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Abstract

We propose a new method for designing nonuniform lapped transforms. The proposed method

provides a simple yet effective way of designing lapped transforms with nonuniform frequency

resolution and good time localization. This method is a generalization of an approach proposed

by Princen, where the nonuniform filter bank is obtained by joining uniform cosine-modulated

filter banks using transition filters. In the proposed approach, we use several transition filters

to obtain a near perfect-reconstruction nonuniform lapped transform with significantly reduced

overall distortion. This method has several advantages over existing ones, especially in producing

nonuniform filter banks with good stopband attenuation and short filters; the resulting reduced

delay makes the proposed method preferable for applications such as real-time audio coding.
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1 Introduction

Lapped transforms such as the LOT (lapped orthogonal transform) and the MLT (modulated

lapped transform) have been widely used in various applications such as image processing and

audio coding [2]. For example, the MLT is a special kind of cosine-modulated filter bank (CMFB)

that has been very popular in audio processing due to its computational efficiency and good fre-

quency discrimination. For this reason, most modern audio coders such as the MPEG-2 Layer III

(MP3) [3, 4], Dolby AC-3, and MPEG-4 AAC [5] are based on MLT and its variants.

Although MLT has many advantages, there are cases where a different time-frequency res-

olution is more desirable. One such example is audio coding at low bit rates. When there are

high-frequency transients in the input signal, the poor time resolution of the basis functions give

rise to the so-called pre-echo. In order to alleviate this problem, many modern audio codecs adopt

the window switching scheme which uses a shorter window when the high-frequency transient

sound has significant amount of energy, hence better time resolution is desired. An alternative

approach would be to use a nonuniform filter bank or a lapped transform with a nonuniform sub-

band decomposition. The shorter impulse responses of the high-frequency subbands reduce the

pre-echo effect [7], and there’s no need to use look ahead to determine window switching points,

thus reducing processing delay.

Until now, various methods have been proposed for designing nonuniform filter banks [1]–

[17]. A number of schemes are based on the subband merging approach [7]-[15], while others

are based on a tree-structured design [2], [6] or constructed from joining uniform filter banks

by a transition filter [1], and so forth. In this report, we are especially interested in designing a

nonuniform lapped transform that has a large number of subbands, low system delay and good

time localization. The existing design methods have their own advantages, but none of them are

suitable for designing such a transform. In the following sections, we review several existing

design schemes and propose a new method that can be used to construct a lapped transform with

the aforementioned properties.

The report is organized as follows. In Section 2, we briefly investigate various methods for de-

signing nonuniform filter banks that have been proposed so far. In Section 3, we consider possible

extensions of the existing methods. Section 4 proposes a new method for designing nonuniform

lapped transforms and the report is concluded in Section 5.
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2 Review of Existing Methods

In this section we present a brief overview of the existing techniques for the design of nonuniform

filter banks based on CMFBs.

2.1 Malvar (NMLBT)

The nonuniform modulated lapped biorthogonal transform (NMLBT) combines the high-frequency

basis functions of the MLT (or MLBT) using +1/ − 1 butterflies [7]. It provides a simple way of

obtaining a lapped transform with nonuniform bands. The resulting basis functions are more lo-

calized in the time-domain and the PR property is preserved after the combination. However, the

time-domain separation of the combined basis functions are less than ideal, and there still remains

significant time-domain aliasing.

2.2 Niamut et al.

The sub-band merging approach proposed by Niamut et al. [10] can be viewed as a generalization

of the idea behind the NMLBT [7]. The proposed method allows the combination of arbitrary

number of subbbands using a principal submatrix of a Hadamard matrix. It is claimed that the

proposed method is the optimal way for obtaining a nonuniform filter bank with a good frequency

selectivity and a flat passband response. As the NMLBT, this method preserves the PR property of

the original filter bank. However, it suffers from the same problem as the NMLBT as the resulting

basis functions have significant amount of time-domain aliasing terms.

2.3 Li et al.

In [15] Li et al. proposed a method for designing a filter bank with nonuniform decimation ratios.

