
Primal-dual Algorithm
for Convex Markov Random Fields

Vladimir Kolmogorov

Microsoft Research
Cambridge, UK

vnk@microsoft.com

September, 2005
Technical Report

MSR-TR-2005-117

Computing maximum a posteriori configuration in a first-order Markov Ran-
dom Field has become a routinely used approach in computer vision. It is
equivalent to minimizing an energy function of discrete variables. In this paper
we consider a subclass of minimization problems in which unary and pairwise
terms of the energy function are convex. Such problems arise in many vision
applications including image restoration, total variation minimization, phase
unwrapping in SAR images and panoramic image stitching.

We give a new algorithm for computing an exact solution. Its complexity
is K ·T (n,m) where K is the number of labels and T (n,m) is the time needed
to compute a maximum flow in a graph with n nodes and m edges. This is
the fastest maxflow-based algorithm for this problem: previously best known
technique takes T (nK, mK2) time for general convex functions. Our approach
also needs much less memory (O(n + m) instead of O(nK + mK2)).

Experimental results show for the panoramic stitching problem our method
outperforms other techniques.

Microsoft Research
Microsoft Corporation
One Microsoft Way

Redmond, WA 98052
http://www.research.microsoft.com

1 Introduction

Many early vision problems can be naturally formulated in terms of energy minimization
where the energy function has the following form:

E(x) =
∑

u∈V
Du(xu) +

∑

(u,v)∈E
Vuv(xv − xu) (1)

Here (V, E) is an undirected graph. Set V usually corresponds to pixels; xu denotes
the label of pixel u ∈ V which must belong to a finite set of integers {0, 1, . . . , K −
1}. For motion or stereo, the labels are disparities, while for image restoration they
represent intensities. Terms Du(·) encode unary data penalty functions, and terms Vuv(·)
are pairwise interaction potentials. This energy is often derived in the context of Markov
Random Fields [11]: a minimum of E corresponds to a maximum a-posteriori labeling x.

In this paper we consider a subclass of energy functions in which terms Du(·) and
Vuv(·) are convex. We refer to such energies as “convex MRF functions”. They arise in
many vision applications. Our work was inspired by one of them, namely panoramic image
stitching [20, 26]. Given different portions of the same scene with some overlap, the goal
is to generate an output image which is similar to the original images and does not have
a visible seam. The approach of [20, 26] is to compute the image whose gradients match
the gradients of the two input images. This is done by minimizing an objective function
of the form of equation (1). The resulting algorithm, GIST1 under l1 norm, is shown to
outperform many other stitching techniques [20, 26]. Functions E with convex terms are
also used in other vision applications such as image restoration [7], minimization of total
variation [8], phase unwrapping in SAR images [4].

Algorithms We now discuss algorithms for minimizing convex MRF functions. We use
notation n, m for the number of nodes and edges, respectively. We concentrate on the
case when the number of labels K is small compared to n.

It is well known that the problem can be solved exactly by reducing it to a linear
program whose size is polynomial in n, m and K. General LP solvers, however, do not
exploit the special structure of the convex MRF problem, and therefore are not very
efficient.

Ishikawa [15] and Ahuja et al. [2] reduce convex MRF to a minimum s-t cut problem
in a graph with O(nK) nodes and O(mK2) edges. In the important case when terms
Vuv(·) are piecewise linear functions with a constant number of breakpoints, the number
of edges is reduced to O(mK). A disadvantage of this approach is that that it needs a
large amount of memory (either O(mK2) or O(mK)).

Algorithm in [15, 2] can be characterized as primal since it directly solves convex MRF
minimization problem. An alternative is to solve the dual problem instead. This dual
is known as convex minimum cost network flow problem. Several dual algorithms were
proposed by Karzanov et al. [16] and Ahuja et al. [1]. The worst-case complexity of the
latter algorithm is O(nm log(n2/m) log(nK)), which is the best known for this problem.

It is known [3] that any convex MRF problem can be reduced to a minimum cost
network flow (MCNF) problem on a graph with O(rm) edges where r ≤ K is the maximum
number of breakpoints of piecewise-linear functions Du(·), Vuv(·). Therefore, it is possible
to use any existing MCNF method. One of them, primal-dual MCNF algorithm of Ford and
Fulkerson [9, 10], is related to the technique that we develop in this paper. In particular,
the two algorithms are equivalent in a special case when terms Du(·) are linear, r = 1 and
variables x are unconstrained integers. However, if r > 1 then the techniques are different:
our algorithm works with a graph with O(m) rather than O(rm) edges.

Our contributions In this paper we describe two algorithms for convex MRF problem
- primal and primal-dual. The first one computes a global minimum by at most 2K calls
to a minimum cut procedure on a graph with n nodes and m edges. Its name stems from
the fact that it maintains only primal variables, namely configuration x. The method is
very similar to that of Bioucas-Dias et al. [4] which was originally applied to the case of
functions without unary terms Du(·). It is also similar to the steepest descent algorithm

1

of Murota for minimizing L\-convex functions [21, 23]. Our major contribution here is
that we prove a tight bound on the maximum number of steps, while bounds in [4, 23] are
much weaker. Our proof is applicable not only to convex MRF functions, but to arbitrary
L\-convex functions.

One drawback of the primal algorithm is that it solves different min cut/max flow
problems independently. However, these problems are strongly related. Thus, a natural
idea for speeding up computations is to use maximum flow obtained in one step as an ini-
tialization for the next step. This is a motivation of our primal-dual method. It maintains
both primal variables (configuration x) and dual variables (flow). It makes at most 2K
calls to a maximum flow algorithm and a shortest path procedure.

The worse-case complexity of both algorithms is O(K) · T (n,m) where T (n,m) is the
running time of one maximum flow computation on a graph with n nodes and m edges.
This is worse than the complexity of the algorithm in [1]. However, our techniques have a
practical advantage: they rely only on a maximum flow algorithm, which is more readily
available. For example, it is possible to use maxflow algorithm that was specifically tuned
to vision problems [6].

Other related work Hochbaum [13] gives a very efficient algorithm for a special case of
convex MRF problem. Namely, if pairwise terms are linear (Vuv(xv − xu) = λuv|xv − xu|)
then the technique in [13] has the same worst-case complexity as that of a single maxflow
computation on a graph with n nodes and m edges. Similar ideas appear in [8]. The
method is applicable to the image restoration problem [7] and total variation minimiza-
tion [8].

If the number of labels K is large compared to n then some of the algorithms described
above become pseudo-polynomial. In this case it is possible to apply proximity scaling
technique of Hochbaum et al. [14] to get an algorithm polynomial in log K rather than K
(see [2]). In particular, combining proximity scaling technique with our algorithms yields
complexity n log K · T (n,m).

