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ABSTRACT

A good speech model is essential for speech enhancement,
but it is very difficult to build because of huge intra- and
extra-speaker variation. We present a new speech model for
speech enhancement, which is based on statistical models of
magnitude-normalized complex spectra of speech signals.
Most popular speech enhancement techniques work in the
spectrum space, but the large variation of speech strength,
even from the same speaker, makes accurate speech model-
ing very difficult because the magnitude is correlated across
all frequency bins. By performing magnitude normalization
for each speech frame, we are able to get rid of the mag-
nitude variation and to build a much better speech model
with only a small number of Gaussian components. This
new speech model is applied to speech enhancement for our
previously developed microphone headsets that combine a
conventional air microphone with a bone sensor. Much im-
proved results have been obtained.
Keywords: Speech modeling, speech enhancement, audio
processing, multisensory processing

1. INTRODUCTION

Speech enhancement in a noisy environment has many ap-
plications including communications and speech recogni-
tion. Despite more than three decades of research, it re-
mains unsolved. The difficulty is due to non-stationarity of
speech and noise, huge intra- and extra-speaker variability,
often unpredictable environmental conditions (noise and re-
verberation), and sometimes arbitrary microphone gain set-
ting. An efficient speech enhancement technique requires
explicit and accurate statistical models for the speech signal
and noise process.

Much work has been done on speech enhancement using
traditional signal processing techniques. Quatieri [1] pro-
vides a description of various techniques including spectral
subtraction, Wiener filtering, model-based processing and
auditory masking. They have many well-known successes,
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such as removing fan noise, because the reconstructed clean
spectra are close to optimal if the true noise spectra are
given and the correlation between speech and noise is known.
One shortcoming of these techniques is that they often as-
sume, implicitly or explicitly, a single Gaussian distribution
on speech signals. As mentioned earlier, a single Gaussian
is a poor model to account for huge speech variation.

McAulay and Malpass in their pioneering work [2] used
a speech presence uncertainty model and developed a soft-
decision noise suppression filter for speech enhancement.
Drucker [3] first proposed a system using five states repre-
senting fricative, stop, vowel, glide, and nasal speech sounds.
Based on a series of listening tests for confusion, the num-
ber of states was reduced to three (fricative, stop, and other
sounds). The system, however, was simulated by hand-
switching between the sound state (the test monitor knows
the speech stream).

Attempts have also been made to model state changes
over time. Lim and Oppenheim [4] model the short-term
speech and noise signals as an autoregressive process. Ephraim
[5] models the long-term speech and noise signals as a hid-
den Markov process. While autoregressive and hidden Markov
models have proved extremely useful in coding and recog-
nition, they were not found to be sufficiently refined for
speech enhancement [6]. Instead of working in the spec-
tral domain, Wu et al. [7] trained a HMM or a GMM in the
cepstral or MFCC domain to estimate the clean speech and
noise spectra as a front-end to a speech recognition system.
Experiments with the Aurora2 database show that models
trained using MFCC work better (28% of relative WER re-
duction over baseline systems).

In this paper, we propose a novel speech model. Instead
of training the models on the complex spectra of speech,
we normalize the spectral components of each frame by
its energy, and then build a Gaussian Mixture Model from
the magnitude-normalized complex spectra. The above step
normalizes for variations in the loudness of the speaker’s
voice; in addition it makes the models robust to other fac-
tors such as microphone gain (assuming the signals are not
saturated or floored.). One way of getting around the above



problem, which has been extensively used in the past, is
to use MFCCs, where the first term always represents en-
ergy in the frame and is simply ignored for normalization.
However working in the mel-cepstral domain has its own
disadvantages, which include issues with non-linearity and
absence of phase in the reconstructed signal.

