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Abstract— This paper studies task migration in a network of resource
constrained servers (called microservers). A task is an abstraction of a
moving physical object or phenomenon that we are interested in monitor-
ing, such as a vehicle, and the microserver is a computational device that
can receive sensor data pertaining to the object of interest. Due to motion,
the microservers that can observe a particular task change over time
and there is overhead involved in migrating tasks among microservers.
Furthermore, communication, processing, or memory constraints, allow
a microserver to only serve a limited number of tasks at the same time.
Our overall goal is to allocate tasks to microservers so as to minimize the
number of migrations, while guaranteeing that as many tasks as possible
are monitored at all times. When the task trajectories are known in
advance, we show that this problem is NP-Complete (even over just
two time steps), has an integrality gap of at least 2, and can be solved
optimally in polynomial time if we allow tasks to be assigned fractionally.
When only probabilistic information about future movement of the tasks
is known, we propose two algorithms: a multi-commodity flow based
algorithm and a maximum matching algorithm. We use simulations to
compare the performance of these algorithms against the optimum task
allocation strategy.

I. INTRODUCTION

We consider the problem of sensing and tracking moving objects,
such as vehicles or humans, using a network of resource-constrained
computer nodes, which we call microservers. The microservers are
distributed in the sensing field and collect/process sensor data. Each
microserver can only receive inputs from a limited number of sensors
in its neighborhood. The sensors may be a set of wireless embedded
devices and usually cover a specific sensing area. Sensor nodes
may communicate among themselves, as well as with one or more
microservers in the vicinity. Because vehicles and humans typically
generate sensor readings only in their immediate neighborhood, we
abstract the detection and tracking problem into the notion of mobile
tasks that need to be served by nearby microservers. One can think
of the task as an abstraction of the object being tracked placed at
the current location of the object, or as the geometric center of the
sensors detecting the object.

Due to motions of the physical phenomena, the set of microservers
that can directly receive sensor data from a particular moving object
changes over time. We assume that the cost of shipping raw sensor
data from one microserver to another is high. This dictates that certain
microservers in that vicinity must be allocated for data collection and
further processing. We also assume that migrating a task from one
microserver to another has a high price due to the cost of moving data
and/or code, as well as possible deterioration of tracking performance,
such as target loss; it is therefore something to be avoided whenever
possible. At the same time, data processing at the microservers is
limited, and therefore the system load must be balanced across the
microservers. At the microserver level this creates a dynamic resource
allocation problem, in terms of deciding which microservers serve
which tasks. The dynamic aspects of the problem come from the
migration of the physical phenomena being tracked.

Microservers also connect to servers, which are part of the com-
puting infrastructure. Typically servers will allocate certain tracking
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tasks to microservers and later expect to receive their tracking results.
For the purpose of this research, we abstract away the server and
consider only a network of microservers.

A. Motivation

As a concrete example, we motivate the problem by considering a
vehicle tracking system in a parking garage. The sensors are a set of
pan-tilt cameras, each of which directly connects to a microserver.
The cameras can pan and tilt to focus on specific areas in the garage.
Each camera has a limited set of fields of view, and these fields of
view may overlap, in the sense that multiple cameras can look at
the same region. Generally, there will be multiple vehicles of interest
driving in the garage that the cameras will track. The vehicle motions
are somewhat predictable — there are road constraints in the garage
as well as traffic patterns at various times of day that are known.

As mentioned, we assume that each camera is attached directly
(e.g. through an USB interface) to a microserver. The microservers
communicate through Ethernet among themselves and with a central
server. We assume that due to video signal processing load, each
microserver can only process a limited number of tracking tasks at
a time. In the following discussion we assume that the capacity is 1,
though higher capacities are easily accommodated in our framework.

When a vehicle performs a small motion, the tracking camera
can pan or tilt to follow it. Over time, the vehicle may move out
of one camera’s field of view and must be tracked by another
camera. Due to the design of the tracking algorithm, using the same
camera to track a vehicle is easier than switching to another camera.
Switching introduces the overhead of redetecting the vehicle from a
different viewing angle, which may degrade the tracking performance.
Tracking all vehicles may not be feasible. When conflicts on resource
requests cannot be resolved, the video will be sent to central server
for processing, but this should only be used as a last resort due to
communication bandwidth limitations.