Finally, we mention some algorithms for minimizing more general functions. If terms
Du(·) are arbitrary and Vuv(·) are convex, then the problem can be solved exactly in time
T (nK, mK2) or T (nK, mK), depending on the structure of terms Vuv [15, 2]. Similar
construction exists for submodular functions (see section 2.1 for definition) with unary
and pairwise terms [19]. Note that pairwise terms do not have to be functions of the
differences of labels. If both Du(·) and Vuv(·) are arbitrary then the problem becomes
NP-hard. Boykov et al. [7], Kleinberg et al. [17] and Komodakis et al. [18] give constant
factor approximation algorithms in the case when terms Vuv(·) are metrics.

Outline In section 2 we describe the first algorithm (primal) and prove a bound on the
number of steps. In section 3 we review the dual problem and present the second algorithm
(primal-dual). In section 4 we compare the speed of several algorithms on the panoramic
image stitching problem.

2 Primal algorithm

Before proceeding, let us make two comments about our notation.

• Graph (V, E) is undirected, so only one out of the two pairs (u, v), (v, u) is present
in the sum (1). We use the convention that Vuv(xuv) = Vvu(−xuv). Sometimes it
will be convenient to treat the graph as directed, then we write it as (V,A). By
definition, |A| = 2 · |E|.

• Let X be the set of all configurations: X = {x ∈ Zn|Kmin
u ≤ xu ≤ Kmax

u }. (Note that
we generalized the problem slightly: we allow the range of variables to be different
for different nodes.) It is convenient to set Du(xu) = +∞ if xu /∈ [Kmin

u ,Kmax
u].

Similarly, we set Vuv(xuv) = +∞ if xuv /∈ [Kmin
v −Kmax

u ,Kmax
v −Kmin

u]. Therefore,
function E(x) is now defined for all x ∈ Zn.

2

Input: initial configuration x ∈ X .

1. Set SuccessUp := false, SuccessDown := false.

2. Do UP or DOWN in any order until SuccessUp = SuccessDown = true:

UP (do only if SuccessUp is false):

- Compute y := arg min{E(y) | y ∈Mup(x)}
- If E(y) = E(x), set SuccessUp := true

- Set x := y

DOWN (do only if SuccessDown is false):

- Compute y := arg min{E(y) | y ∈Mdown(x)}
- If E(y) = E(x), set SuccessDown := true

- Set x := y

Figure 1: Primal algorithm. For definitions of sets Mup(x) and Mdown(x) see text.

As we have mentioned earlier, the first algorithm is very similar to the techniques in [4]
and [21]. It iteratively invokes the following subroutine: given current configuration x,
compute a global minimum of function Ê(b) = E(x + σb) where σ = ±1 is fixed and
elements of vector b are allowed to take only binary values bu ∈ {0, 1}. Function Ê can
be written as a sum of unary and pairwise terms:

Ê(b) =
∑

u∈V
D̂u(bu) +

∑

(u,v)∈E
V̂uv(bu, bv)

where

D̂u(bu) = Du(xu + σbu) , V̂uv(bu, bv) = Vuv((xv + σbv)− (xu + σbu))

Due to convexity of terms Vuv pairwise terms V̂uv satisfy

V̂uv(0, 1) + V̂uv(1, 0) ≥ V̂uv(0, 0) + V̂uv(1, 1)

Therefore, function Ê is submodular and can be minimized in polynomial time by com-
puting maximum flow in an appropriately constructed graph (see [5], for example).

The following notation will be useful. For configuration x ∈ X let Mup(x) be the
set of all configurations that can be obtained by adding binary vector b ∈ {0, 1}n to x:
Mup(x) = {x + b | b ∈ {0, 1}n}. Similarly we define the set Mdown(x) = {x − b | b ∈
{0, 1}n}. These sets appeared in the work of Veksler [24] where they were used for ap-
proximate minimization of functions with Potts interaction terms. Following terminology
of [24] we say that y is within 1-jump move from x if y ∈ Mup(x), or within (-1)-jump
move from x if y ∈Mdown(x).

With these conventions, we can now present the primal algorithm (see Fig. 1). Its
difference from the method of Bioucas-Dias et al. [4] is very minor: the latter uses only
procedure UP. In addition, the algorithm in [4] is formulated for the case without unary
terms Du(·) (and therefore procedure DOWN is not needed).

The algorithm in Fig. 1 is also very similar to the steepest descent algorithm of
Murota [21, 23] for minimizing L\-convex functions1. The difference between the two is in
the minimization algorithm used in the inner loop and in the schedule of procedures UP
and DOWN. In general, our algorithm needs a fewer number of calls to these procedures,
as will be clear from the analysis of the algorithm.

This analysis is a major contribution of our paper with regard to the primal algo-
rithm. It leads to a tight bound on the number of steps improving bounds of [4] and [23].
Bioucas-Dias et al. show that if configuration x is not a global minimum of the energy, then
one step of their algorithm is guaranteed to decrease E(x). This gives a non-polynomial

1L\-convex functions can be viewed as a generalization of convex MRF functions. They do not neces-
sarily decompose as a sum of terms depending on at most two variables. See [22] for an extensive treatment
of L\-convex functions.

3

bound of E(x) on the number of steps (assuming that E is integer-valued positive func-
tion). Murota proves that the algorithm in [21] will terminate in at most O(nK) steps
assuming a particular tie-breaking rule for choosing between multiple minimizers. (Here
K = maxu(Kmax

u −Kmin
u + 1) denotes the maximum range of variables).

We now prove that our primal algorithm will terminate in at most 2K steps. Clearly, in
some cases this bound is tight. Indeed, consider a function with constant ranges [0,K−1]
such that there is unique global minimum x∗ with (x∗u, x∗v) = (0,K − 1) for some nodes
u, v. If we choose initial configuration x with (xu, xv) = (K − 1, 0) then global minimum
cannot be reached before 2K steps.

Our proof relies on the properties of submodular functions. The next section gives some
background on such functions. It also introduces some additional notation.

2.1 Submodular functions

Suppose that set X is a distributive lattice, i.e. there are binary operations ∨,∧ : X ×X →
X satisfying certain axioms [22]. Function E : X → R is called submodular if for any
x,y ∈ X it satisfies

E(x) + E(y) ≥ E(x ∨ y) + E(x ∧ y)

In our case operations ∨,∧ correspond to taking component-wise maximum and minimum,
respectively:

(x ∨ y)u = max{xu, yu} , (x ∧ y)u = min{xu, yu} ∀x,y ∈ X

It is easy to check that convex MRF functions are submodular.
Let OPT (E) be the set of global minima of submodular function E; by definition,

OPT (E) ⊆ X . The following properties are well-known [22]:

(P1) For any y ∈ X ,x∗ ∈ OPT (E) there holds E(y ∨ x∗) ≤ E(y), E(y ∧ x∗) ≤ E(y).

(P2) OPT (E) is closed under operations ∨,∧ (and thus it’s a distributive lattice).