As mentioned earlier, while we have seen many suc-
cesses to deal with stationary noise such as fan, enhance-
ment in the presence of non-stationary background noise is
still an open problem. To tackle this problem, we have de-
veloped a novel hardware solution to combat against highly
non stationary acoustic noise such as background interfer-
ing speech [8, 9]. The device makes use of an inexpensive
bone-conductive microphone in addition to the regular air-
conductive microphone. The signal captured by the latter is
corrupted by environmental conditions, whereas the signal
in the former is relatively noise-free. The bone sensor cap-
tures the sounds uttered by the speaker but transmitted via
the bone and tissues in the speaker’s head. High frequency
components (> 3Khz) are absent in the bone sensor signal.
Thus, the challenge here is to enhance the signal in the air-
channel by fusing the two streams of information.

In [8], we proposed an algorithm based on the SPLICE
technique to learn the mapping between the two streams and
the clean speech signal. One drawback of this approach is
that it requires prior training and therefore can lead to gen-
eralization problems. In the same work, we also proposed
a speech detector based on a histogram of the energy in the
bone channel. In [10], we proposed an algorithm called di-
rect filtering (DF) that does not require any prior training in
order to estimate the clean speech signal, i.e. the transfer
function from the close talking channel to the bone-channel
is learned from the given utterance and the clean signal is
estimated in a maximum likelihood framework. It was also
shown that the performance of the DF algorithm is better in
comparison to the [8] for speech enhancement. However,
one drawback with the DF algorithm is the absence of a
speech model, which can lead to distortion in the enhanced
signal. In [11], we extended the DF algorithm to deal with
the environmental noise leakage into the bone sensor, and
the teethclack problem that is caused when the users’ upper
and lower jaws come in contact with each other during the
process of articulation. All these approaches require accu-
rate speech/voice activity detection, and the technique pro-
posed in [8] makes use of a function of the energy in the
bone sensor. This has two problems associated with it: A)
some classes of phones (e.g., fricatives) have low energy in
the bone sensor causing false negatives; and B) leakage in
the bone sensor can lead to false positives. Further, by using
just the bone sensor for speech detection, we are not lever-
aging the two channels of information provided by the mul-
tisensory headset. In [12], we proposed an algorithm that
takes into account the correlation between the two channels

for speech detection and also incorporates a speech model
within the graphical model framework thereby reducing the
amount of distortion in the enhanced signal. However, the
speech model is only a single Gaussian. In this paper, we
describe how the proposed speech model is used to achieve
even better speech enhancement.

The paper is organized as follows. Section 2 describes
our proposed speech model. Sections 3 and 4 show how its
application to speech enhancement with an air- and bone-
conductive microphone headset. Section 5 provides the ex-
periment results. Section 6 concludes the paper.

2. MAGNITUDE-NORMALIZED COMPLEX
SPECTRUM-BASED SPEECH MODEL

In Bayesian statistics, prior information on hidden variables
plays a crucial role in inference. A speech model lends itself
into such a role by providing a prior on clean speech that is
hidden given noisy speech. Human speech is very difficult
to model due to its large variability. Some of the factors con-
tributing to this variability include: differing speech profiles
for different speakers; changes in loudness, intonation and
stress for a single speaker; variations due to gender. One
way to deal with issues related to changes in loudness and
changes in recording device gains is to build the model in
the mel-cepstral domain, where such changes are reflected
in the first cepstral coefficient that is then neglected for mod-
eling purpose. However, such models have the disadvantage
that they do not encode any information about the phase of
the speech signals.

2.1. Model Definition

In our case, we are interested in estimating both the mag-
nitude and phase of the clean speech signal which explains
why we work in the complex spectral domain. However, in
the complex spectral domain, the variations due to loudness
cannot be accounted for by simply getting rid of some com-
ponents. Thus, we propose the use of magnitude-normalized
complex spectra as features for the speech model. In order
to build such a speech model, the frames of the speech sig-
nal are normalized with their energy, i.e.,

X̃t =
Xt

‖Xt‖ . (1)

Thus allX̃t’s are unit vectors and distribute on a unit hyper-
sphere. It can be easily seen that the above step has a vari-
ance reducing effect because instead of attempting to cap-
ture the variations in ann-dimensional space, we are mod-
eling a region on a unit hyper-sphere. However, as a result
of the above normalization, the model now requires a gain
term gxt for inference to match a particular speech frame.
We discuss an iterative approach to estimating the gain in
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Fig. 1. Clustering results

section 4. Furthermore to add robustness to the model, we
neglect the DC and Nyquist terms while building the model.
Thus our models are ofN2 − 1 dimensions, whereN is the
length of the FFT.

