabeling nodes;

(ii) if we delete node n from Gn, the distribution of the resulting graph is the same as the
distribution of Gn−1;

(iii) for every 1 < k < n, the subgraphs of G induced by [k] and {k+1, . . . , n} are independent
as random variables.
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3 Examples

3.1 Quasirandom graphs

Graph sequences converging to K1(p) are well studied under the name of quasirandom graphs
(see [3]). More generally, graph sequences converging to a finite weighted graph H are called
quasirandom graphs with model H. The name is again justified since random graphs G(n,WH)
with model H converge to H with probability 1. These generalized quasirandom graphs are
characterized in [9].

3.2 Half-graphs

Let Hn,n denote the bipartite graph on 2n nodes {1, . . . , n, 1′, . . . , n′}, where i is connected to
j′ if and only if i ≤ j. It is easy to see that this sequence is convergent. Indeed, let F be
a simple graph with k nodes; we show that the limit of t(F, Hn,n) exists. We may assume
that F is connected. If F is non-bipartite, then t(F, Hn,n) = 0 for all n, so suppose that F is
bipartite; let V (F ) = V1 ∪ V2 be its (unique) bipartition. Then every homomorphisms of F into
H preserves the 2-coloring, and so the homomorphisms split into two classes: those that map
V1 into {1, . . . , n} and those that map it into {1′, . . . , n′}. By the symmetry of the half-graphs,
these two classes have the same cardinality.

Now F defines a partial order P on V (F ), where u ≤ v if and only if u = v or u ∈ V1, v ∈ V2,
and uv ∈ E. (1/2)hom(F, Hn,n) is just the number of order-preserving maps of P to the chain
{1, . . . , n}, and so

1
2k−1

t(F, Hn,n) =
1

2k−1
· hom(F,Hn,n)

(2n)k
=

(1/2)hom(F, Hn,n)
nk

is the probability that a random map of V (F ) into {1, . . . , n} is order-preserving. As n →∞, the
fraction of non-injective maps tends to 0, and hence it is easy to see that 21−kt(F, Hn,n) tends
to a number 21−kt(F ), which is the probability that a random ordering of V (F ) is compatible
with P . In other words, k!21−kt(F ) is the number of linear extensions of P .

However, the half-graphs do not converge to any finite weighted graph. To see this, let Sk

denote the star on k nodes, and consider the (infinite) matrix M defined Mk,l = t(Sk+l−1). If
t(F ) = t(F, G0) for some finite weighted graph G0, then it follows from the characterization of
homomorphism functions in [5] that this matrix has rank at most |V (G0)|; on the other hand,
it is easy to compute that

Mk,l =
2k+l−1

k + l − 1
,

and this matrix (up to row and column scaling, the Hilbert matrix) has infinite rank (see e.g [2]).
It is easy to see that in the limit, we are considering order-preserving maps of the poset P into

the interval [0, 1]; equivalently, the limit object is the characteristic function W : [0, 1]2 → [0, 1]
of the set {(x, y) ∈ [0, 1]2 : |x− y| ≥ 1/2}.
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4 Tools

4.1 Distances of functions, graphs and matrices

For any integrable function U : [0, 1]2 → R, we define its rectangle norm by

‖U‖¤ = sup
A⊆[0,1]
B⊆[0,1]

∣∣∣∣
∫

A

∫

B

U(x, y) dx dy

∣∣∣∣ . (5)

It is easy to see that this norm could be defined by the formula

‖U‖¤ = sup
0≤f,g≤1

∫ 1

0

∫ 1

0

U(x, y)f(x)g(y). (6)

The rectangle norm is related to other norms known from analysis. It is not hard to see that

1
4
‖U‖∞→1 ≤ ‖U‖¤ ≤ ‖U‖∞→1,

where

‖U‖∞→1 = sup
−1≤f,g≤1

∫ 1

0

∫ 1

0

U(x, y)f(x)g(y)

is the L∞ → L1 norm of the operator defined by

f 7→
∫ 1

0

U(., y)f(y) dy.

It is also easy to see that

‖U‖¤ ≤ ‖U‖1,

where

‖U‖1 =
∫ 1

0

∫ 1

0

|U(x, y)| dx dy

is the L1-norm of U as a function.
The following lemma relates the rectangle norm and homomorphism densities.