Firstly, a uniform CMFB with a larger number of subbands is designed, and then a set of analysis

filters (and the corresponding synthesis filters) are combined to obtain the nonuniform filter bank

with the target decimation ratios. Li et al. provides a simple method for designing a nonuniform

filter bank, since there are a number of efficient methods for designing good CMFBs [6], [18], [19].

However, this method has the disadvantage that the PR property is not retained after combining

the filters. Therefore it is suitable for designing nonuniform near-PR filter banks only when the

filters have high stopband attenuation such that the increase in the distortion level due to the

combination of filters is negligible.
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2.4 Argenti et al.

Unlike the previous approaches, Argenti et al. [16] designs the the NUFB using multiple proto-

type filters. Initially, a prototype filter with the narrowest passband is designed with the specified

band-edge, where the filter is constrained to satisfy power complementarity in the transition band.

This prototype filter is cosine-modulated to obtain a uniform section of subbands in the specified

frequency region. The prototype filter with a broader passband (corresponding to a smaller dec-

imation ratio)is derived from the previous prototype filter. This is repeated until the complete

nonuniform filter bank is obtained. Although this approach provides an interesting way of de-

signing multiple prototypes for a NUFB, they assume that the length of all the prototype filters

are identical. Therefore, although we have nonuniform frequency resolution, the time resolution

remains uniform, which is certainly undesirable. Another disadvantage is that the subsequent

prototype filters are obtained by frequency sampling of the desired frequency response and taking

the IDFT of it, and it is not obvious whether the resulting filters will always have good character-

istics (unless a large number of samples are used.)

2.5 Purat et al.

In order to obtain a frequency-varying MLT, Purat and Noll combine subbands of a MLT using

another MLT of a smaller size [9]. A number of bands of the MLT analysis bank is combined

using an IMLT of a smaller size. Similarly, the transform coefficients obtained from the combined

subbands is fed into the smaller MLT where the subbands are again connected to the IMLT of the

larger MLT. As the other subband-merging schemes [7], [10], the basis functions resulting from this

approach are also periodically time-varying and they are not well-localized in the time-domain.

2.6 Nayebi et al.

A general procedure for designing a nonuniform filter bank is elaborated in [17]. The reconstruc-

tion error is defined in terms of the time-domain expression of the filters and iterative optimization

routines are used to minimize the reconstruction error. The main focus of the paper is on a gen-

eral theory for designing NUFBs, and there is no consideration for a efficient modulated structure.

Therefore, it cannot be directly used for designing NUFBs with large number of subbands, al-

though the proposed theory can be useful in formulating objective functions and constraints for

optimizing NUFBs based on various frameworks.
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2.7 Chan et al.

The design method proposed by Chan et al. is also based on the subband merging approach [12],

[13], [14]. Subbands in the larger CMFB are combined using a trans-multiplexer that has a smaller

number of subbands than the CMFB. The stopband edges of the filters in the CMFB and the trans-

multiplexer (T-MUX) are adjusted in order to reduce artifacts that can arise from the mismatch in

the transition bands of those filters [12]. By careful designing the T-MUX, the filters in the merged

bands can have high stopband attenuation. The disadvantage of this method is that the T-MUX

introduces additional system delay unlike the simpler methods [7], [10], [15]. Moreover, the filters

in the combined bands will have a longer response although the passband has become wider. As

we expect the basis functions in the wider subbands to be more localized in the time-domain, this

is certainly undesirable.

2.8 Princen

In [1], Princen proposed an interesting method for designing a nonuniform filter bank, which joins

uniform CMFBs using a transition filter. The transition filter is designed to match the transition

bands of the adjacent filters that belong to different CMFBs with unequal decimation ratios. The

main aliasing components between adjacent bands are cancelled by the use of an optimized transi-

tion filter. In general, the transition filters are much longer than the filters in the adjacent uniform

sections. For example, when joining two CMFBs with decimation ratios M1 = 8 and M2 = 4, the

length of the prototype filters were 40 and 88, where the length of the transition filter was 96.

3 Several Design Approaches

In this section, we consider extensions and generalizations of the previous methods in a MLT-

based framework.