2.2. Training

In order to train the speech model, we collected data from
a number of speakers in a clean environment. The speech
frames from the utterances were extracted using a simple
energy based speech detector. The resulting speech frames
were then energy normalized as explained in the previous
subsection. We use a mixture of Gaussians to model the
normalized speech frames using the k-means algorithm with
random initialization. Since it is well known that human are
perceptually more sensitive to log magnitude, we use the
following quantity to measure the difference between two
vectorsX̃i andX̃j :

d(X̃i, X̃j) = ‖(log |X̃i| − log |X̃j |)‖ , (2)

where log X̃ denotes that the log operation is applied to
each element of̃X.

2.3. Experimental Results

Figure 1 shows the spectrogram of four clusters obtained as
a result of the clustering algorithm described above. Here,
we have concatenated all speech frames in the same cluster
and shown them in a separate picture. It can be seen that
one cluster models fricatives, and the others model various
forms of vowels.

In order to test the model robustness, we built two speech
models using a single Gaussian, one using energy normal-
ized spectra (ω1) and the other using original spectra (ω2)
in the complex spectral domain. Note that for comparison,
we only use a single Gaussian in each model. The two built
models were then used to compute the likelihoods in an ut-
terance which is not in the training set but is recorded us-
ing a device with similar gain setting as that in the training
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Fig. 2. Comparison of likelihoods of two speech models
with and without magnitude normalization.

set. The aggregated likelihoods (across all frequency com-
ponents) are shown in figure 2. It can be seen that the like-
lihoods resulting fromω1 are always greater than the like-
lihoods resulting fromω2, suggesting that the magnitude-
normalized speech model can better explain speech signals.
It should be noted here that the above does not imply that a
speech frame will be classified as speech in a practical set-
ting, as this would also depend on the likelihoods from the
alternate competing model (noise/silence).

3. GRAPHICAL MODEL FOR SPEECH
ENHANCEMENT IN A MULTISENSORY HEADSET

We are now applying the speech model proposed in the
last section to speech enhancement in an air- and bone-
conductive integrated microphone headset [8, 9]. Since we
work in the complex spectral domain, we transform the time
domain signals from the air microphone and the bone sensor
into complex spectra by applying the fast-Fourier transform
(FFT) to the windowed version of signal samples. The phys-
ical process is then modeled in the complex spectral domain
as shown in Figure 3. The variables used in the model are
described below.
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Fig. 3. The graphical model incorporating the proposed
speech model.



In the above model,St is a discrete random variable rep-
resenting the state (speech / silent) of the frame at timet,
Mt is a discrete random variable acting as an index into
the mixture of the speech model,̃Xt represents thescaled
version of clean speech signal that needs to be estimated,
Xt represents the clean speech signal that needs to be es-
timated,gxt scalesX̃t to match the clean speechXt from
the air conductive microphone,Yt is the signal captured by
the air microphone,Bt is the signal captured by the bone
sensor,Vt is the background noise,H is the optimal linear
mapping between clean speech and bone signal,G models
the leaking of background noise into the bone sensor. The
variablesX̃t, Xt, Yt, Vt, Bt are all in the complex spectral
domain and haveN2 − 1 dimensions, whereN is the FFT
length. For mathematical tractability we assume that the
different components of the above variables, except forSt

andMt, are all independent.St andMt are global over a
given frame.