The goal is to minimize the number of task migrations, i.e.
reduction of the vehicle redetection and task transfer overheads. Note
that some task migration is essential, in order for the system to adapt
to the vehicle motion(s). Our focus is on avoiding unnecessary task
migrations.

The migration of code and/or data among microservers in a sensor
network is a generic problem that arises in several other contexts,
beyond the tracking scenario discussed here. For example, in a setting
where the system users are embedded and operating in the same space
as the sensor network, we may want to migrate data of potential
interest towards particular users, so that it is always accessible to
them with low latency. Such migrating information caches may be
of interest in many applications, from mobile telephony, to location-
aware services, to search-and-rescue operations.

II. PROBLEM DEFINITION

We now formally define the Kinetically Stable Task Assignment
problem. We assume that task allocations happen at discrete time
steps indexed by integers t = 1,2,...7. We are looking for
assignments of tasks to servers that are:
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o Maximum: Any assignment at a given time step will always
cover as many tasks as possible, regardless of the number of
migrations. For example, if there is the option that all tasks are
covered and all tasks must migrate, this is preferable to covering
all but one of the tasks without a single migration.

o Feasible: No server is assigned more tasks than it can process.

o Stable: A feasible assignment has to be maintained as the tasks
move around. Under the two constraints above, the primary
optimality criterion is the stability of the assignment, which is
measured by the sum over all tasks of the number of times a
task has to be switched to a new server during a period of task
motions.

We will further assume a setting where:

« Time synchronization is available for microservers.

o All data traffic is quickly routed through microservers; in par-
ticular, we have a (multi-hop, if necessary) routing protocol for
getting data from the actual sensor nodes to nearby microservers.

« Source interference can be resolved at the microserver or high-
end server level, so that source separation is not an issue.

o Higher-level processes can make predictions (though with un-
certainty) about the motion or evolution of the phenomena of
interest.

o Energy and communication are not explicitly considered. Mi-
grations incur a fixed cost (as opposed to factoring in commu-
nication which might vary based on distance, etc.).

Related Work If we set microserver capacities and the number of
time steps equal to 1 and look at the static setting only, this is
the classical and very well studied assignment or bipartite matching
problem. Distributed algorithms exist for its solution, such as the
market-based auction algorithm [4]. As we will discuss later, our
heuristics take advantage of this previous research.

The outline of the paper is as follows. Section three describes a
deterministic version of the problem where the future motion of each
task is precisely known. We explore the hardness of the problem and
show that when each task must be fully assigned to one microserver,
the problem is NP-complete, even when there are just two time steps.
If a single task can be split up and serviced by several microservers,
we describe a multicommodity flow formulation that can be used
to find the optimum solution in polynomial time. At the end of
this section, we describe how the value of the optimum solution
changes when the problem is relaxed to allow for fractional values.
We show that the ratio between the optimum fractional solution and
the optimum integral solution can be as large as 2. In section four,
we focus on a stochastic version of the problem, where there is
probabilistic information about future task trajectories. The section
begins with several examples to motivate the value of having future
information about the trajectories of the tasks. We then give two
algorithms that incorporate probabilistic information about the future:
a multicommodity flow based algorithm and a matching algorithm,
and describe their differences. The simulation settings and results
are in section five. We compare the performance of both algorithms
with the optimum fractional solution while varying various problem
parameters. Section six includes concluding thoughts and directions
for future work.

III. DETERMINISTIC KINETICALLY STABLE TASK ASSIGNMENT

In the Deterministic Kinetically Stable Task Assignment problem,
the future trajectories of tasks are fully known. N is the set of
microservers, 1" the duration of time considered, and K the tasks
(or commodities, herein referred to as tasks). There is also an N
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Fig. 1. A sequence of bipartite graphs.

length vector cap, where cap(i) equals the capacity of microserver
i.