3.1 MLBT

The prototype filter in the MLT is defined as

h(n) = − sin
[(

n +
1
2

)
π

2M

]
(n = 0, 1, . . . , 2M − 1), (1)

where M is the number of subbands. By using a different prototype filter, we can reduce the

time-domain aliasing of the combined filters that are obtained by applying the subband merging
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Figure 1: The synthesis window hs(n) = sin3 [(n + 1/2) π/2M ] (dashed line) and the correspond-
ing analysis window ha(n) (solid line).

scheme in [7] and [10]. For example, we may use the following windows.

hs(n) = sin2
[(

n +
1
2

)
π

2M

]
(2)

hs(n) = sin3
[(

n +
1
2

)
π

2M

]
(3)

Using these windows in the synthesis bank reduces the time-domain aliasing significantly. How-

ever, the corresponding analysis window, which is defined as

ha(n) =
hs(n)

h2
s(n) + h2

s(M − 1− n)
(4)

to ensure PR [2], will have undesirably large ripples in the passband as shown in Fig. 1.

3.2 Optimizing the Window

Instead of using biorthogonal windows, we may consider optimizing the orthogonal window

function h(n). The goal is to find the optimal window that results in better time-domain behavior,

when the subband merging technique is applied [7], [10]. To be more precise, we want to make

the following functions

h1(n) = hk(n) + hk+1(n) (5)

h2(n) = hk(n)− hk+1(n) (6)

6



more localized in the time-domain, where hk(n) is defined as

hk(n) = h(n)
√

2
M

cos
[(

n +
M + 1

2

) (
k +

1
2

)
π

M

]
. (7)

However, it turns out that optimizing a single window function h(n) is not very helpful in reduc-

ing the time-domain aliasing of h1(n) and h2(n) at the same time.

As using a single optimized window function is not very helpful in improving the time local-

ization of the combined basis functions, one natural extension would be to use different optimized

windows in adjacent bands. Let us consider using the cosine-modulated filters of ho(n) in the odd-

numbered subbands and the cosine-modulated filters of he(n) in the even-numbered subbands.

So, we have

hk(n) = ho(n) cos
[(

n +
M + 1

2

) (
k +

1
2

)
π

M

]
(odd k) (8)

hk(n) = he(n) cos
[(

n +
M + 1

2

) (
k +

1
2

)
π

M

]
(even k). (9)

Now, the question is whether it is possible to jointly optimize ho(n) and he(n) such that h1(n) =

hk(n) + hk+1(n) and h2(n) = hk(n)− hk+1(n) have better time localization. Without loss of gener-

ality, let us assume that k is odd. Then we have

h1(n) = (ho(n) + he(n)) cos β cos α + (ho(n)− he(n)) sinβ sinα (10)

h2(n) = (ho(n)− he(n)) cos β cos α + (ho(n) + he(n)) sinβ sinα, (11)

where

α =
(

n +
M + 1

2

) (
k +

1
2

)
π

M
(12)

β =
(

n +
M + 1

2

)
π

2M
(13)

If ho(n) = he(n) = h(n) as in the original MLT, (10) and (11) are either cosine-modulated or sine-

modulated. However, if we let ho(n) to be different from he(n), then h1(n) and h2(n) have both

cosine-modulated and sine-modulated terms, which makes it nearly impossible to jointly optimize

ho(n) and he(n) so that the time-domain aliasing is cancelled.

3.3 Applying Li et al. [15] to MLT

The idea in Li et al. [15] can be easily incorporated into a MLT-based framework. We have to note

that this method is different from other subband merging techniques proposed in [7], [8], [9] and
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Figure 2: The basis function obtained by merging the last two subbands of MLT (M = 32).

[12]. Li et al. combine the filter outputs before decimation, while others combine the transform-

domain coefficients after decimation. Therefore, if we want to apply Li et al.’s idea to MLT, we

have to do the following. Let us assume that the number of subbands of the larger MLT is M , and

we want to combine the last two high-frequency subbands. In order to do this, we have to compute

the MLT coefficients of the last two subbands for every M/2 block-shift, while other coefficients are

computed for every M block-shift as usual. This certainly increases the computational cost of the

overall transform, but it has the advantage of using time-invariant basis function in the combined

subbands. Note that other subband-merging approaches basically use periodically time-varying

basis functions in the combined bands.