We make the following assumptions with regard to some
of the dependencies between variables and priors in the model,

1. Background noise is modeled with a zero mean Gaussian,
i.e.,p(Vt) ∼ N(0, σ2

v),
2. Sensor noise in the air microphone channel is mod-

eled withp(Ut) ∼ N(0, σ2
u)

3. Sensor noise in the bone channel is modeled with
p(Wt) ∼ N(0, σ2

w)
4. Speech is modeled using a mixture of Gaussians (MG),

p(X̃t|St) =
M∑

m=1

P (Mt = m|St)p(X̃t|St,Mt), (3)

with p(X̃t|St,Mt) ∼ N(µsm, σ2
sm) (4)

We assume thatSt = {0, 1}, where0 and1 indicate
silence and speech respectively. We model silence
using a single Gaussian, and thusP (Mt = 1|St =
0) = 1 andp(X̃t|St = 0) ∼ N(0, σ2

sil). In the case
of speech we use a MG withM = 4. For simplicity
we assume that all the Gaussians in the mixture are
equally likely and thus,P (Mt = i|St = 1) = 1

M for
i = 1, . . . , M and thus,

p(X̃t|St = 1) ∼ 1
M

M∑
m=1

N(µsm, σ2
sm) (5)

5. For mathematical tractability we modelp(X̃t|Xt) ∼
δ(Xt, gxtX̃t), a delta function with parametergxt .

The joint distribution over all the variables in the model
factorizes as

p(Yt,Bt, Xt, X̃t, Vt, St,Mt, Ut,Wt) = p(Yt|Xt, Vt, Ut)

p(Bt|Xt, Vt,Wt)p(Xt|X̃t)p(X̃t|Mt, St)p(Mt|St)
p(St)p(Vt)p(Ut)p(Wt). (6)

It is very important to note here that in the above equation all
variables exceptSt,Mt are individual components, whereas
St,Mt are global over a given frame. AsXt and X̃t are
related by a delta distribution, givengxt

, estimating either
one of these variables is equivalent to estimating the other.
Thus, integrating outXt from the joint distribution gives

p(Yt,Bt, X̃t, Vt, St,Mt, Ut,Wt) = p(Yt|gxt
X̃t, Vt, Ut)

p(Bt|gxt
X̃t, Vt,Wt)p(X̃t|Mt, St)p(Mt|St)

p(St)p(Vt)p(Ut)p(Wt) . (7)

We are interested in estimating

p(X̃t|Yt, Bt) =
∑
s,m

p(X̃t, St = s,Mt = m|Yt, Bt),

=
∑
s,m

p(X̃t|Yt, Bt, St = s,Mt = m)

p(Mt = m|Yt, Bt, St = s)p(St = s|Yt, Bt)

= p(St=0|Yt, Bt)p(X̃t|Yt, Bt, St=0,Mt=0)+

p(St=1|Yt, Bt)
∑
m

p(Mt=m|Yt, Bt, St=1)

p(X̃t|Yt, Bt, St=1,Mt=m) (8)

Let us first consider

p(X̃t, Yt, Bt, St = s, Mt = m) =∫

Vt

∫

Ut

∫

Wt

p(Yt, Bt, X̃t, Vt, St,Mt, Ut,Wt) dUtdWtdVt

(9)

After some algebra we get

p(X̃t, Yt, Bt, St = s,Mt = m) ∼ N(X̃t;A1, B1)

N(Bt;A2, B2)N(Yt; gxtµsm, σ2
1)p(Mt|St)p(St) (10)

where

A1 =
σ2

sm

(
σ2

1(σ2
uvµsm+gxtYt)+gxtH

∗
m(Btσ

2
uv−Gσ2

vYt)
)

σ2
1σ2

2 + g2
xt

σ2
smσ2

uv|Hm|2 ,

B1 =
σ2

1σ2
smσ2

uv

σ2
1σ2

2 + gxtσ
2
smσ2

uv|Hm|2 ,

A2 = gxtHm
σ2

uvµsm + gxtσ
2
smYt

σ2
2

+
Gσ2

vYt

σ2
uv

,

B2 = σ2
1 + gxt |Hm|2 σ2

smσ2
uv

σ2
2

,

σ2
uv = σ2

u + σ2
v , σ2

1 = σ2
w +

|G|2σ2
uσ2

v

σ2
uv

,

σ2
2 = σ2

uv + g2
xt

σ2
sm, Hm = H −G

σ2
v

σ2
uv

. (11)