At each time step ¢ S T there is a bi-
partite graph B’ = (K,N,E") where E' =
{(u,v)|task u can be monitored by microserver v at time ¢}. A
sequence of bipartite graphs is illustrated in Figure 1. Time zero
is a complete matching because it represents the previous task
assignment. The bipartite graphs that will arise in future time steps
are known with certainty, as is the bipartite graph in the current time
step (Time = 1). A solution to the problem will produce a maximum
matching for every time step. The number of migrations at time step
t is the number of edges in the matching for B* that do not exist in
the matching for B'~'. The goal is to produce a matching for all
the bipartite graphs such that the total number of migrations from
time zero until time 7" is minimized.

A. NP-Completeness Reduction

We now show that finding an integral solution to the Deterministic
Kinetically Stable Task Assignment problem, even when there are
just two time steps, is NP-complete, via a reduction from MAX SET
COVER.

Theorem 1: Given two bipartite graphs G = (V,E) and H =
(V, E’), finding a maximum matching for each graph, so that the
number of edges in common between matchings is maximized, is
NP-complete.

Proof: The reduction is from MAX SET COVER. An instance
of MAX SET COVER is as follows: Given a set of elements S =
A1, Aa, ..., A, and m subsets of these elements C1, Co, ..., Cp,
the objective is to find k subsets that cover as many elements in S as
possible. Given such an instance, we construct the following Integral
Deterministic Kinetically Stable Task Assignment problem:

List of microserver and task nodes:

1) For every element A; € S and every subset C;, if A; € Cj,
there is one microserver node S; ; and one task node Kj ;.

2) There are m ‘link’ microserver nodes Slink,l’ Slink,z’
Slink,m and m ‘link’ task nodes Klink,y Klink,Q’
Klink -

3) There are k pairs of ‘set’ microserver and task nodes Sget,1,
“es Sset,k’ Kset,l, e Kset,k’~

4) If an element A; appears in t different subsets, then there are
t — 1 pairs of ‘element’ microserver and task nodes S,

elm,j,1°
Selm,j,z’ "'Selm,j,z—r Kelrn,j,p Kelm,j,z’ coo Belm,je—1-

Edges for Time Step 1: As shown in figure 2,

1) There is an edge between every ‘set’ microserver node St ;
and every ‘link’ task node Kj;p ..

2) There is an edge between every ‘link’ microserver node Slink,i
and every ‘set’ task node Ky ;.

3) There is an edge between S; ; and K ; for every A; € C;.

4) For every subset C;, if the subset C; contains elements A,
Ay, A, then we add edges between K]il’lk,i and S; », between
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Fig. 2. The construction of the NP-Completeness proof.

K; 5 and S; ,, between K;, and S; . and between K; . and
Slink ;- as shown in figure 2.
5) There is an edge between Sy

and Kelm,i,j for every ¢, j.

Im,:,;
Edges for Time Step 2: As shown in figure 2,

1) There is an edge between S; ; and K ; for every A; € C;.

2) There is an edge between Selm,j,z and K, ; for every ¢, j, x.

3) There is an edge between Kelm,j,a: and S; ; for every i, 7, x.

4) There is an edge between S]il’lk,i and Klink,i for every .

5) There is an edge between Sset,; and Kt ; for every i.

In the above construction, the only common edges between time
1 and time 2 are the edges between S;; and K; ; for every i, 7.
In a perfect matching for time = 1, the ‘set’ microserver nodes
will be paired with exactly £ ‘link’ task nodes. Hence there are
exactly k values i1, iz, ..., 9% such that the edge between S;, ; and
K, ,; is used. At time = 2, we can get a perfect matching between
microserver nodes and task nodes, if and only if for every element
Aj, there is exactly one edge between S; ; and K ; being used in
the matching. So we can have M edges commonly used in the two
perfect matchings if and only if we can find & subsets C,, Ci,, ...,
C},, such that these subsets cover M elements in the set S.
|