(P3) There exist unique minimal configuration xmin ∈ OPT (E) and maximal configuration
xmax ∈ OPT (E) s.t. xmin ≤ x ≤ xmax for any x ∈ OPT (E).

Proof. By definition of submodularity, we have

E(y) ≥ E(y ∨ x∗) + E(y ∧ x∗)− E(x∗)

The first two terms on the RHS are greater or equal than E(x∗). This establishes property
(P1). If we choose configuration y to be a global minimum of E (y ∈ OPT (E)) then we
immediately get property (P2). Finally, (P3) is a property of any distributive lattice.

The last property will allow us to define quantities ρ+(x) and ρ−(x) for configuration
x ∈ X . These quantities will play a crucial role in our analysis.

First, let us define sets

X+ = {y ∈ X | y ≥ x} , X− = {y ∈ X | y ≤ x}

It is easy to verify that X+ is a distributive lattice. Therefore, restriction of E onto set
X+ is a submodular function E+ : X+ → R. Let x+ be the minimal configuration in
OPT (E+). By construction, x+ ≥ x and x+ ∈ X . Quantity ρ+(x) is now defined as

ρ+(x) = ||x+ − x||∞ = max
u∈V

{x+
u − xu}

Similarly, let E− be the restriction of E onto set X−, and let x− be the maximal config-
uration in OPT (E−). By construction, x− ≤ x and x− ∈ X . We define

ρ−(x) = ||x− x−||∞ = min
u∈V

{xu − x−u }

4

2.2 Complexity of the primal algorithm

The analysis of the algorithm is based on the theorem below. We use the following notation
in the theorem: for configurations x,y we define

Mup(x,y) = {z ∈Mup(x) | z ≤ y} , Mdown(x,y) = {z ∈Mdown(x) | z ≥ y}
Theorem 1. 1. Suppose that y ∈Mup(x).

(a) If E(y) = min{E(z) | z ∈Mup(x,y)} then ρ+(y) ≤ ρ+(x), ρ−(y) ≤ ρ−(x).

(b) If E(y) = min{E(z) | z ∈Mup(x)} and ρ+(x) > 0 then ρ+(y) < ρ+(x).

2. Suppose that y ∈Mdown(x).

(a) If E(y) = min{E(z) | z ∈Mdown(x,y)} then ρ+(y) ≤ ρ+(x), ρ−(y) ≤ ρ−(x).

(b) If E(y) = min{E(z) | z ∈Mdown(x)} and ρ−(x) > 0 then ρ−(y) < ρ−(x).

3. If ρ+(x) = ρ−(x) = 0, then x is a global minimum of E.

Using this theorem, it is not difficult to see that the primal algorithms terminates
in at most 2K steps and yields a global minimum upon termination. Indeed, we have
ρ+(x) ≤ K − 1, ρ−(x) ≤ K − 1 in the beginning. Quantities ρ+(x) and ρ−(x) never
increase according to 1(a) and 2(a). If ρ+(x) > 0 in the beginning of procedure UP
then ρ+(x) will decrease (part 1(a)). Note that in this case we must have E(y) < E(x),
otherwise configuration y = x could be a valid outcome of the procedure, which contradicts
to condition ρ+(y) < ρ+(x). Therefore, flag SuccessUp will remain false. If ρ+(x) = 0
then x+ = x, so the energy cannot decrease in the procedure UP. Thus, SuccessUp will be
set to true. Similar argumentation holds for procedure DOWN.

Note that it is easy to construct initial configuration x such that ρ+(x)+ρ−(x) ≤ K−1.
For example, we could take x to be the minimal configuration in X (i.e. xu = Kmin

u for
all nodes u). Then ρ−(x) = 0, therefore the algorithm will then terminate in at most K
steps without using procedure DOWN.

In order to prove the theorem, we will need the following lemma.

Lemma 2. 1. Suppose that ρ+(x) > 0. Define configuration xup as follows:

xup
u = max{xu, x+

u − ρ+(x) + 1}
Then xup ∈Mup(x) and E(xup) < E(x).

2. Suppose that ρ−(x) > 0. Define configuration xdown as follows:

xdown
u = min{xu, x−u + ρ−(x)− 1}

Then xdown ∈Mdown(x) and E(xdown) < E(x).

A proof of this lemma is given in the Appendix; we use the fact that convex MRF
functions are L\-convex. In the remainder of this section we prove the theorem using
lemma 2 and properties of submodular functions. The following facts will be useful (they
follow directly from properties (P1)-(P3) and definitions of x+ and x−).

(P+) If x,y ∈ X , y ≥ x then

• There holds E(y ∨ x+) ≤ E(y), E(y ∧ x+) ≤ E(y).

• If E(y) ≤ E(x+) then E(y) = E(x+) and y ≥ x+.

(P−) If x,y ∈ X , y ≤ x then

• There holds E(y ∨ x−) ≤ E(y), E(y ∧ x−) ≤ E(y).

• If E(y) ≤ E(x−) then E(y) = E(x−) and y ≤ x−.

We now proceed with the proof of theorem 1. We consider only parts 1 and 3; part 2
is completely analogous to part 1.

5

First statement of part 1(a): ρ+(y) ≤ ρ+(x) Let us prove that y+ ≤ x+ ∨ y. This
will imply the desired result since for any node u

y+
u − yu ≤ max{x+

u , yu} − yu = max{x+
u − yu, 0} ≤ max{x+

u − xu, 0} = x+
u − xu

It is easy to see that x+ ∧y ∈Mup(x,y), therefore by assumption E(y) ≤ E(x+ ∧y).
Let us denote z = x+ ∨ y. From submodularity of E we get

E(z) ≤ E(x+) + E(y)− E(x+ ∧ y) ≤ E(x+)

There holds z ≥ x, so from construction of x+ we must have E(z) = E(x+).
Since y+ ≥ x, by property (P+) we have E(y+) ≥ E(x+). Therefore, E(y+) ≥ E(z).

There holds z ≥ y; using property (P+) again, we obtain that y+ ≤ z, as desired.

Second statement of part 1(a): ρ−(y) ≤ ρ−(x) Let us show first that y− ≥ x−.
We have x− ∧y− ≤ x, therefore E(x− ∧y−) ≥ E(x−). Let us denote z = x− ∨y−. From
submodularity of E we get

E(z) ≤ E(x−) + E(y−)− E(x− ∧ y−) ≤ E(y−)

We also have z ≤ y. Using property (P−) and definition of z we obtain y− ≥ z ≥ x−.
Now suppose that ρ−(y) ≥ d+1 where d = ρ−(x). We will show next that this implies

ydown ≥ x, so ydown ∈Mup(x,y). This leads to a contradiction: by theorem’s assumption,
E(y) ≤ E(ydown), however according to lemma 2 there holds E(ydown) < E(y).