One problem with this approach is that this works well only when the prototype filters have

very good stopband attenuation. Combining subbands in this way does not preserve the PR prop-

erty, and the original CMFB has to use a good prototype filter with a long length to minimize the

increase in the distortion level that arise from combining filters. However, the MLT uses relatively

short filters, with not too large stopband attenuation (around 23 dB), and if the PR property is lost

due to the combination of subbands using this method, the distortion level can be quite large, be-

cause of the uncanceled aliasing components. Another problem is that although this method uses

time-invariant filters in the combined bands, the basis function that comes from filter combination

has a significant amount of time-domain aliasing, as with other subband merging methods. This

is shown in Fig. 2, where the last two subbands of an MLT for M = 32 have been combined. These

problems show that Li et al. [15] is still not the right approach to achieve our goal.
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3.4 Various Optimization Approaches

We considered the design of a 2M × M transform matrix via optimization techniques, based on

several kinds of constructions and objective functions. These are described in the following.

3.4.1 Approach I

We first constructed the matrix

P =



p00 p01 r00 r01

p10 p11 r10 r11

p20 p21 r20 r21

p30 p31 r30 r31

p40 p41 r40 r41

p50 p51 r50 r51

p60 p61 r60 r61

p70 p71 r70 r71


, (14)

where pnk comes from the first two columns of MLT for M=4. We performend nonlinear con-

strained optimization with respect to r0 = [r00 · · · r70]T and r1 = [r01 · · · r71]T , to minimize the

stopband energy of r0 and r1 in 0 ≤ ω ≤ π/2 and the distance ‖r0(n − M/2) − r1(n)‖2. The

constraints were {
P0PT

0 + P1PT
1 = I

P0PT
1 = 0

, (15)

where P = [PT
0 PT

1 ]T , which is just the perfect reconstruction condition for MLTs.

Interestingly enough, the optimized filters r0 and r1 always converged to those that result from

combining the MLT filters using +1/ − 1 butterflies, as in the NMLBT [7]. These results indicate

that forcing the first two filters for M = 4 (or the first six filters for M = 8) to be the same as those

in the MLT, imposes a stringent condition on the optimization process, where the only feasible

solution that satisfies the PR property and makes the optimized filters highpass filters that look

similar to the shifted version of each other is that of the subband merging approach.

3.4.2 Approach II

We started with the following matrix, where all rij ’s are free to be optimized.

P =



r00 r01 r03 0
r10 r11 r13 0
r20 r21 r23 r03

r30 r31 r33 r13

r40 r41 0 r23

r50 r51 0 r33

r60 r61 0 0
r70 r71 0 0


. (16)
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We performed nonlinear constrained optimization with the PR condition in (15), and tried to make

the filter in the first column a LPF with a passband in [0, π/4], the filter in the second column a

BPF with a passband in [π/4, π/2], and the filters in the third column (and also the fourth) a HPF

with a passband in [π/2, π]. Perfect time-domain localization and time-invariance of the highpass

filters are guaranteed by construction.

The optimization of the matrix P led to an interesting result, where P converged to a PR lapped

transform with the desired frequency resolution. However, the price to pay was a significant

decrease in the stopband attenuation. When compared to MLT (M = 4), the stopband attenuation

was reduced from around 25 dB to 20 dB. This shows that there is a trade-off between time-domain

aliasing and frequency separation.

The major problem with this approach is that it does not easily scale to the case when M is

large. The number of coefficients to be optimized increases as O(M2), and brute-force optimiza-

tion of the filter coefficients may not converge to the global optimum (or even a good local one)

once M gets larger. As we are interested in a design method that easily scales to the case of very

large M , this approach is not so practical.