Lemma 4.1 Let U,W : [0, 1]2 → [0, 1] be two symmetric integrable functions. Then for every
simple finite graph F ,

|t(F, U)− t(F,W )| ≤ |E(F )| · ‖U −W‖¤.

Proof. Let V (F ) = [n] and E(F ) = {e1, . . . , em}. Let et = itjt. Define Et = {e1, . . . , et}.
Then

t(F,U)− t(F, W ) =
∫

[0,1]n

( ∏

ij∈E(F )

W (xi, xj)−
∏

ij∈E(F )

U(xi, xj)
)

dx

We can write

∏

ij∈E(F )

W (xi, xj)−
∏

ij∈E(F )

U(xi, xj) =
m−1∑
t=0

Xt(x1, . . . , xn),

12



where

Xt(x1, . . . , xn) =
( ∏

ij∈Et−1

W (xi, xj)
)( ∏

ij∈E(F )\Et

U(xi, xj)
)
(W (xit , xjt)− U(xit , xjt)).

To estimate the integral of a given term, let us integrate first the variables xit and xjt ; then by
(6),

∣∣∣∣
∫ 1

0

∫ 1

0

Xt(x1, . . . , xn) dxit dxjt

∣∣∣∣ ≤ ‖U −W‖¤,

and so

|t(F, U)− t(F,W )| ≤
m−1∑
t=0

∣∣∣∣∣
∫

[0,1]n
Xt(x1, . . . , xn) dx

∣∣∣∣∣ ≤ m‖U −W‖¤

as claimed. ¤

Let G and G′ be two edge-weighted graphs on the same set V of nodes. We define their
rectangular distance by

d¤(G,G′) =
1
n2

max
S,T⊆V

∣∣∣
∑

i∈S, j∈T

(βG(i, j)− βG′(i, j))
∣∣∣.

Clearly, this is a metric, and the distance of any two graphs is a real number between 0 and 1.
Finally, the rectangular norm (also called cut norm of a matrix A = (aij)n

i,j=1 is defined by

‖A‖¤ = max
S,T

∣∣∣∣∣∣
∑

i∈S

∑

j∈T

aij

∣∣∣∣∣∣
,

where S and T range over all subsets of [n].
These norms and distances are closely related. If G and G′ are two graphs on the same set

of nodes, then their distance can be expressed in terms of the associated symmetric functions
WG and WG′ , and in terms of their (weighted) adjacency matrices AG and AG′ as

d¤(G,G′) = ‖WG −WG′‖¤ = ‖AG −AG′‖¤.

Hence by Lemma 4.1,

|t(F, G)− t(F, G′)| ≤ |E(F )| · d¤(G,G′) (7)

for any simple graph F .

4.2 Szemerédi partitions

A weak form of Szemerédi’s lemma (see e.g. [6]; this weak form is all we need) asserts that every
graph G can be approximated by a weighted graph with a special structure. Let P = (V1, . . . , Vk)
be a partition of a finite set V and let Q be a symmetric k × k matrix with all entries between
0 and 1. We define the graph K(P, Q) as the complete graph on V with a loop at each node, in
which the weight of an edge uv (u ∈ Vi, v ∈ Vj) is Qij .
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Lemma 4.2 (Weak form of Szemerédi’s Lemma) For every ε > 0 there is an integer
k(ε) > 0 such that for every simple graph G there exists a partition P of V (G) into k ≤ k(ε)
classes V1, . . . , Vk, and a symmetric k × k matrix Q with all entries between 0 and 1, such that

∣∣|Vi| − |Vj |
∣∣ ≤ 1 (1 ≤ i, j ≤ k),

and for every set S ⊆ V (G),

d¤(G,K(P, Q)) ≤ ε.

We call the partition P a weak ε-regular partition of G with density matrix Q.
The best known bound k(ε) is of the order 2O(1/ε2). If the number of nodes of G is less than

this, then P can be chosen to be the partition into singletons, and K(P, Q) = G.
It is not hard to see that (at the cost of increasing k(ε)) we can impose additional conditions

on the partition P. We’ll need the following condition: the partition P refines a given partition
P0 of V (G) (the value k(ε) will also depend on the number of classes in P0).

It follows from the results of this paper (but it would not be hard to prove it directly), that
the above weak form of Szemerédi’s Lemma extends to the limit objects in the following form. A
symmetric function U → [0, 1]2 → [0, 1] is called a symmetric stepfunction with k steps if there
exists a partition [0, 1] = S1 ∪ · · · ∪ Sk such that U is constant on every set Si × Sj .