We need to show that for any node u we have ydown
u ≥ xu. If ydown

u = yu then this
clearly holds. Suppose that ydown

u = y−u + ρ−(y)− 1. Then

ydown
u ≥ y−u + d ≥ x−u + d ≥ xu

as desired.

Part 1(b) Suppose that ρ(y) ≥ d where d = ρ+(x) > 0. We will show next that
this implies yup ∈ Mup(x). This leads to a contradiction: by theorem’s assumption,
E(y) ≤ E(yup), however according to lemma 2 there holds E(yup) < E(y).

We need to show that for any node u we have yup
u ≤ xu + 1. If yup

u = yu then this
clearly holds. Suppose that yup

u = y+
u − ρ+(y) + 1. Then

yup
u ≤ y+

u − d + 1 ≤ max{x+
u , yu} − d + 1 ≤ max{xu + d, xu + 1} − d + 1 ≤ xu + 1

as desired. (Note that we used the fact that y+ ≤ x+ ∨ y proved earlier).

Part 3 Suppose that ρ+(x) = ρ−(x) = 0, so x+ = x− = x. Let x∗ be a global minimum
of E. We have x ∨ x∗ ≥ x, x ∧ x∗ ≤ x, therefore E(x ∨ x∗) ≥ E(x), E(x ∧ x∗) ≥ E(x).
From submodularity of E we get

E(x∗) ≥ E(x ∨ x∗) + E(x ∧ x∗)− E(x) ≥ E(x) + E(x)− E(x) = E(x)

Therefore, x is a global minimum of E.

3 Primal-dual algorithm

In order to describe the second algorithm, we need to review the dual formulation to convex
MRF minimization problem. This is done in section 3.1. Based on this, we then present
our primal-dual algorithm in section 3.2. It can be viewed as an extension of the primal
algorithm. It also uses procedures UP and DOWN; however, during these procedures the
algorithm updates not only primal variables x but also dual variables, namely flow. After
describing the algorithm we analyze its properties in section 3.3.

6

ux

)(⋅uD

uv xx −

)(⋅uvV

ux

)(⋅uD

ux

)(⋅uD

(a) (b) (c) (d)

Figure 2: Complementary slackness conditions. Any optimal primal-dual pair (x, f)
must satisfy conditions illustrated in (a,b). During the algorithm, complementary slackness
condition for edges shown in (b) is always satisfied. However, this condition may be
violated for some nodes (possible cases are shown in (a,c,d)).

3.1 Flow and the dual problem

The dual to convex MRF minimization problem is well-known (see [1], for example). It
involves flow which is a mapping f : V ∪ A → R satisfying

fuv = −fvu ∀ (u, v) ∈ E (antisymmetry)

fu =
∑

(u,v)∈E
fuv ∀u ∈ V (flow conservation)

(Recall that A denotes the set of directed edges in the graph.) Given flow f , we can define
energy function Ef (x) as follows:

Ef (x) =
∑

u∈V
Df

u(xu) +
∑

(u,v)∈E
V f

uv(xv − xu) (2)

where
Df

u(z) = Du(z) + fuz ∀ z ∈ Z
V f

uv(z) = Vuv(z) + fuvz ∀ z ∈ Z
It is not difficult to check that for any flow f functions Ef and E are the same, i.e.
Ef (x) = E(x) for any configuration x. Furthermore, terms Df

u(·) are V f
uv(·) are con-

vex. Following terminology used in machine learning [25], we say that expression (2) is a
reparameterization of (1).

For a flow f let us define its value as

value(f) =
∑

u∈V
min
z∈Z

Df
u(z) +

∑

(u,v)∈E
min
z∈Z

V f
uv(z)

Clearly, value(f) is a lower bound on energy Ef (x) (and, thus, on E(x)):

value(f) ≤ E(x) ∀ f,x (3)

This is a statement of weak duality. It turns out that strong duality holds as well, as the
following lemma shows.

Lemma 3. (a) Let f∗ be a flow that maximizes value(f), and let x∗ be a global mini-
mum of energy E(x). Then

value(f∗) = E(x∗)

(b) Configuration x and feasible flow f are optimal primal-dual solutions if and only if
the following complementary slackness conditions hold:

Df
u(xu) = min

z∈Z
Df

u(z) ∀u ∈ V (4a)

V f
uv(xv − xu) = min

z∈Z
V f

uv(z) ∀ (u, v) ∈ E (4b)

7

Input: initial configuration x ∈ X .

1. INITIALIZE-FLOW (updates f)

2. Set SuccessUp := false, SuccessDown := false.

3. Do UP or DOWN in any order until SuccessUp = SuccessDown = true:

UP (do only if SuccessUp is false):

- MAXFLOW-UP (updates x and f)

- If V+(x, f) = ∅, set SuccessUp := true

- Optional: DIJKSTRA-UP (updates x)

DOWN (do only if SuccessDown is false):

- MAXFLOW-DOWN (updates x and f)

- If V−(x, f) = ∅, set SuccessUp := true

- Optional: DIJKSTRA-DOWN (updates x)

4. Optional: DIJKSTRA-DOWN; set xmin := x.

5. Optional: DIJKSTRA-UP; set xmax := x.

Figure 3: Primal-dual algorithm. See text for description of different procedures. Upon
termination x is a global minimizer of the energy, xmin is the minimal minimizer, xmax

is the maximal minimizer, and f is an optimal flow.

A proof of the lemma can be found in [1], for example. Alternatively, it can be deduced
from our results. We will prove that our algorithm is guaranteed to find pair (x, f)
satisfying conditions (4). The lemma will then follow from the weak duality (formula (3)).

Conditions (4) are illustrated in Fig. 2(a,b). Note that since terms Df
u(·) and V f

uv(·)
are convex, these conditions are equivalent to

gradDf
u(xu − 0) ≤ 0 grad Df

u(xu + 0) ≥ 0 (4a′)

gradV f
uv(xv − xu − 0) ≤ 0 grad V f

uv(xv − xu + 0) ≥ 0 (4b′)

where we introduced the following notation for a function g : Z→ R ∪ {+∞}:
grad g(z − 0) = g(z)− g(z − 1) , grad g(z + 0) = g(z + 1)− g(z)

3.2 Algorithm

We are now ready to present our primal-dual algorithm. It maintains configuration x ∈ X
and feasible flow f . An important property of the algorithm is that the complementary
slackness condition (4b) is always satisfied. However, condition (4a) for nodes may not
hold. Therefore, we can have cases shown in Fig. 2(c,d). It is convenient to introduce the
following notation for sets of nodes violating the complementary slackness conditions:

V+(x, f) = {u ∈ V | gradDf
u(xu + 0) < 0}

V−(x, f) = {u ∈ V | gradDf
u(xu − 0) > 0}

To simplify notation, for zero flow we denote V+(x) = V+(x, 0) and V−(x) = V−(x, 0).
Fig. 2(c) corresponds to a node in V+(x), while 2(d) corresponds to node in V−(x).
Note that since terms Df

u(·) are convex, a node cannot be in both sets simultaneously.
Furthermore, condition (4a) holds if and only if sets V+(x, f) and V−(x, f) are empty.