B. Multicommodity Flow Linear Program Formulation

The above negative result leads us, for now, to relax the require-
ment that tasks be assigned integrally. In some settings, splitting a
task across multiple microservers may indeed be reasonable. Under
this assumption, we can write the problem as a linear program using a
multicommodity flow formulation. In this formulation, there is a node
v;¢ for every ¢ € N,t € T. All commodities originate from the same
source node s and the destination for all commodities is sink node #.
There are edges from node s to nodes v;1 for all ¢ € N, from v;; to

Micro-
Tasks Servers

@ 8

Time =2

Micro-
Servers

Fig. 3. Illustration of an integrality gap of 2.

vy only if time ¢’ follows time ¢, and edges from nodes v;r, Vi € N
to the sink . The linear program uses non-negative variables xfﬂ to
indicate whether or not task £ is moved from microserver ¢ to j at
time step ¢. With a slight abuse of notation, if the time is zero (or T'),
then the source (or sink), is considered the microserver for that time
slot. The cost of migrating task k from microserver ¢ € N at time
step ¢ to microserver j € NN at time step £+ 1 is denoted ci—“jt. We set
c’jJt to 0 if 4 = j or if either ¢ or j is the source or sink, and the cost
is 1 otherwise. An emergency node is used if a complete matching
does not exist. The cost of using the emergency node is set to be
prohibitively expensive, ensuring a maximum matching is chosen at
every time step. We assume that infeasible indicator variables are
zero (i.e. if task k cannot be monitored by microserver j at item ¢,
then Vi € N, mfjt =0 and xfi(tﬂ) = 0). The linear program can
be written:

min Zkijt C’fjﬂfﬁ
Yie NyteT Zk]. z; < cap(i)
. . s k k
Vie Nyi#s,t,teT, ke K ijijt—zjxﬁ(t,D:O

Zi m’;w =1

for source node s, Vk

C. Integrality

The linear programming formulation given above can only be used
if the solution can be fractional (i.e. the monitoring of a task can be
split so that microservers monitor fractional portions of the tasks).
Though this may be acceptable for specific applications, if we require
an integral solution, there is the possibility that the solution generated
by the LP will be fractional and therefore infeasible. We now show
that, in fact, there exist scenarios where the optimum fractional
solution is twice as good as any optimum integral solution.

We illustrate this integrality gap of 2 in the example of Figure 3.
In the first time step, without loss of generality, let us assume we
assign task k1 to microserver s1, task k2 to the microserver s2, and
task k3 to microserver s3. In the second time step, if we require
an integral solution, either task k1 stays assigned to microserver sl
and k2 and k3 switch, or task k3 stays assigned to microserver s3
and tasks k1 and k2 switch. Either way, two tasks must migrate. If
we allow fractional assignments though, then each microserver can
monitor half of both the tasks it covers initially. In the second time
step, half of task k1 migrates from microserver s3 to microserver s2
and half of task k2 migrates from microserver s2 to microserver s3,
for an optimum total of 1 migration — twice as good as when the
solution was required to be integral.

IV. PROBABILISTIC KINETICALLY STABLE TASK ASSIGNMENT

In the Probabilistic Kinetically Stable Task Assignment problem,
the goal is to use the previous assignment and probabilistic informa-
tion about future movement of the tasks to minimize the expected
number of times tasks migrate between microservers. As opposed to
the deterministic case, there is only probabilistic information about
the future microservers that will be available to cover a specific task.
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Fig. 4. As the tasks move outward, lack of foreknowledge leads to additional
migrations.

A. Motivating Examples

We now give examples that will motivate the need for using
probabilistic information about task trajectories to determine the
current assignment. There are three types of scenarios in which future
probabilistic information is useful. First, there are situations where
the number of matchings available for the algorithm to choose from
decreases over time. Second, situations arise when there is contention
for a microserver, and this contention forces a choice that will be
detrimental in the future. Finally, there are situations where future
information can allow us to anticipate which microserver will be
most useful later on. For the first two scenarios, we give an extreme
example to emphasize the drastic implications of future knowledge,
and a more realistic example to show that these scenarios may
actually occur often in practice.

o Dwindling Options. Consider a complete (K, N) bipartite
graph with K = N. In the first time step, we choose an
arbitrary matching. In the next time step, all edges in the bipartite
graph remain except the edges from the matching chosen in the
previous time step. We continue this process for [N time steps,
and at each time step all tasks are required to migrate. We know
that a perfect matching will exist at every time step from [8],
leaving K? total migrations. In contrast, had the edges in all
future time steps been known in advance, then the matching
remaining in the last time step could have been chosen first,
resulting in zero total migrations.