3.4.3 Approach III

Instead of using a constrained optimization with a PR condition, we may guarantee the PR con-

dition by construction and use an unconstrained optimization algorithm. Let us consider two

M ×M orthogonal matrices Q = [Q0 Q1] and R = [RT
0 RT

1 ]T , where Qi is a M ×M/2 matrix and

Rj is a M/2×M matrix. Now, let

P0 = Q0R0, P1 = Q1R1 (17)

and define P = [PT
0 PT

1 ]T . This matrix P is guaranteed to satisfy the PR condition in (15).

Now, assume that we want to choose the last M/2 column vectors using the last M/4 columns

of a smaller MLT (M/2 subbands) and the same column vectors shifted by M/2. In this way, the

dimensionality of the optimization space can be reduced, since many components in Q and R are

immediately decided based on this setting.

However, simulation results show that by imposing both the PR condition and perfect time-

localization of the highpass filters, the stopband attenuations of the optimized filters are decreased

significantly. This can be clearly seen Fig. 3. Moreover, although the optimization space has be-

come much smaller than the previous approach, the number of coefficients to be optimized still
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Figure 3: Magnitude frequency response (amplitude vs. normalized frequency) of a nonuniform
transform designed using Approach III. The optimized filters are in solid lines and the filters
obtained from MLT are shown in dashed lines.

increases as O(M2) which is undesirable. This implies that this method may not be applicable

when we need a large number of subbands.

3.4.4 Approach IV

Based on extensive simulation results, we tried to come up with a formula for constructing a

2M × M transform matrix that guarantees perfect time-localization of the high-frequency basis

functions and near PR property.

The suggested formula is as follows. For 0 ≤ k < M/2

pnk =

{
0 0 ≤ n < M/2√

2
M h(n−M/2) cos

[(
n + M+2

4

) (
k + 1

2

)
π
M

]
M/2 ≤ n < 2M

(18)

and

h(n) =

√
sin

[(
n +

1
2

)
2π

3M

]
. (19)

For M/2 ≤ k < 2M , we use the last M/4 basis functions of a smaller MLT (order M/2) and their

shifted versions by M/2. Fig. 4 shows the magnitude response for M = 16.

For small M , this designs is closer to PR than the simple combination of the first M/2 low-

frequency basis functions of MLT (order M ) and the last M/4 high-frequency basis functions and

their shifted version by M/2 of a smaller MLT (M/2 subbands). However, as shown in Fig. 5 there
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Figure 4: Magnitude frequency response of a nonuniform transform designed using Approach IV.
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Figure 5: Nonuniform lapped transform designed using Approach IV. (Top) Transfer function.
(Bottom) Aliasing components.
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are large ripples in the overall transfer function and the aliasing terms are also significant. As we

can see in Fig. 5, this transform is not close enough to PR to be of practical use.

4 Proposed Design

Until now, we have reviewed several nonuniform filter bank design methods that have been pro-

posed so far, and also considered several extensions of these ideas based on a MLT framework. In

this section we are going to propose a method for designing nonuniform lapped transform that can

be used for constructing transforms with a large number of subbands, and good time-localization

of the high-frequency basis functions. The proposed method is an extension of Princen [1].

4.1 Shortcomings of Princen’s Approach

In his work in [1], Princen proposed an interesting idea for designing nonuniform filter banks.

The NUFB is designed by joining two uniform sections that come CMFBs of different decimation

ratios using a transition filter. The transition filter is derived from a complex (hence asymmetric)

prototype filter, which is cosine-modulated such that its passband is located between the two

uniform sections. The prototype filter is optimized such that it minimizes the aliasing between

itself and the adjacent filters. Aliasing between other filters are assumed to be negligible during

this optimization procedure. As the transition filter is designed such that the aliasing in both sides

are cancelled at the same time, it is considerably longer than the adjacent filters, in general. This

is obviously undesirable, because it increases the overall system delay.