The structure of the algorithm is shown in Fig. 3. We now give details of different
procedures. Some of them involve modifying flow f . For simplicity of notation we will
make the following convention: after every modification of f expression (1) is replaced with
reparameterization (2), and the flow is set to zero2. This means that in the beginning of
each operation the input flow is zero.

2For implementation it is also possible to keep original terms D(·), V (·) and flow f . When calling
a particular procedure, we first compute terms Df (·), V f (·) and supply them to the procedure. If the
output of the operation is flow f ′ then it is added to f , so f + f ′ becomes the new flow.

8

INITIALIZE-FLOW Its goal is to set flow f so that condition (4b′) is satisfied for every
edge (u, v) ∈ E . Since grad V f

uv(xv − xu ± 0) = grad Vuv(xv − xu ± 0) + fuv, a necessary
and sufficient condition for flow fuv is

−gradVuv(xv − xu + 0) ≤ fuv ≤ −grad Vuv(xv − xu − 0)

After setting fuv values fu are computed from the flow conservation constraint.

MAXFLOW-UP This operation is similar to procedure UP of the primal algorithm, except
that it modifies not only configuration x but also flow f . We will show later that it tries
to move towards satisfying complementary slackness conditions (4a). In particular, sets
V+(x, f) and V−(x, f) will not grow.

The procedure can be summarized as follows. First, we construct directed weighted
graph Ĝ = (V̂, Â, ĉ) with nodes V̂ = V ∪ {s, t} where s and t are called the source and
the sink, respectively. We then compute maximum flow f̂ from the s to t, i.e. solve the
problem

max
f

∑
(s→u)∈Â f̂su

subject to

{
f̂uv ≤ ĉuv , f̂uv = −f̂vu for all (u → v) ∈ Â∑

(u→v)∈Â f̂uv = 0 for all v ∈ V̂ − {s, t}

Finally, we update dual variables f based on flow f̂ , and we also compute new configuration
y based on minimum s-t cut in the graph. As we will show later, the output configuration
y is the same as in the procedure UP of the primal algorithm, i.e. y = arg min{E(z) | z ∈
Mup(x)}.

The table below shows graph construction as well as correspondence between flows f̂
and f . For every arc from the source or to the sink we also add the reverse arc with
zero capacity. Note that capacities for arcs (u → v), (v → u) are non-negative because of
conditions (4b′). It is easy to see that the output flow f satisfies antisymmetry and flow
conservation constraints, since the same holds for flow f̂ .

arc a in Â flow f̂a corresponds to capacity ĉa for
(u → v) fuv −grad Vuv(xv − xu − 0) (u, v) ∈ E
(v → u) fvu gradVuv(xv − xu + 0)
(s → u) fu −grad Du(xu + 0) u ∈ V+(x)
(u → t) −fu gradDu(xu + 0) u /∈ V+(x)

New configuration y is computed from minimum s-t cut (S, T) as follows: for node
u ∈ V we set yu = xu + 1 if u ∈ S, and yu = xu otherwise.

MAXFLOW-DOWN This operation is analogous to the previous one. Graph construction
and correspondence between flows f̂ and f are shown below.

arc a in Â flow f̂a corresponds to capacity ĉa for
(u → v) fuv −grad Vuv(xv − xu − 0) (u, v) ∈ E
(v → u) fvu gradVuv(xv − xu + 0)
(s → u) fu −grad Du(xu − 0) u /∈ V−(x)
(u → t) −fu gradDu(xu − 0) u ∈ V−(x)

New configuration y is computed from minimum s-t cut (S, T) as follows: for node
u ∈ V we set yu = xu if u ∈ S, and yu = xu − 1 otherwise.

DIJKSTRA-UP This operation is optional. It does not affect the worst-case complexity of
the algorithm, but may improve empirical performance. In this procedure we fix flow and
compute maximal configuration y ≥ x such that functions Du(·) are non-increasing on
[xu, yu] and complementary slackness conditions (4b) hold. If we denote du = yu−xu ≥ 0,

9

then these constraints are equivalent to

du ≤ dmax
u = max{d ∈ Z |Du(xu + d) ≤ . . . ≤ Du(xu + 1) ≤ Du(xu)}

dv − du ≤ dmax
uv = max{d ∈ Z | Vuv(xv − xu + d) = Vuv(xv − xu)}

du − dv ≤ dmax
vu = max{d ∈ Z | Vuv(xv − xu − d) = Vuv(xv − xu)}

It is well-known [3] that maximal labeling d satisfying these constraints can be computed
efficiently using Dijkstra’s algorithm.

DIJKSTRA-DOWN This operation is similar to the previous one: we compute minimal
configuration y ≤ x such that functions Du(·) are non-decreasing on [yu, xu] and com-
plementary slackness conditions (4b) hold. If we denote du = xu − yu ≥ 0, then these
constraints are equivalent to

du ≤ dmax
u = max{d ∈ Z |Du(xu − d) ≤ . . . ≤ Du(xu − 1) ≤ Du(xu)}

dv − du ≤ dmax
uv = max{d ∈ Z | Vuv(xv − xu − d) = Vuv(xv − xu)}

du − dv ≤ dmax
vu = max{d ∈ Z | Vuv(xv − xu + d) = Vuv(xv − xu)}

As before, maximal labeling d (corresponding to minimal labeling y) can be computed
using Dijkstra’s algorithm.

3.3 Analysis of the algorithm

First we analyze the behaviour of the algorithm without procedures DIJKSTRA-UP and
DIJKSTRA-DOWN. In the theorem below we assume that input pair (x, 0) satisfies com-
plementary slackness conditions (4b).

Theorem 4. 1. Let (y, f) be the output of MAXFLOW-UP applied to (x, 0). Then

(a) Complementary slackness conditions (4b) hold for (y, f).

(b) y = arg min{E(z) | z ∈Mup(x)}.
(c) There holds V+(y, f) ⊆ V+(x) and V−(y, f) ⊆ V−(x).

(d) If ρ+(x) = 0, then V+(y, f) = ∅.
2. Let (y, f) be the output of MAXFLOW-DOWN applied to (x, 0). Then

(a) Complementary slackness conditions (4b) hold for (y, f).

(b) y = arg min{E(z) | z ∈Mdown(x)}.
(c) There holds V+(y, f) ⊆ V+(x) and V−(y, f) ⊆ V−(x).

(d) If ρ−(x) = 0, then V−(y, f) = ∅.