Although compelling because of the dramatic advantage ob-
tained due to future knowledge, the previous example is not
particularly realistic. Figure 4 depicts a more realistic scenario.
The trajectories of the tasks are illustrated with bold arrows.
In the first time step, all tasks are situated at the center.
Every microserver can monitor every task and, therefore, any
assignment can be chosen from amongst all 5! possibilities. In
the second time step, there are 13 possible matchings since every
task can now only be monitored by 3 microservers. Finally, at
Time 3, there is only one single possible matching of tasks to
microservers. An algorithm that has no knowledge about the task
trajectories will choose a matching uniformly at random from all
5! possibilities in Time 1. At Time 2, the algorithm will choose a
matching from all 13 possibilities that avoids as many migrations
as possible. For each of the 13 possibilities, the expected number
of migrations is at least 2 since the probability that a task is no
longer capable of being monitored by a microserver is %, and
matching requirements only decrease the likelihood that a task
can continue to be monitored by the microserver from Time

1. Furthermore, each of the 13 possibilities is equally likely

to be chosen. At Time 3, averaging over all 13 choices in the

previous time step, the expected number of migrations is %.

The above example can be duplicated an arbitrary number of

times, resulting in %K expected migrations over 2 time steps

13

compared with zero optimum migrations.

o Contention. If many tasks can be assigned to a microserver, but

only a few tasks will benefit from that assignment in the future,
then the multitude of contenders for service creates a situation
where future knowledge is beneficial. To illustrate this, we
consider n tasks ki, ka,...kn, 2n microservers si, Sz, ..., S2n,
and n time steps. Vi such that 2 < ¢ < n, task k; can be
assigned to microserver s; in all time steps. Microserver s;
can monitor all tasks in all time steps. In addition, task ki
can be monitored by microserver s, at time ¢t. The optimum
solution that knows the trajectories of the tasks will assign every
task k; to microserver s; and incur no migrations. If the future
trajectories of the tasks are not known in advance, then initially
there are n + 1 possible matchings (when k; is assigned to s;
there is 1 possible matching and when k; is assigned to sp1,
sensor s can be unassigned or assigned any of the other n — 1
tasks). There is no way to discern which matching to choose,
and if s; monitors a task other than ki initially, then at each
consecutive step the matching that requires the least migrations
is to migrate only task k; resulting in a total of n migrations
(one at each time step).
A more common example of where contention pushes the choice
of the assignment in the wrong direction is given in Figure
5. Each microserver monitors the rectangle of which it is the
center. Initially, the task k1 is monitored by the microserver
s5 and task k2 is monitored by the microserver s1. Both tasks
move out of range and must be reassigned ofter two time steps.
The movement is indicated with the black arrows. In the future,
the tasks will continue to move in the same direction and the
optimum assigns the task k1 to microserver s2 and task k2 to
microserver s3. However, contention for the microservers s2 and
53 push the task k1 assignment in the wrong direction. Out of the
four possible matchings, two assign task k1 to microserver s4,
so this is the most probable assignment, resulting in an increase
in expected migrations compared with the optimum.