Another problem is the following. The method starts from the assumption that the original

CMFBs have very good stopband attenuation, hence there exists aliasing only between adjacent

filters Thus, the method does not give satisfactory results when this assumption is not met. For

example, let us consider constructing a nonuniform lapped transform by joining two MLTs of

order M and M/2. These MLTs use relatively short filters whose lengths are 2M and M . Unlike

the basic assumption in [1], there exists significant aliasing between non-adjacent filters in this

case. Therefore designing a single transition filter to join MLTs do not result in a good lapped

transform that is close to PR. In the following subsection we propose a modified design approach

that achieves superior results to that of Princen’s approach. As will be shown later, the proposed

method can be also applied to the case when the original CMFB does not use filters with a very

high stopband attenuation.
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4.2 Design Procedure

We can avoid the problems in the original method [1], by designing three transition filters g0(n),

g1(n) and g2(n) instead of using only g1(n). This is illustrated in Fig. 6 along with the original

design approach. Without loss of generality, we assume that the CMFB in the low frequency region

has a larger decimation ratio than the CMFB in the high frequency region, so that we have better

frequency resolution for low frequency signals and better time localization for high frequency

signals. As shown in Fig. 6, the filters in the original CMFBs do not have sharp cut-offs, which

give rise to aliasing between non-adjacent bands. This is the case when we use a CMFB with

relatively short filters such as the MLT. In such a situation, using a single optimized filter g1(n) in

the transition region is not enough, and using additional filters g0(n) and g2(n) on both sides is

helpful in reducing the overall distortion of the filter bank considerably.

Another advantage of using multiple transition filters is that the two additional filters g0(n)

and g2(n) relieve the burden on the center filter g1(n), which makes it possible to use shorter

transition filters compared to the original design [1]. This is a considerable advantage from a

practical point of view, because it is possible to keep the overall delay of the nonuniform lapped

transform to be the same as that of the uniform CMFB with the longest response.

 

ω 

CMFB 1 CMFB 2 Transition 
Filters 

ω 

CMFB 1 CMFB 2 Transition 
Filter 

(a) 

(b) 

 g0(n)  g1(n)  g2(n) 

Figure 6: Joining two uniform CMFBs using transition filters. (a) Princen’s approach. (b) Proposed
approach.
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In optimizing the transition filters, we try to make the system as close as possible to being PR.

For this purpose, we define the following error metric, which can serve as an indicator of how

close the given lapped transform is to a PR system. Given a 2MK × M transform matrix P with

M subbands,

P =
[

PT
0 P1

0 · · · PT
2K−1

]T
, (20)

let us define

Ek =
2K−1−k∑

i=0

PiPT
i+k − δ(k)I, (21)

where I is a M × M identify matrix. Now, the error metric is defined as the sum of the Frobenius

norm1 of Ek

η =
2K−1∑
k=0

‖Ek‖2. (22)

Note that if η = 0, the lapped transform P is PR [2], [17]. Based on this definition, we use uncon-

strained minimization techniques to minimize η in order to obtain a good near-PR nonuniform

lapped transform.

In the proposed design, we choose the decimation ratio of subband that uses g0(n) to be the

same as that of the CMFB in the left-hand side. For g1(n) and g2(n), the decimation ratios are

chosen to be identical to that of the CMFB in the right-hand side. Now, the three transition filters

are optimized one by one in a recursive manner. The optimization procedure can be summarized

as follows.

Step 1 Combine the two uniform sections without using any transition filter.

Step 2 Optimize transition filter g0(n).

Step 3 Optimize transition filter g1(n).

Step 4 Optimize transition filter g2(n).

Step 5 If the η < η0 for a specified η0, terminate optimization. Otherwise, proceed to Step 6 .

Step 6 Optimize transition filter g1(n).

Step 7 Optimize transition filter g0(n).

Step 9 If the η < η0, terminate optimization. Otherwise, go to Step 3 .

1The Frobenius norm of a matrix A is defined as ‖A‖2 =
∑

i,j
|aij |2 = trace(AAH).
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η̄ δT Ealias γ (dB)
MLT (Princen) 0.000028415303 0.05602620 0.00130647 28.51
MLT (Proposed) 0.000014034253 0.02599753 0.00071550 31.38
ELT (Princen) 0.000000349104 0.00047347 0.00002225 46.50
ELT (Proposed) 0.000000223282 0.00030012 0.00001423 48.53

Table 1: Simulation results.