Combining theorem 1, theorem 4 and the weak duality result (formula (3)) we can show
that the algorithm terminates in at most 2K steps and yields optimal primal-dual pair
(x, f) upon termination. Indeed, parts 1(a) and 2(a) imply that conditions (4b) always
hold. After at most K − 1 steps of procedure UP quantity ρ+(x) becomes zero, therefore
after at most K steps set V+(x, f) becomes empty. At this point flag SuccessUp is set
to true, and set V+(x, f) will remain empty. Similar argumentation holds for procedure
DOWN. When the algorithm terminates, sets V+(x, f) and V−(x, f) are empty, so com-
plementary slackness conditions (4) are satisfied. The weak duality then implies that we
have an optimal primal-dual pair (x, f).

This analysis remains valid even with procedures DIJKSTRA-UP or DIJKSTRA-DOWN,
as follows from the theorem below.

10

Theorem 5. Let y be the output of DIJKSTRA-UP or DIJKSTRA-DOWN applied to (x, 0).
Then

(a) Complementary slackness conditions (4b) hold for (y, 0).

(b) There holds V+(y) ⊆ V+(x) and V−(y) ⊆ V−(x).

(c) There holds ρ+(y) ≤ ρ+(x) and ρ−(y) ≤ ρ−(x).

It can be seen that if procedure DIJKSTRA-UP is applied to optimal pair (x, f) then
the output configuration y is the maximal optimal configuration. Indeed, according to
lemma 3 configuration y is optimal if and only if it satisfies

Du(yu) = Du(xu) ∀u ∈ V
Vuv(yv − yu) = Vuv(xv − xu) ∀ (u, v) ∈ E

For configurations y ≥ x this is equivalent to saying that functions Du(·) are non-
increasing on [xu, yu] and complementary slackness conditions (4b) hold. By construction,
DIJKSTRA-UP finds the maximal configuration satisfying these conditions. Similarly, we
can show that applying DIJKSTRA-DOWN to optimal pair (x, f) yields the minimal opti-
mal configuration.

We now turn to the proof of theorems 4 and 5. We omit a proof of part 2 of theorem 4
since it is very similar to that of part 1.

Theorem 4, part 1(a) From capacity constraints we get fuv ≤ −gradVuv(xv − xu + 0),
−fuv ≤ gradVuv(xv − xu − 0), therefore

grad V f
uv(xv − xu + 0) = fuv + grad Vuv(xv − xu + 0) ≤ 0

grad V f
uv(xv − xu − 0) = fuv + grad Vuv(xv − xu − 0) ≥ 0

which implies that V f
uv(xv − xu) = minz∈Z V f

uv(z). Thus, if yv − yu = xv − xu then the
complementary slackness condition (4b) holds for edge (u, v). Let us consider the case
yv − yu = xv − xu + 1. This can only happen when u ∈ T , v ∈ S, which means that edge
(v → u) must be saturated. Therefore −fuv = f̂vu = ĉvu = grad Vuv(xv − xu + 0), so

grad V f
uv(xv − xu + 0) = fuv + grad Vuv(xv − xu + 0) = 0

V f
uv(yv − yu) = V f

uv(xv − xu + 1) = V f
uv(xv − xu) = min

z∈Z
V f

uv(z)

The case yv − yu = xv − xu − 1 can be considered similarly.

Theorem 4, part 1(b) The rule described in procedure MAXFLOW-UP defines a one-
to-one mapping between s-t cuts in graph Ĝ and configurations y ∈Mup(x). The following
sequence of equations shows that the cost of any cut (S, T) is equal to the energy of the
corresponding configuration y plus a constant, thus establishing our claim. (Below we use
indicator function [·] which is one if its argument is true, and zero otherwise.)

cost(S, T) =
∑

u∈V+(x)

ĉsu · [u ∈ T] +
∑

u/∈V+(x)

ĉut · [u ∈ S]+

+
∑

(u,v)∈E
{ĉuv · [u ∈ S, v ∈ T] + ĉvu · [u ∈ T, v ∈ S]} =

= const +
∑

u∈V
gradDu(xu + 0) · [yu = xu + 1]+

+
∑

(u,v)∈E
{−gradVuv(xv − xu − 0) · [yv − yu = xv − xu − 1]+

+gradVuv(xv − xu + 0) · [yv − yu = xv − xu + 1]} =

= const′ +
∑

u∈V
Du(yu) +

∑
(u,v)∈E

Vuv(yv − yu) = const′ + E(y)

where we used the fact that

grad g(c + 0) · [z = c + 1] = −g(c) + g(z)

11

for any z ∈ {c, c + 1}, and

−grad g(c− 0) · [z = c− 1] + grad g(c + 0) · [z = c + 1] = −g(c) + g(z)

for any z ∈ {c− 1, c, c + 1}.

Theorem 4, part 1(c) We consider two possible cases.

• u ∈ V+(x), i.e. grad Du(xu + 0) < 0. We need to show that u /∈ V−(y, f). This
holds since

gradDf
u(yu − 0) ≤ gradDf

u((xu + 1)− 0) =
= grad Df

u(xu + 0) = fu + grad Du(xu + 0) ≤ 0

(The first inequality follows from yu ≤ xu + 1 and convexity of Df (·), and the last
inequality follows from the capacity constraint: fu ≤ ĉsu = −gradDu(xu + 0).)

• u /∈ V+(x), i.e. grad Du(xu + 0) ≥ 0. We have 0 ≤ f̂u ≤ grad Du(xu + 0), which
implies 0 ≥ fu ≥ −gradDu(xu + 0). The fact that u /∈ V+(y, f) then follows from

grad Df
u(yu + 0) ≥ grad Df

u(xu + 0) = fu + grad Du(xu + 0) ≥ 0

Now suppose that u /∈ V−(x), i.e. gradDu(xu − 0) ≤ 0. We need to show that
u /∈ V−(y, f). If yu = xu then this follows from

grad Df
u(yu − 0) = fu + gradDu(xu − 0) ≤ 0

If yu = xu + 1 then u ∈ S, so edge (u → t) must be saturated: −fu = f̂u =
grad Du(xu + 0). Then

grad Df
u(yu − 0) = grad Df

u(xu + 0) = fu + grad Du(xu + 0) = 0

Theorem 4, part 1(d) For nodes u /∈ V+(x) this follows from part (c). Let us consider
node u ∈ V+(x). Condition ρ+(x) = 0 means that x = arg min{E(z) | z ∈ Mup(x)}.
Therefore, according to part 1(b) cut ({s},V ∪ {t}) corresponding to configuration x is
a cut with the smallest cost. Thus, edge (s → u) must be saturated: fu = f̂u = ĉsu =
−gradDu(xu + 0). This implies that

grad Df
u(yu + 0) ≥ grad Df

u(xu + 0) = fu + grad Du(xu + 0) = 0

so u /∈ V+(y, f), as desired.

Theorem 5 We consider only procedure DIJKSTRA-UP; operation DIJKSTRA-DOWN
is completely analogous. Parts (a) and (b) follow directly from the definition of the pro-
cedure. Let us prove part (c).