Corollary 4.3 For every ε > 0 there is an integer k(ε) > 0 such that for every symmetric
function W : [0, 1]2 → [0, 1] there exists a symmetric stepfunction U : [0, 1]2 → [0, 1] with k

steps such

‖W − U‖¤ ≤ ε.

(It would be interesting to find a similar form of the full-strength Szemerédi Lemma.)

5 Proofs

5.1 Proof of Lemma 2.1

We have trivially

hom(F, G) ≥ inj(F, G),

and so

t(F,G) =
hom(F, G)

nk
≥ inj(F, G)

nk
= t0(F,G)

(n)k

nk
.

Here

(n)k

nk
=

k−1∏

i=1

(
1− i

n

)
≥ 1−

(
k

2

)
1
n

,

and so

t(F,G) ≥ t0(F,G)
(

1−
(

k

2

)
1
n

)
≥ t0(F,G)−

(
k

2

)
1
n

.
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On the other hand, we have by the beginning of inclusion-exclusion,

inj(F, G) ≥ hom(F, G)−
∑

F ′
hom(F ′, G),

where the summation ranges over all graphs F ′ arising from F by identifying two of the nodes.
The number of such graphs is

(
k
2

)
. Hence

t0(F,G) =
inj(F, G)

(n)k
≥ inj(F, G)

nk
≥ hom(F,G)

nk
−

∑

F ′

hom(F ′, G)
nk

= t(F,G)− 1
n

∑

F ′
t(F ′, G) ≥ t(F, G)−

(
k

2

)
1
n

.

This completes the proof.

5.2 Proof of Lemma 2.4

Consider any injective map φ : V (F ) → V (G). For a fixed choice of X1, . . . , Xn, the events
φ(i)φ(j) ∈ E(G) are independent for different edges ij of F , and so the probability that φ is a
homomorphism is

∏

ij∈E(F )

W (Xφ(i), Xφ(j))

Now choosing X1, . . . , Xn at random, we get that the probability that φ is a homomorphism is

E
( ∏

ij∈E(F )

W (Xφ(i), Xφ(j))
)

= t(F, W ).

Summing over all injective maps φ, we get (a). By (2.1), we get (b).
Finally, we estimate the variance of t(F,G). Let F2 denote the disjoint union of 2 copies of

F . Then

t(F2,G) = t(F,G)2, and t(F2, W ) = t(F,W )2.

Let R = |V (F )|2/n. By Lemma 2.1

E(t(F, G)2) = E(t(F2, G)) ≤ E(t0(F2,G) + 2R) = t(F2, W ) + 2R = t(F, W )2 + 2R,

and

E(t(F, G))2 ≥ E(t0(F, G)−R/2)2 ≥ E(t0(F,G))2 −R = t0(F,W )2 −R.

Hence

Var(t(F,G)) = E(t(F,G)2)− E(t(F,G))2 ≤ 3R =
3
n
|V (F )|2.
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5.3 Proof of Theorem 2.5

The idea of the proof is to form a martingale as follows. In the m-th step (m = 1, . . . , n), we
generate Xm ∈ [0, 1], and the edges of G connecting the new node to previously generated nodes.
The probability that a random injection of V (F ) into V (G) is a homomorphism (conditioning on
the part of G we already generated) is a martingale. We are going to apply Azuma’s inequality
to this martingale.

To be precise: For every injective map φ : [k] → [m], let Aφ denote the event that φ is a
homomorphism from F to the random graph G. Let Gm denote the subgraph of G induced by
nodes 1, . . . ,m. Define

Bm =
1

(n)k

∑

φ

Pr(Aφ | Gm).

Clearly the sequence (B0, B1, . . . ) is a martingale. Furthermore,

Pr(Aφ) = t(F, W ),

and

Pr(Aφ | Gn) =

{
1 if φ is a homomorphism from F to G,

0 otherwise.

Thus

B0 =
∑

φ

Pr(Aφ) = t(F, W ),

and

Bn =
1

(n)k
inj(F,G) = t0(F,G).

Next we estimate |Bm −Bm−1|:

|Bm −Bm−1| = 1
(n)k

∣∣∣∣∣∣
∑

φ

(Pr(Aφ | Gm)− Pr(Aφ | Gm−1))

∣∣∣∣∣∣

≤ 1
(n)k

∑

φ

∣∣∣Pr(Aφ | Gm)− Pr(Aφ | Gm−1)
∣∣∣.