« Anticipation An even more common example is a car mov-
ing along a path at an even pace with microservers spaced
evenly along the path. Precisely, there is a line of microservers,
S1,S2,...5%, and if the task can be monitored by microservers
S; and S;41 at time ¢, then it can be monitored by microservers
Si+1 and Siy2 at time t+1. If the algorithm knows the trajectory
in advance, it will migrate once every two time steps. If the
algorithm has no advance knowledge about the direction the
car will follow, it must make a random choice between the
two options available every time the task moves out of sensing
range. The expected number of migrations at time ¢, E[t], is
the probability that the microserver monitoring at time ¢t — 1
was microserver S;_1. Let h' be the number of events ending
with microserver S; monitoring the task at time ¢. Then k' can
be defined by the recursive formula ' = h*~' + h'™2, since
monitoring can be transfered from previous time £t — 1 or ¢ — 2.
The pr(t)bability that microserver S; monitors the task at time ¢

is #, which in the limit, as ¢ approaches oo, approaches

ﬁ ~ .618, where ¢ is the golden ratio. The increase in

migrations is approximately 20%.

B. Multicommodity Flow(MCF) Algorithm

Given current time ¢, we find a matching for the bipartite graph of
the current time step B* = (K, N, E') and the bipartite graphs for all
future time steps. The value of the matching is the time-discounted'

By time discounted, we mean that migrations that are in the near future
are more costly that those in the distant future.
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Fig. 5. Additional migrations due to contention.

number of migrations within a time window plus the time-discounted
likelihood that the matching will be possible. Let pr(k, j,t) be the
probability that task k can be assigned to microserver j at time ¢
and let 0 < B < 1 be some time discounting factor. Let C be a
predefined constant. Precisely, the objective function minimized is:

1000 « K * T
ijt =

(_lOg(pT(ky j? t) - 6))(ﬂt)
(C + _lOg(pT(kvjv t) - 6))(ﬁt)

This objective function can be explained with a generative model.
Consider each task as an agent working on its own behalf with no
concern for the constraints of the overall system (i.e. the microserver
capacities). Then the probability that a task will choose a given
trajectory is the product of probabilities that the choice was available
and that it was the best option at that time. Taking the log we have the
sum of migrations that occur plus the sum of the log of probabilities
along that edge. We can think of the objective function as trying to
let as many tasks choose as they please subject to the capacities of
the microservers.

An appealing property of the multicommodity flow algorithm is
that it approaches the optimum as certainty about the trajectories
increases. It also plans for future assignment constraints to avoid
additional migrations due to the maximum matching requirement.
It solves a linear program with N?W K variables and ©(K NW)
constraints. The solution can be computed quickly using commercial
linear programming software such as CPLEX.

if j is emergency node
ifj=1
otherwise

C. Matching Algorithm

Given current time ¢, we find a maximum matching of minimum
cost for the bipartite graph B* = (K, N, E') where the cost of an
edge k,n in this matching is

K 1000« K T if n is the emergency node
- ZtT:l(ﬂt)pT(km, t) otherwise

The matching algorithm is an attractive algorithm because of its
simplicity and because it is fast. It can be solved using standard
centralized algorithms with running time ©(maz(K, N)* + KNW)
(recall that W is the size of the look-ahead window). Also, there are
several possible distributed implementations [4], [2], [6], [7] that can
be adapted to our setting.

D. Examples for Comparison

The MCF Algorithm Outperforms the Matching Algorithm
The multicommodity flow algorithm performs better than the
matching algorithm when the choice of edges in the future is
heavily dependent on the existence of a matching that contains those
edges. This concept is illustrated with an example in Figure 6. Both
algorithms have complete knowledge of the next time step. There is
only one matching in the second time step and it contains bold edges
(k1,s3), (k2,s1), and (k3, s2). The MCF algorithm will choose the
dotted matching (k1, s1)(k2, s3)(k3, s2) because it is the matching

Micro- Micro-
Tasks Servers Tasks Servers
@.—. & .-..-..7.7.7@ @ E
@-- --- j;.:@ @‘ - [
sl -
———————— -8 o OF

Fig. 6. Example where the multicommodity flow algorithm outperforms the
matching algorithm.

Fig. 7. Example where the matching algorithm outperforms the multicom-
modity flow algorithm.

that requires the fewest migrations overall. The matching algorithm
will choose the dashed matching (k1, s1), (k2, s2), (k3, s3) because
2 edges in this set are also present in the next time step and therefore
the cost of the matching is —2. Alternatively, the dotted matching
(k1,s1)(k2,s3)(k3, s2) has a more expensive cost of —1.