The optimization routine terminates once the transform P is close to PR. At the end of the

routine, we can obtain a good near-PR lapped transform with approximately flat overall trans-

fer function and negligible aliasing component, whose magnitude is comparable to the stopband

attenuation of the filters in the original CMFBs.

4.3 Examples

In this section, we present design examples that clearly show the advantages of the proposed

approach.

4.3.1 Example 1: Joining MLTs

Let us first consider joining two MLTs. We join an MLT R1 of order M1 = 32 and a smaller

MLT R2 with M2 = M1/2 = 16, according to the design procedure described in Sec. 4.2. Using

these transforms, we construct a 2M1 × M1 transform matrix P as follows. The first M1/2 − 1

column vectors of P are obtained from the first M1/2− 1 column vectors of R1. The last M1/2− 4

column vectors are obtained from the last M2/2 − 2 column vectors of R2 and the same vectors

shifted by M2. The transition filters are located in M1/2 − 1 ≤ k ≤ M1/2 + 3. The transition

filter g0(n) is located at k = M1/2 − 1 and has length 2M1. The transition filter g1(n) is located at

k = M1/2,M1/2 + 1, where the vector at k = M1/2 + 1 is a shifted version of g1(n) by M2. The

length of g1(n) is set to 3M2 = 48. Similarly, the filter g2(n) is located at k = M1/2 + 2,M1/2 + 3.

The structure of the transform matrix is shown in Fig. 7

Fig. 8 shows the magnitude response, and Fig. 9 shows the overall transfer function and the

aliasing components of the nonuniform lapped transform that was obtained using the proposed

method. For comparison, the transform designed using Princen’s approach is shown in Fig. 10

and Fig. 11. By comparing Fig. 9 and Fig. 11, we can easily see that the peak distortion of the

overall transfer function and the magnitude of the aliasing components have been significantly

reduced.

The characteristics of the two transforms are summarized in Table 1. The value η̄ = η/M2 is a
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MLT (M1=32)
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MLT (M2=16)Transition
Filters
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M1 Columns

k=0 1 M1/2 M1-1

Figure 7: The structure of the transform matrix.

measure that shows how close the transform P is to a PR system. As mentioned earlier, η̄ = η = 0

implies that P is a PR transform. The overall transfer function and the aliasing terms can be

defined as

T`(z) =
1
M

M−1∑
k=0

Hk(zW `
M )Fk(z), (23)

where Hk(z) and Fk(z) are respectively the analysis filter and the synthesis filter in the k-th

band [6]. We define the maximum ripple size of the overall transfer function T0(z) as

δT = max
ω

∣∣∣T0(ejω)− 1
∣∣∣. (24)

The energy of the aliasing terms is defined as

Ealias =
M−1∑
`=1

(
1
π

∫ π

0
|T`(z)|2dω

)
. (25)

Finally, the SNR γ is the ratio between the input signal and the reconstruction error, which is

defined as

γ = 10 log10

σ2

σ2
ε

, (26)
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Figure 8: The magnitude response of the nonuniform lapped transform based on joining MLTs
using the proposed approach.
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Figure 9: Nonuniform lapped transform based on joining MLTs using the proposed approach.
(Top) Transfer function. (Bottom) Aliasing components.
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Figure 10: The magnitude response of the nonuniform lapped transform based on joining MLTs
using Princen’s approach.
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Figure 11: Nonuniform lapped transform based on joining MLTs using Princen’s approach. (Top)
Transfer function. (Bottom) Aliasing components.
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where σ2 is the variance of the input signal, and σ2
ε is the variance of the reconstruction error.

In this example, we used a white gaussian noise as the input signal to evaluate the overall per-

formance of the transform. As can be seen in Table 1, the proposed approach reduced all three

metrics η̄, δT and Ealias - which are indicators of the distortion level - by about 50%.