In this sum, every term for which m is not in the range of φ is 0, and the other terms are at
most 1. The number of terms of the latter kind is k(n− 1)k−1, and so

|Bm −Bm−1| ≤ k(n− 1)k−1

(n)k
=

k

n
.

Thus we can invoke Azuma’s Inequality:

Pr
(
Bn −B0 > ε

)
≤ exp

(
− ε2

2n(k/n)2

)
= exp

(
− ε2

2k2
n

)
,
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and similarly

Pr
(
Bn −B0 > ε(n)k

)
≤ exp

(
− ε2

2k2
n

)
.

Hence

Pr
(
|Bn − (n)kt(F,W )| > ε(n)k

)
≤ 2 exp

(
− ε2

2k2
n

)
.

This proves (3).
To get (4), we use Lemma 2.1. We may assume that n > k2/ε (else the inequality is trivial).

Then

|t0(F,G)− t(F,G)| ≤ ε

3
,

and similarly

|t0(F,G)− t(F, H)| ≤ ε

3
,

so (4) follows by applying (3) with ε/3 in place of ε.

5.4 Proof of Theorem 2.2: (a)⇒(b)

Let (Gn) be a convergent graph sequence and

f(F ) = lim
n→∞

t(F, Gn)

for every n. We want to construct a function W : [0, 1]2 → [0, 1] such that f = t(., W ).
We start with constructing a subsequence of (Gn) whose members have well-behaved Sze-

merédi partitions.

Lemma 5.1 Every graph sequence (Gn : n = 1, 2, . . . ) has a subsequence (G′m : m = 1, 2, . . . )
for which there exists a sequence (km : m = 1, 2, . . . ) of integers and a sequence (Qm : m =
1, 2, . . . ) of matrices with the following properties.

(i) Qm is a km × km symmetric matrix, all entries of which are between 0 and 1.

(ii) If i < j, then ki | kj, and the matrix Qi is obtained from the matrix Qj by partitioning
its rows and columns into ki consecutive blocks of size kj/ki, and replacing each block by a single
entry, which is the average of the entries in the block.

(iii) For all j < m, G′m has a weakly (1/m)-regular partition Pm,j with density matrix Qm,j

such that

‖Qm,j −Qj‖¤ < 1/j, (8)

and for 1 ≤ i < j ≤ m, Pm,j is a refinement of Pm,i.

Proof. For every integer m ≥ 1, we construct a subsequence (Gm
n ) so that all graphs in the

subsequence have a weakly (1/m)-regular partition Pn,m into the same number km of classes
and with almost the same density matrix.
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The first sequence (G1
n) is selected from (Gn) so that the edge density of G1

n converges to
a fix constant c between 0 and 1 if n tends to infinity. Furthermore, for every graph G1

n let
Pn,1 = {V (G1

n)} be the 1-block partition and let Qn,1 be the 1 by 1 matrix containing the edge
density of G1

n. We set k1 = 1.
Suppose that for some integer m > 0, we have constructed the sequence (Gm

n ). For every
graph Gm

n , consider a weakly 1/(m + 1)-regular partition Pn,m+1 = {V1, . . . , VKn
} of Gm

n with
density matrix Qn,m+1. We may choose this partition so that it refines the previous partition
Pn,m, and each class of Pn,m is split into the same number of classes rn,m; the number Kn of
classes remains bounded, and so the numbers rn,m also remain bounded (m is fixed, n → ∞).
So we can thin the sequence so that all remaining graphs have the same rm = rn,m. We set
km+1 = kmrm. Furthermore, we can select a subsequence so that the density matrices Qn,m+1

converge to a fixed matrix Qm+1 if n tends to infinity. Finally we drop all the elements Gm+1
i

from the remaining sequence for which ‖Qi,m+1 −Qm+1‖¤ > 1/(2m + 2). By renumbering the
indices, we obtain the subsequence Gm+1

n .
Let G′m = Gm

1 . For every 1 ≤ j < m, the graph G′m has a tower of partitions Pm,j

(j = 1, . . . ,m) so that Pm,j has kj almost equal classes, and has a density matrix Qm,j such
that limm→∞Qm,j = Qj and ‖Qm,j −Qm′,j‖¤ < 1/j for all m,m′ > j.