For d ∈ Z+ define configuration xd as follows:

xd
u = min{xu + d, yu}

We have x0 = x and xd = y for sufficiently large d. Furthermore, for any d ≥ 0 there
holds xd+1 ∈Mup(xd).

Consider configuration z ∈ Mup(xd,xd+1). Since xu ≤ zu ≤ xd+1
u ≤ yu ≤ xu + dmax

u ,
it follows from the construction that Du(xd+1

u) ≤ Du(zu). Similarly, for every edge (u, v)
there holds

(xd+1
v − xv)− (xd+1

u − xu) ≤ (yd+1
v − xv)− (yd+1

u − xu) ≤ dmax
uv

so from the construction Vuv(xd+1
v − xd+1

u) = Vuv(xv − xu) ≤ Vuv(zv − zu). Since every
term in the sum for E(xd+1) is the same or smaller than the corresponding term for E(z),
we obtain E(xd+1) ≤ E(z).

We can therefore apply part 1(a) of theorem 1. It implies that ρ+(xd+1) ≤ ρ+(xd) and
ρ−(xd+1) ≤ ρ−(xd). This holds for any d ≥ 0, which proves the desired result.

12

Figure 4: Results of panoramic stitching. First two columns: input images (courtesy of
A. Zomet). Rectangles show the area of overlap. Last three columns: results corresponding
to xmin, xmax and xav, respectively (note that images are cropped). The additive constant
is chosen as described in the text.

4 Experiments

We tested the speed of several algorithms on the panoramic image stitching application.
Given two input images I1 and I2 defined on overlapping domains Ω1 and Ω2, the goal
is two compute an output image without a visible seam. Levin et al. [20, 26] proposed
several techniques for this problem. One of them, GIST1 algorithm under l1 norm, was
shown to outperform many other stitching methods. It involves minimizing the following
function for each color channel:

E(x) =
∑

(u,v)∈E
w1

uv|(xv − xu)− (I1
v − I1

u)|+ w2
uv|(xv − xu)− (I2

v − I2
u)|

In other words, we want the gradient of image x to match gradients of images I1 and
I2. Weights w1

uv and w2
uv were determined as follows. For edges in Ω1 − Ω2 we set

w1
uv = 2, w2

uv = 0. For edges in Ω2 − Ω1 we set w1
uv = 0, w2

uv = 2. For all other edges we
set w1

uv = w2
uv = 1. We used a 4-neighborhood system E .

Since there are no unary terms, a global minimum is determined only up to an additive
constant. Similar to [20, 26], we computed this constant so that median intensity of I1

in Ω1 matches that of the output image. This does not uniquely determines the solution,
however - there are multiple optimal configurations x satisfying this requirement. Levin et
al. do not discuss how to choose between them. We propose the following technique. We
put constraints xu ∈ [0,K−1] on the variables where K is sufficiently large (e.g., 512). We
then compute minimal global solution xmin, maximal global solution and xmax and their
average xav =

⌊
xmin+xmax

2

⌋
. It can be shown that xav is an optimal configuration as well (it

follows from the fact that function E is L\-convex). Furthermore, these configurations have
the minimum possible range (defined as maxu{xu} −minu{xu}+ 1). In our experiments
it was very close to 256. Having a small range may be advantageous since intensities must
be mapped to interval [0,255], so if the range is too large then some regions may become
too dark or saturated.

Fig. 4 shows panoramas corresponding to configurations xmin, xmax and xav. It can
be seen that the last one looks significantly better than the other two (the overlap area is
too dark in xmin and too bright in xmax).

We compared the speed of three different algorithms. The first two are primal and
primal-dual methods described in sections 2 and 3. An important issue is the choice
of initial configuration x. If, for example, we start with an optimal configuration, then

13

algorithms will terminate in two steps. We tried two schemes. In the first one we initialized
the algorithms with the following configuration: xu = I1

u in region Ω1 − Ω2, xu = I2
u in

Ω2 − Ω1 and xu =
⌊

I1
u+I2

u

2

⌋
in Ω1 ∩ Ω2. In the second scheme we used a two-stage

process. First, we solve the problem in region Ω′ which is two pixels larger than the
overlap Ω1 ∩ Ω2. (The initialization for this step is the same as before). The solution
is then used for initializing the final stage. Pixels outside Ω′ are initialized in the same
way as before - either with image I1 or with I2. In our experiments the second stage
for the primal-dual algorithm always terminated in three steps, which shows that the first
stage computes a very good initialization. For both schemes we used maxflow algorithm of
Boykov et al. [6] available at http://www.cs.cornell.edu/People/vnk/software.html (version
2.2).

The third technique that we tried is as follows. We converted the original prob-
lem to a minimum cost network flow problem. (Note that we did not enforce con-
straints xu ∈ [0,K − 1]). We then applied MCNF algorithm of Goldberg [12] available at
http://www.avglab.com/andrew/soft.html (version 4.0). It has one free parameter, namely
scaling factor; we set it to 32 (results for other factors were faster by at most one percent).
Convex MRF problem can be converted to MCNF in many different ways. We used a
transformation with the following property: if the initial configuration satisfied comple-
mentary slackness conditions, then so did the resulting MCNF problem. We initialized
the algorithm as in the first scheme above; we found, however, that the performance was
affected by the initial configuration less significantly. (If, for example, we initialized with
an optimal configuration x∗, then the algorithm was at most 30% faster). In all codes we
used 32-bit integers.

Note that we did not test the cost scaling technique of Ahuja et al. [1]. It uses ideas
similar to [12], but it works with a smaller graph. Therefore, [1] could potentially be faster
than converting the problem to MCNF and then applying the method in [12]. However,
in our application graph sizes would differ only slightly, and we argue that direct imple-
mentation of the technique in [1] is unlikely to beat the implementation in [12]. Indeed,
the latter is highly optimized and includes many heuristics which significantly improve the
empirical performance.

The table below shows running times in seconds on Pentium IV 3.2GHz processor (we
measure the total time for 3 color channels). We used three datasets D0, D1 and D2
shown in Fig. 4. Their dimensions are 449×193 for D0 and 577×257 for D1 and D2.
The percentages of overlap area are 4.9%, 10.0% and 6.9%, respectively. We also used
scaled-down datasets D0-s, D1-s and D2-s (both X and Y dimensions are reduced by 2
times).

D0-s D1-s D2-s D0 D1 D2
primal, 1 stage 4.47 27.39 25.66 70.31 162.35 122.00

primal-dual, 1 stage 0.61 4.09 5.23 9.53 16.41 29.71
primal-dual, 2 stages 0.36 0.71 0.63 1.08 2.87 3.03

MCNF 0.90 1.79 1.50 5.13 14.56 13.09

In the two-stage primal-dual method maxflow algorithm took approximately 5-10%
of total time, Dijkstra’s algorithm - 30%, and the rest was spent on building graph for
computing maxflow and reading flow back.