4.3.2 Example 2: Joining ELTs

In the next example, we consider joining two ELTs (extended lapped transforms) with M1 = 32,

M2 = M1/2 = 16 and K = 4 to construct a 2M1K × M1 transform matrix P. The length of the

filters in the CMFB in the low-frequency region is 2M1K = 256, and the length of the filters in the

CMFB in the high-frequency region is 2M2K = 128. As in the first example, the transition filters

g0(n), g1(n) and g2(n) are located in M/2 − 1 ≤ k ≤ M/2 + 3. The length of the transition filter

g0(n) is 2M1K = 256, and the length of g1(n) and g2(n) is 2M1K −M2 = 240.

The characteristics of the resulting NUFB are shown in Fig. 12 and Fig. 13, where those of the

NUFB obtained from Princen’s approach can be found in Fig. 14 and Fig. 15 for comparison. The

properties of the two nonuniform lapped transforms are summarized in Table 1. As we can see

from these results, using higher order CMFBs and longer transition filters improve the overall

performance of the transform significantly. Now that the filters in the original CMFBs have bet-

ter stopband characteristics, Princen’s approach performs better than compared to the previous

example. As Princen’s approach now works better, the improvements obtained by the proposed

design scheme is not as large as in the previous case. However, all three distortion metrics are still

reduced by more than 35%.

4.4 Computational Cost

As we saw in the previous section, the use of three transition filters leads to improved performance

when compared to the design proposed by Princen [1]. That was naturally to be expected, since

there are more degree of freedom in optimizing three filters. That improvement comes at a small

cost, though: increased computational complexity. The transition filters must be applied to the

input signal frame in direct form, that is, they cannot be obtained from the fast transforms that are

used to compute the MLT subbands [2]. The larger the number of subbands M1 and M2, though,

the less significant the computational overhead of computing the transition filters. Consider the

parameters in Example 1: M1 = 32, M2 = 16, and K = 4. For each input frame, the longer MLT

can be computed via the FFT with 160 multiplications and 288 additions [2], and the shorter MLT

with 72 multiplications and 120 additions, for a total of 232 multiplications and 408 additions. The
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Figure 12: The magnitude response of the nonuniform lapped transform based on joining ELTs
(K=4) using the proposed approach.
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Figure 13: Nonuniform lapped transform based on joining ELTs (K=4) using the proposed ap-
proach. (Top) Transfer function. (Bottom) Aliasing components.
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Figure 14: The magnitude response of the nonuniform lapped transform based on joining ELTs
(K=4) using Princen’s approach.
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Figure 15: Nonuniform lapped transform based on joining ELTs (K=4) using Princen’s approach.
(Top) Transfer function. (Bottom) Aliasing components.
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transition filters take a total of 112 multiplications and 112 additions. Thus, the transition filters

lead to a 35% increase in computational cost. For example 2, the overhead increases because of the

longer filteres required by an ELT-based design.

For applications such as audio coding, where M1 = 2, 048 is typical, the computational over-

head of the MLT-based design is reduced a bit, to about 25%. Considering that computing the

filter bank takes usually a small fraction of the total computational load, the 25% computational

cost increase on the filter bank would typically be acceptable.

5 Conclusion

In this technical report, we have proposed an effective scheme for designing nonuniform lapped

transforms. The proposed approach can be used to construct lapped transforms with large number

of bands, nonuniform frequency resolution and good time localization of the high-frequency basis

functions. The proposed approach is an extension of Princen [1], which uses multiple transition

filters to join uniform CMFBs with different decimation ratios. As demonstrated in the included

examples, this method reduces the distortion and the aliasing components in the original design

significantly. It has also the advantages that it can be effectively used with CMFBs with relatively

short filters (as the MLT), and that the overall system delay is identical to that of the longest

delay of the original CMFBs that are joined together. These advantages make the proposed design

approach especially useful in practical applications such as audio coding, as long as the increased

computational complexity can be tolerated – which is usually the case.

Although we have used PR filter-banks in our design examples, it is also possible to use near-

PR CMFBs instead [18], [19]. Such a design may have advantages in terms of an increased stop-

band attenuation (hence, better frequency separation), at the expense of a small increase in the

energy of the overall aliasing terms.
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