For a fixed graph G′m, the partitions Pm,1,Pm,2, . . . ,Pm,m are successively refinements of
each other. We may assume that the classes are labeled so that the i-th class of Pm,j+1 is the
union of consecutive classes (i− 1)rm + 1, . . . , irm. Let Q̂m,j (1 ≤ j ≤ m) be the kj × kj matrix
obtained from Qm by partitioning its rows and columns into kj consecutive blocks of size km/kj ,
and replacing each block by a single entry, which is the average of the corresponding entries of
Qm. Using that limn→∞ |V (Gn)| = ∞ and that all the sets in Pm,j have almost the same size
one gets that Q̂m,j = Qj .

Thus we constructed a sequence (G′1, G
′
2, . . . ) of graphs, an increasing sequence (k1, k2, . . . )

of positive integers, and a sequence (Q1, Q2 . . . ) of matrices. We claim that these sequences
satisfy the properties required in the Lemma. (i), (ii) and the second assertion of (iii) are trivial
by construction. The first assertion in (iii) follows on noticing that Qj is the limit of matrices
Qm,j , and ‖Qm,j , Qm′,j‖¤ < 1/j for all j ≤ m ≤ m′. ¤

Lemma 5.2 Let (km) be a sequence of positive integers and (Qm), a sequence of matrices
satisfying (i) and (ii) in Lemma 5.1. Then there exists a symmetric measurable function
W : [0, 1]2 → [0, 1] such that

(a) WQm → W (m →∞) almost everywhere;

(b) for all m and 1 ≤ i, j ≤ km

(QM )ij = k2
m

∫ i/km

(i−1)/km

∫ j/km

(j−1)/km

W (x, y) dx dy.

Proof. Define a map φm : [0, 1) → [km] by mapping the interval [(i− 1)/km, i/km) to i.

Claim 5.3 Let X and Y be two uniformly distributed random elements of [0, 1]. Then the
sequence Zm = (Qm)φm(X),φm(Y ), i = 1, 2, . . . is a martingale.
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We want to show that

E(Zm+1 | Z1, . . . , Zm) = Zm. (9)

In fact, we show that

E(Zm+1 | φ1(X), φ1(Y ), . . . , φm(X), φm(Y )) = Zm. (10)

Since φm(X) and φm(Y ) determine φi(X) and φi(Y ) for i < m, it suffices to show that

E(Zm+1 | φm(X) = a, φm(Y ) = b) = (Qm)a,b. (11)

The condition φm(X) = a and φm(Y ) = b force X to be uniform in the interval [(a−1)/km, akm
],

and so φm+1(X) is a uniform integer in the interval [(km+1/km)(a − 1), (km+1/km)a]. Sim-
ilarly, φm+1(Y ) is a uniform integer in the interval [(km+1/km)(b − 1), (km+1/km)b]. So
(Qm+1)φm+1(X),φm+1(Y ) is a uniformly distributed entry of the submatrix formed by these rows
and columns. By condition (ii), the average of these matrix entries is exactly (Qm)a,b. This
proves the claim.

Since Zm is also bounded, we can invoke the Martingale Convergence Theorem, and conclude
that limm→∞ Zm exists with probability 1. This means that

W (x, y) = lim
m→∞

(Qm)φm(x),φm(y)

exists for almost all pairs (x, y), 0 ≤ x, y ≤ 1. Let us define W (x, y) = 0 whenever the limit does
not exist.

It is trivial that W is symmetric, 0 ≤ W ≤ 1, and W satisfies condition (a) in the Lemma.
Furthermore,

∫ i/km

(i−1)/km

∫ j/km

(j−1)/km

W (x, y) dx dy =
∫ i/km

(i−1)/km

∫ j/km

(j−1)/km

lim
n→∞

(Qn)φn(x),φn(y) dx dy

= lim
n→∞

∫ i/km

(i−1)/km

∫ j/km

(j−1)/km

(Qn)φn(x),φn(y) dx dy

=
1

k2
m

(
lim

n→∞
k2

m

k2
n

i(kn/km)∑

a=(i−1)(kn/km)+1

j(kn/km)∑

b=(j−1)(kn/km)+1

(Qn)a,b

)

=
1

k2
m

(Qm)i,j

(the last equation follows from assumption (ii)). This proves (b). ¤

Now it easy to conclude the proof of the necessity of the condition in Theorem 2.2. Let us
apply Lemma 5.1 to the given convergent graph sequence. The sequence (G′1, G