Now we can calculate the posterior ofX̃t as

p(X̃t|Yt, Bt, St = 1,Mt = m) = (12)

p(X̃t, Yt, Bt, St=1,Mt=m)∫
X̃t

p(X̃t, Yt, Bt, St=1,Mt=m)dX̃t

∼ N(X̃t;A1, B1).

Furthermore,p(X̃t|Yt, Bt, St = 0,Mt = 0) may be ob-
tained by replacingσ2

sm by σ2
sil in the above equation.

3.1. Posteriors ofSt and Mt

To calculate the posteriors ofSt andMt, we first compute
the following joint distribution:

p(Yt, Bt, St,Mt) =
∫

X̃t

p(X̃t, Yt, Bt, St=s,Mt=m)dX̃t

∼ N(Bt;A2, B2)N(Yt; gxtµsm, σ2
1)p(Mt|St)p(St) (13)

Now the posteriors can be obtained as

p(Mt=m|Yt, Bt, St=i) ∝ p(Yt, Bt, St=i,Mt=m),

p(St=i|Yt, Bt) ∝
∑
m

p(Yt, Bt, St=i, Mt=m). (14)

Up to now, we treat each of the frequency components
independently. As explained previously, bothSt andMt are
defined over each frame across all frequency bins. There-
fore, we should aggregate the likelihoods due to individual
components to obtain a single most likely estimate forSt

andMt. Thus the above equation may be rewritten as

p(Y f
t , Bf

t ,St,Mt) ∼ Lf
1 Lf

2 p(Mt|St)p(St) (15)

with Lf
1 = N(Bf

t ; Af
2 , Bf

2 ), Lf
2 = N

(
Y f

t ; gxtµ
f
sm, (σ2

1)f
)
,

where the exponentf represents thef th frequency compo-
nent. Finally, the likelihoods for a state are given by

L(Mt = m|Yt, Bt, St = i) =

p(St = i)p(Mt = m|St = i)
∏

all f

Lf
1 Lf

2 . (16)

4. ESTIMATING THE GAIN gxt

As can be noticed, gaingxt is involved in the above deriva-
tions. Since we are unable to come up with a closed-form
solution, we resort to the EM algorithm to estimategxt . Let

q(f) = p(X̃f
t , Y f

t , Bf
t , St,Mt) (17)

which is given by equation (10), and let the overall joint log
likelihood be

F = log
∏

all f

q(f) =
∑

all f

log q(f) . (18)

The E-step essentially consists in estimating the most-likely

value of X̃t given the current estimate ofgxt , i.e., ˆ̃Xt =

E
(
p(X̃t|Yt, Bt, gxt)

)
, whereE(.) is the expectation oper-

ator andp(X̃t|Yt, Bt, gxt
) is given by equation (8). The

M-step involves maximizing the objective functionF w.r.t.
gxt . This yields

gxt
=

∑
all f

[(
Y ∗

t X̃t + YtX̃
∗
t

)
σ2

w + Cσ2
v

]
∑

all f

[|X̃t|2σ2
w + |H −G|2|X̃t|2σ2

v

] , (19)

where

C = (Bt −GYt)∗(H −G)X̃t + (Bt −GYt)(H −G)∗X̃∗
t .

It should be noted here that we do not estimategxt for
the Gaussian that models silence, andgxt

is set to 1. Indeed,
we do not normalize the magnitude in modeling the silence
because the energy of a silence frame is in essence zero (or
close to it) and this is true irrespective of device gains or
changes in loudness.