Not surprisingly, the primal-dual method significantly outperforms the primal algo-
rithm. As for a relative performance of primal-dual and MCNF techniques, the situation
depends on initial configuration. In the panoramic stitching problem we can obtain quickly
a very good initialization, which makes the primal-dual algorithm a clear winner. In ap-
plications when it is not the case MCNF algorithm may be faster.

Appendix: proof of lemma 2

Our proof is based on the fact that convex MRF functions are L\-convex. Two equivalent
definitions of L\-convexity for functions E : Zn → R ∪ {+∞} are given below (see [22]).

14

Definition 6. E is called L\-convex if for any x,y ∈ Zn there holds

E(x) + E(y) ≥ E

(⌈
x + y

2

⌉)
+ E

(⌊
x + y

2

⌋)

where
⌈
x+y

2

⌉
and

⌊
x+y

2

⌋
denote, respectively, the integer vectors obtained from x+y

2 by
component-wise round-up and round-down to the nearest integers.

Definition 6′. E is called L\-convex if it satisfies translation submodularity property for
any x,y ∈ Zn, α ∈ Z+:

E(x) + E(y) ≥ E((x− α1) ∨ y) + E((y + α1) ∧ x)

(In both definitions it is understood that the inequality is satisfied if one of the terms
E(x), E(y) is +∞.)

We can also apply definitions above to functions E : X → R ∪ {+∞} where X ⊂ Zn.
Then we need to extend E as follows: we set E(x) = +∞ if x ∈ Zn −X .

We now turn to the proof of the lemma. We consider only the first part; the second part
is completely analogous. We need to show that E(xup) < E(x). We can assume without
loss of generality that configuration x is minimal in set X . (If not, we can consider the
restriction of E onto set X+ = {y ∈ X |y ≥ x}, which is an L\-convex function. Definition
of xup stays the same).

Let d = ρ+(x) − 1 ≥ 0, and let V0 = {u ∈ V | x+
u − xu = d + 1}. (From construction,

V0 6= ∅ and 0 ≤ x+
u − xu ≤ d for all u ∈ V − V0.) It is easy to see that configuration xup

can be defined as follows: xup = (x+ − d1) ∨ x.
Consider configuration y = (x+d1)∧x+. It can be seen that x ≤ y ≤ x+ and y 6= x+.

(In particular, yu < x+
u for u ∈ V0.) Since x+ is the minimal optimal configuration, there

holds E(x+) < E(y). Using translation submodularity property, we obtain

E(x) + E(x+) ≥ E(y) + E(xup)

Therefore, E(xup)− E(x) ≤ E(x+)− E(y) < 0. This proves the first part of lemma 2.

References

[1] R. K. Ahuja, D. S. Hochbaum, and J. B. Orlin. Solving the convex cost integer dual
network flow problem. Management Science, 49:7:950–964, 2003.

[2] R. K. Ahuja, D. S. Hochbaum, and J. B. Orlin. A cut based algorithm for the convex
dual of the minimum cost network flow problem. Algorithmica, 39:3:189–208, April
2004.

[3] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms,
and Applications. Prentice Hall, 1993.

[4] J. Bioucas-Dias and G. Valadão. Phase unwrapping via graph cuts. In Pattern
Recognition and Image Analysis: 2nd Iberian Conference (IbPRIA), LCNS. Springer,
June 2005.

[5] E. Boros and P. L. Hammer. Pseudo-boolean optimization. Discrete Applied Mathe-
matics, 123(1-3):155 – 225, November 2002.

[6] Y. Boykov and V. Kolmogorov. An experimental comparison of min-cut/max-flow
algorithms for energy minimization in vision. PAMI, 26(9), September 2004.

[7] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via
graph cuts. PAMI, 23(11), November 2001.

[8] J. Darbon and M. Sigelle. A fast and exact algorithm for total variation minimization.
In Pattern Recognition and Image Analysis: 2nd Iberian Conference (IbPRIA), LCNS.
Springer, June 2005.

15

[9] L. R. Ford and D. R. Fulkerson. A primal-dual algorithm for the capacitated hitchcock
problem. Naval Research Logistics Quarterly, 4:47–54, 1957.

[10] L. R. Ford and D. R. Fulkerson. Flows in networks. Princeton Univ. Press, 1962.

[11] S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian
restoration of images. PAMI, 6:721–741, 1984.

[12] A. V. Goldberg. An efficient implementation of a scaling minimum-cost flow algo-
rithm. J. Algorithms, 22:1–29, 1997.

[13] D. S. Hochbaum. An efficient algorithm for image segmentation, Markov Random
Fields and related problems. J. ACM, 48:2:686–701, July 2001.

[14] D. S. Hochbaum and J. G. Shanthikumar. Convex separable optimization is not much
harder than linear optimization. J. ACM, 37:843–862, 1990.

[15] H. Ishikawa. Exact optimization for Markov Random Fields with convex priors.
PAMI, 25(10):1333–1336, October 2003.

[16] A. B. Karzanov and S. T. McCormick. Polynomial methods for separable convex
optimization in unimorudular linear spaces with applications. SIAM J. Computing,
4:1245–1275, 1997.

[17] J. Kleinberg and E. Tardos. Approximation algorithms for classification problems
with pairwise relationships: Metric labeling and Markov Random Fields. FOCS,
pages 14–23, 1999.

[18] N. Komodakis and G. Tziritas. A new framework for approximate labeling via graph
cuts. In ICCV, October 2005.

[19] I. V. Kovtun. Image segmentation based on sufficient conditions of optimality in
NP-complete classes of structural labelling problems. PhD thesis, IRTC ITS National
Academy of Sciences, Ukraine, 2004. (In Ukranian).

[20] A. Levin, A. Zomet, S. Peleg, and Y. Weiss. Seamless image stitching in the gradient
domain. In ECCV, May 2004.

[21] K. Murota. Algorithms in discrete convex analysis. IEICE Transactions on Systems
and Information, E83-D:344–352, 2000.

[22] K. Murota. Discrete Convex Analysis. SIAM Monographs on Discrete Mathematics
and Applications, Vol. 10, 2003.

[23] K. Murota. On steepest descent algorithms for discrete convex functions. SIAM J.
Optimization, 14(3):699–707, 2003.

[24] O. Veksler. Efficient graph-based energy minimization methods in computer vision.
PhD thesis, Cornell University, Dept. of Computer Science, Ithaca, NY, 1999.

[25] M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky. Tree consistency and bounds
on the performance of the max-product algorithm and its generalizations. Statistics
and Computing, 14(2):143–166, April 2004.

[26] A. Zomet, A. Levin, S. Peleg, and Y. Weiss. Seamless image stitching by minimizing
false edges. IEEE Trans. Image Processing, 2005.

16