′
2, . . . ) of graphs

it gives is a subsequence of the original sequence, so it is convergent and defines the same limit
parameter f . The lemma also gives a sequence of integers and a sequence of matrices satisfying
(i) and (ii). We can use Lemma 5.3 to construct an integrable function W : [0, 1]2 → [0, 1] with
properties (a), (b) and (c).
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It remains to show that f = t(.,W ). For 1 ≤ j ≤ m, let G∗m,j = G(Pm,j , Qm,j) and
G∗∗m,j = G(Pm,j , Qj). Then

d(G′m, G∗m,j) ≤
1
j

(12)

(since Pm,j is a weakly (1/j)-regular partition of G′m), and

d(G∗m,j , G
∗∗
m,j) ≤

1
j

(13)

by (8).
Let Wm,j = WG∗∗m,j

and Wj = WQj
. Clearly

t(F,Wmj) = t(F, G∗∗m,j).

Furthermore,

Wm,j → Wj (m →∞) (14)

almost everywhere. Indeed, the functions Wm,j and Wj differ only if the classes in Pm,j are not
all equal; but even in this case, if Wm,j(x, y) 6= Wj(x, y) then either x or y must be closer to one
of the numbers a/kj than 1/|V (G′m)|. Finally, we have

Wj → W (j →∞) (15)

almost everywhere.
Now let ε > 0, and choose a positive integer m0 so that for m > m0, we have

|t(F, G′m)− f(F )| < ε

4
.

By (15), we can choose a positive integer j so that

|t(F, W )− t(F, Wj)| < ε

4
.

We may also assume that j > 8/ε and j > m0. By (14), we can choose an m > j so that

|t(F, Wm,j)− t(F,Wj)| ≤ ε

4
.

By Lemma 7 and inequalities (12) and (13), we have

|t(F, G′m)− t(F,G∗∗m,j)| ≤
ε

4
.

Combining these inequalities, we get that

|f(F )− t(F, W )| ≤ ε,

which completes the proof of (a)⇒ (b).
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5.5 Proof of Theorem 2.2: (b)⇒(c)

Let f = t(.,W ). It is obvious that f is normalized and multiplicative.
To prove that f is reflection positive, consider any finite set F1, . . . , Fm of k-labeled graphs,

and real numbers y1, . . . , ym. We want to prove that

m∑
p,q=1

f(FpFq)ypyq ≥ 0.

For every k-labeled graph F with node set [n], let F ′ denote the subgraph of F induced by the
labeled nodes, and F ′′ denote the graph obtained from F by deleting the edges spanned by the
labeled nodes. Define

τ(F, x1, . . . , xk) =
∫

[0,1]n−k

∏

ij∈E(F ′′)

W (xi, xj) dxk+1 . . . dxn,

and for every graph F with V (F ) = [k],

W (F, x1, . . . , xk) =
∏

ij∈E(F )

W (xi, xj).

Then
m∑

p,q=1

ypyqf(FpFq) =
∫

[0,1]k

m∑
p,q=1

ypyqτ(Fp, x1, . . . , xk)τ(Fq, x1, . . . , xk)

W (F ′p ∪ F ′q, x1, . . . , xk) dx1 . . . dxk.

We prove that the integrand is nonnegative for every x1, . . . , xk:

m∑
p,q=1

ypyqW (F ′p ∪ F ′q) ≥ 0,

where yp = ypτ(Fp, x1, . . . , xk), and the xi are suppressed for clarity). Let

Ŵ (F ) =
∏

ij∈E(F )

W (xi, xj)
∏

ij∈E(F )

(1−W (xi, xj)),

then clearly W (F ) ≥ 0, and for every F ∈ Fk,

W (F ) =
∑

H⊃F

Ŵ (H)

(where the summation extends over all H ∈ Fk containing F as a subgraph). Thus

m∑
p,q=1

ypyqW (F ′p ∪ F ′q) =
m∑

p,q=1

ypyq

∑

H⊃F ′p∪F ′q

Ŵ (H)

=
∑

H∈Fk

Ŵ (H)
∑

p,q:Fp,Fq⊆H

ypyq =
∑

H∈Fk

Ŵ (H)


 ∑

p:Fp⊆H

yp




2

≥ 0.
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5.6 Proof of Theorem 2.2: (c)⇒(d)

This is trivial, since M0(k, f) is a symmetric submatrix of M(k, f).