Matching Algorithm Outperforms the MCF Algorithm

The multicommodity flow algorithm is especially vulnerable in
situations where the existence of a particular matching is not likely,
but there is a high probability that some matching with a particular
set of edges will exist. Figure 7 illustrates this vulnerability. In the
second time step, the horizontal double lines exist with probability
.9, the bold edges exist with probability .1, and all other edges exist
with probability 10™". The multicommodity flow algorithm evaluates
the matching in time step 1 made up of dashed edges as having cost
(w+1)(—log$5) = w+ 1. The matching consisting of dotted edges
has cost w(—log %) —logl0~* = .046w-+x. For sufficiently large =,
the matching with dashed edges is less expensive and the algorithm
will choose this matching. However, the matching made up of dotted
edges will have fewer migrations in expectation because each of the
horizontal edges in time step 2 is highly likely, and the probability
that some edge connects node u to one of the first y microservers
is (1 — 107 %)Y, which could be arbitrarily close to 1 for large y. In
contrast, the matching algorithm will prefer the dotted matching at
cost T2w — 177, which is smaller than T3 (w + 1).

V. SIMULATIONS
A. Problem Instances
A problem instance consists of

o Problem Parameters: Problem parameters include a set of
locations P, a set of tasks K, and a set of microservers NN.
The number of time steps that tasks will have to be monitored
in the future is denoted 7'. The time window W is the number
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Fig. 8. Task Trajectory through a Markov Chain.

of time steps in the future that the algorithm considers when
determining its matching in the current time step.

o Markov Chains: We use a Markov chain to represent the prob-
abilistic information known about task movement. There is a
state for each discrete location where a task can be placed, and a
transition probability from state s to s’ represents the probability
that the task will move to the location that corresponds with state
s’ in the next time step, given that it is located at the location
that corresponds to states s in the current time step. There is a
separate transition matrix defined for each task, but the set of
states over which the transition matrix is defined is consistent
between tasks. There is a P by P transition matrix M for every
task k € K such that My(i,7) is the probability that task k
moves to location ¢ in the next time step if it is at location j in
the current time step.

o Microserver Coverage: Each microserver covers some subset
of locations, and has the ability to monitor any task at a location
it covers. The microserver coverage is represented with a P
by N matrix C' such that C(7,5) = 1 if microserver j covers
location ¢, and equals zero otherwise.

« Microserver Capacities: Each microserver has a capacity lim-
iting the number of tasks it can monitor in a single time step.
The capacity values are stored in an IV length vector cap, where
cap(1) equals the capacity of microserver .

o Initial Assignment: A K by N matrix A where A(i,7) = 1
iff microserver j monitors task ¢ initially.

o Trajectories: The actual trajectory taken by each task is held
ina P by K by T matrix J where J(i,7,t) = 1 iff task j is
located at location ¢ at time ¢. In Figure 8, the trajectories of 4
tasks (indicated by the colored arrows) over 4 time steps (time
starts at the tail of the arrow and ends at the head) is shown.

An algorithm for the task assignment problem will determine an
assignment of tasks to microservers at each of several time steps.
It is given time invariant input: M, cap, C, and T'. These inputs
do not change throughout the course of the simulation. In addition,
there are several inputs to the algorithm that will change during the
simulation including the initial assignment. Information about the
future trajectories of the tasks is hidden from the algorithm. The
algorithm can only use the Markov Chains to predict trajectories.

B. Baseline Settings

Unless otherwise indicated, the settings for our simulations are
shown in the table below. In Figure 9 we see the Markov chain used
by the baseline settings and also the microservers along with the
locations they cover.

Fig. 9.

Locations, transition probabilities, and microservers.
Component Baseline Setting
Total Time T° 16
Time Window | 4
w
Locations P 16
Time Discount | .8
B
Cost Constant | 1
C
Microservers N | 4
Capacities cap Each microserver has capacity 1.
Tasks K 4
Initial An arbitrary maximum matching of tasks to
Assignment servers chosen at the start of the simulation.
Microserver There is a microserver at every location on
Coverage the grid with even row and column indices. A

microserver covers its location, its neighbors,
and if it exists, the location at its right and
bottom diagonal. There is also an emergency
microserver covering all locations.