5. EXPERIMENTAL RESULTS

5.1. Setups
We have recorded a number of utterances by four differ-
ent speakers using the air-and-bone conductive microphone
in various environments including cafeteria (ambient noise
level 85 dBc) and office with an interfering speaker in the
background. It is important to note that the utterances are
corrupted by real-world noise, which implies that we do not
have the ground-truth utterances. Each of the utterances
were processed using the above framework to obtain an es-
timate of the clean speech signals.

The transfer functionsH andG were estimated as ex-
plained in [11]. An estimate of the variances was obtained
by using the speech detector proposed in [12]. Teethclacks
in the bone channel were removed using the algorithm pro-
posed in [11].

5.2. Propagating the prior ofSt

The enhancement process starts off with bothSt = 0 and
St = 1 being equally likely. In order to enforce smoothness
in the state estimates we use the following state dynamics:

p(St = 1) =
0.5 + p(St−1 = 1|Yt−1, Bt−1)

2
, (20)

andp(St = 0) = 1− p(St = 1). This introduces some bias
towards the state of the previous frame, making frame-to-
frame transition smoother.

5.3. Results
For our applications, we are more interested in perceptual
quality than speech recognition. To measure the quality,
we conducted mean opinion score (MOS) [13] comparative
evaluations. Table 1 shows the score criteria.



Table 1. MOS Evaluation Criteria.
Score Impairment

5 (Excellent) Imperceptible
4 (Good) (Just) Perceptible but not Annoying
3 (Fair) (Perceptible and) Slightly Annoying
2 (Poor) Annoying (but not Objectionable)
1 (Bad) Very Annoying (Objectionable)

Table 2. MOS Results.
Original SG MG (Ω1) MG (Ω2)
2.5833 3.0361 3.7583 3.6194

In order to gauge the sensitivity of the speech model
to speakers, we trained two speech models. The first (Ω1)
was trained on clean speech from a single speaker and the
second model (Ω2) was trained on clean speech utterances
from four different speakers (two males and two females).
Each model is a mixture of four Gaussians. The speaker
in Ω1 is one of the male speakers inΩ2. The testing set
consists of five noisy utterances recorded in a cafeteria with
85 dBc noise using the male speaker in both models.

Each noisy utterance in the test set was process in 3 dif-
ferent ways: a) SG: the algorithm described in [12] which
uses a single Gaussian for the speech model, b) MG (Ω1):
the proposed mixture Gaussian model trained with one speaker
and c) MG (Ω2): the proposed mixture Gaussian model
trained with four speakers. Therefore, together with the
original utterance, there is a set of 4 utterances for each
noisy utterance. There were a total of 17 participants in
the MOS test. The evaluators were presented with a ran-
dom ordering of the sets of utterances and random ordering
within a set. The participants were blind to the relationship
between the utterances and the processing algorithm. Table
2 shows the results of the MOS tests.

It can be seen that all the processed utterances outper-
form the original noisy ones. In addition, the proposed
speech model outperforms our previously proposed algo-
rithm, and it is not surprising that the model built using the
same (single) speaker in both training and testing sets per-
forms the best. However, the multi-speaker modelΩ2 only
performs slightly worse than the single speaker model. This
suggests that our proposed magnitude-normalized speech
model is able to generalize fairly well.

6. CONCLUSION AND FUTURE WORK

In this paper we have proposed to use a mixture Gaussian
speech model built from magnitude-normalized complex spec-
tra for speech enhancement. We have also shown how the
proposed mixture Gaussian model can be used in the con-
text of speech enhancement with an air-and-bone conduc-
tive microphone. Substantial improvement have been ob-

served in the MOS evaluation over the best of our previ-
ously developed techniques. Comparison between single-
speaker trained and multi-speaker trained models suggests
that the proposed magnitude-normalized speech model is
able to generalize fairly well.

For our future work, we plan to collect a large amount of
data with more speakers in order to build better speech mod-
els. we are also planning to introduce dynamics on other
variables such as̃Xt andXt which may lead to better esti-
mates of the clean speech signal. Finally, we are working
on a system where the noise can estimated recursively.
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