5.7 Proof of Theorem 2.2: (d)⇒(e)

The proof of this implication uses the fact that the entry in the (F1, F2)-position in M0(k, f)
depends on the union of F1 and F2 only. The Lindström–Wilf Formula gives a nice diagonal-
ization of such matrices as follows. Let Fk denote the set of all graphs with nodes [k]. Let Z

denote the Fk ×Fk matrix defined by

ZF1,F2 =

{
1 if F1 ⊆ F2,

0 otherwise.
(16)

Let D be the diagonal matrix

DF1,F2 =

{
f†(F1) if F1 = F2,

0 otherwise.
(17)

Then

B = ZTDZ. (18)

This implies that M0(k, f) is positive semidefinite if and only if f† ≥ 0 for all graphs with k

nodes.

5.8 Proof of Theorem 2.2: (e)⇒(a)

Let f be a normalized and multiplicative graph parameter such that f† ≥ 0. Fix any k ≥ 1. As
a first step we construct a random variable Gk, whose values are graphs with k labeled nodes:
Let Gk = F with probability f†(F ). Since f† ≥ 0 by hypothesis and

∑

F

f†(F ) = f(Kk) = 1

(where the summation extends over all graphs F with V (F ) = [k]), this is well defined. It is also
clear that this distribution does not depend on the labeling of the nodes.

Next we show that for every graph F with k nodes,

f(F ) = E(t0(F,Gk)). (19)

Indeed, we have

E(t0(F,Gk)) =
∑

F ′⊇F

E(t1(F ′,Gk))

=
∑

F ′⊇F

Pr(F ′ = Gk) =
∑

F ′⊇F

f†(F ′) = f(F ).

We claim that for every graph with k ≤ n nodes,

f(F ) = E(t0(F,Gn)). (20)
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Indeed, add n − k isolated nodes to F to get a graph F ′ with n nodes. Then f(F ′) = f(F ) by
multiplicativity and f(K1) = 1, while t0(F ′, G) = t0(F, G) for every graph G. Thus

f(F ) = f(F ′) = E(t0(F ′,Gn)) = E(t0(F,Gn)).

We need a bound on the variance of t0(F ′,Gn): By (20),

Var(t0(F,Gn)) = E(t0(F,Gn)2)− (E(t0(F,Gn))2.

Here

(E(t0(F,Gn))2 = f(F )2 = f(FF ) = E(t0(FF,Gn)

(by multiplicativity), so

Var(t0(F,Gn)) = E
(
t0(F,Gn)2 − t0(FF,Gn)

)
.

Now for any graph G,

t(F,G)2 = t(FF,G),

and so

|t0(F,Gn)2 − t0(FF,Gn)| ≤ |t(F,Gn)2 − t0(F,Gn)2|+ |t(FF,Gn)− t0(FF,Gn)|
≤ 2|t(F,Gn)− t0(F,Gn)|+ |t(FF,Gn)− t0(FF,Gn)|

≤ 2
(

k

2

)
1
n

+
(

2k

2

)
1
n

<
3k2

n
.

Thus for every graph F with k ≤ n nodes,

Var(t0(F,Gn)) ≤ 3k2

n
. (21)

By Chebyshev’s Inequality,

Pr(|t0(F,Gn)− f(F )| > ε) <
3k2

ε2n
.

It follows by the Borell-Cantelli Lemma that if we take (say) the graph sequence (Gn2 : n =
1, 2, . . . ), then with probability 1,

t0(F,Gn2) → f(F ) (n →∞).

Since there are only a countable number of graphs F , this convergence holds with probability 1
for every F . So we see that

f(.) = lim
n→∞

t(.,Gn2)

for almost all choices of the sequence (Gn2). This completes the proof of Theorem 2.2.

Remarks. 1. There are alternatives for certain parts of the proof. Instead of verifying (b)⇒(c)
directly, we could argue that (b)⇒(a) (which follows e.g. from Corollary 2.6), and then that
(a)⇒(c) (which follows from the characterization of homomorphism functions in [5]).
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2. Equation (20), satisfied by the random graph Gn, is the same as equation (a) in Lemma
2.4, satisfied by the random graph G(n, W ). It is not hard to see that this equation uniquely
determines the distribution on n-node graphs, and hence Gn and G(n, W ) have the same dis-
tribution.

3. The construction of the limit object W in the proof shows that every convergent graph
sequence (Gn) has a subsequence (G′n) such that (with an appropriate labeling of the nodes)

‖WG′n −W‖¤ → 0.

5.9 Proof of Theorem 2.7

It is trivial that G(n,W ) satisfies (a), (b) and (c). Conversely, suppose that Gn is a graph model
with properties (i), (ii) and (iii). Define a graph parameter f by

f(F ) = Pr(F ⊆ Gk),

where V (F ) = [k]. By condition (i), f is independent of the labeling of the nodes, so it is indeed
a graph parameter.

We claim that f ∈ T , by verifying (e) in Theorem 2.2. It is trivial that f is normalized.
Multiplicativity is an easy consequence of (iii) and (ii): Let V (F1) = [k] and V (F2) = {k +
1, . . . , k + l}, then

f(F1 ∪ F2) = Pr(F1 ∪ F2 ⊆ Gk+l) = Pr(F1 ⊆ Gk+l) Pr(F2 ⊆ Gk+l)

= Pr(F1 ⊆ Gk) Pr(F2 ⊆ Gl) = f(F1)f(F2).

Next we show that

f(F ) = E(t0(F,Gn)) (22)

for every n ≥ k. For n = k, this is obvious. Let n > k, and let us add n− k isolated nodes to F

to get graph F ′. Then, using condition (ii),

f(F ) = Pr(F ⊆ Gk) = Pr(F ′ ⊆ Gn) = E(t0(F ′,Gn)) = E(t0(F,Gn))

as claimed.
Applying (22) we obtain

f†(F ) = E(t†0(F,Gn)) = E(t1(F,G)) ≥ 0.

This proves that f ∈ T .
By Theorem 2.2, there exists a symmetric measurable function W : [0, 1]2 → [0, 1] such that

f(F ) = t(F, W )

for every graph F . By Lemma 2.4(a) and equation (22), we have

E(t0(F,Gk)) = E(t0(F,G(k, W )).
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Applying the “†” operator, this implies that

E(t1(F,Gk)) = E(t1(F,G(k, W )),

and hence

Pr(F = Gk) = Pr(F = G(k, W )),

which proves that Gk and G(k,W ) have the same distribution.

6 Concluding remarks

We mention some results and problems related to our work. Details (exact formulations, results
and conjectures) will be discussed elsewhere.

6.1 Uniqueness

The limit function of a graph sequence is “essentially unique”. In other words, if two functions
U,W : [0, 1]2 → [0, 1] are such that

t(F,U) = t(F,W )

for every simple graph F , then U and W are “essentially the same”. Unfortunately, it is nontrivial
to characterize what “essentially the same” means; for example, U could be obtained from W

by applying the same measure-reserving permutation in both coordinates.

6.2 Weighted graphs and multiple edges

It seems to be quite straightforward to extend our results to the case when the graphs Gn can
have multiple edges, or more generally, edge-weights (not restricted to [0, 1]): We simply have
to drop the bounds on the limit function W . However, several technical issues arise concerning
integrability conditions and the applicability of the Martingale Theorem.

Allowing multiple edges in the “sample graphs” F leads to a more complicated question.
Assume that we consider a sequence of simple graphs Gn. If we define F ′ as the underlying
simple graph of a multigraph F , then

hom(F ′, Gn) = hom(F,Gn) and t(F ′, Gn) = t(F, Gn),

but

t(F ′,W ) < t(F, W )

if W is a function that is strictly between 0 and 1. Since, as we have remarked, the limit function
W is essentially unique, the formula for t(F, W ) does not define the limit of t(F,Gn) correctly.
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6.3 Extremal graph theory

There are many results in graph theory, especially in extremal graph theory, that can be for-
mulated as inequalities between the numbers t(F, G) for a fixed G and various graphs F . For
example, Goodman’s theorem relating the number of edges to the number of triangles can be
stated as

t(K3, G) ≥ t(K2, G)(2t(K2, G)− 1).

This inequality is equivalent to saying that for every graph parameter t ∈ T ,

t(K3) ≥ t(K2)(2t(K2)− 1). (23)

By Theorem 2.2, such an inequality must be a consequence of reflection positivity, multiplica-
tivity, and the trivial condition that t is normalized. In fact, (23) can be easily derived from
these conditions (this is left to the reader as an exercise). Many other results in extremal graph
theory follow in a similar way.
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