Locations are arranged in a grid and every task
has the same Markov chain topology. Every lo-
cation has either 4 neighbors (if it is internal), 3
neighbors (if it is along an edge), or 2 neighbors
(if it is on a corner). Every location is a neighbor
of itself (i.e. all locations have self loops).

The skew, v = .5, signifies that one nei {1b0r) is

-

transitioned to with probability  + neighbors

and all other are transitioned to with probability

(=% The chosen neighbor is selected uni-
neighbors

formly at random from all neighbors and is the
same for all tasks.

Markov  Chain
Topology

Markov Chain
Probabilities

C. Results

In the simulations, although the multicommodity flow algorithm
did produce some fractional solutions, fractional solutions were rare.
Less than ﬁ of the solutions were fractional and of these, all were
half integral. Since fractional solutions were rare, the simulations
analyzed in this section are based solely on integral solutions.

An algorithm’s performance is measured by the number of migra-
tions it performs. We use gopr, gmatch, and garcr to denote the
number of migrations in each respective algorithm. The percentage
increase in migrations (%) compares each algorithm against
the optimum. The number of migrations is most meaningful relative
to C, the number of tasks that can be covered (i.e. the sum, over all
time steps, of the maximum matchings in the bipartite graphs). The
weighted number of migrations is the migrations divided by C. All
data is averaged over 10 problem instances. The random variables

used to create the problem instance will be chosen anew for each
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Fig. 10. Variable quantity of tasks on the system’s capacity. Tasks far exceed
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Fig. 11. System capacity remains constant while the number of tasks varies.
Tasks increase to twice the microserver capacity.

trial. We observe changes in performance as the value of certain
components in the baseline are varied.

Variation in Quantity of Tasks
There is a large percentage increase in the number of migrations
as the number of tasks in the system is varied from 2 to 18 by
increments of 4 as shown in Figure 10. The average percentage
increase in migrations compared with the optimum increases from .06
to .5 for the multicommodity flow algorithm and from .07 to .47 for
the matching algorithm. This may be attributed in part to the decrease
in the overall number of migrations. However, this does not account
for the difference entirely, since the number of additional migrations
in the MCF and Matching algorithms increases, even as the overall
migrations decreases. The decrease in performance is attributed to the
additional option that are available to the optimum. The more tasks
available, the more likely it is that there will be tasks (known only by
the optimum) that require less migrations. As there are more options,
having full knowledge of these options becomes more valuable.
Observe in Figure 11 that there is an increase in the overall number
of switches as the number of tasks increases from 1 to 8. Despite there
being the same tasks with the same trajectories present in the variation
with 8 tasks as the variation with only 1 task, the algorithm cannot
simply apply the same solution as was used in the variation with 1
task since it is required to monitor as many tasks as possible. The total
number of tasks that must be monitored at each time step increases
as the maximum matching in each time step increases, pushing up
the number of migrations.

Skew Variation

Simulations varying the skew parameter are graphed in Figure 12
and Figure 13. In these simulations, the total time is 12 and the
time window W was set equal to the remaining time left until
the end of the total time so that the algorithms could make full
use of all knowledge about the future. As expected, there is a
dramatic improvement in performance as the skew increases since the
probabilistic information more accurately reflects the true trajectories
of the tasks. The improvement in performance for the multicom-
modity flow algorithm is more pronounced, decreasing a full 10%

Skew Variation
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Fig. 12. Percentage increase in migrations as a function of variation in skew
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Fig. 13. Total migrations as a function of variation in skew

from .11 to .47. In the extreme, when full information about the
trajectories is known in advance, the multicommodity flow linear
program performs exactly the same optimization as the linear program
from the deterministic scenario. The simulations suggest that as the
certainty in the probabilities increases, the correspondence between
the two LP formulations becomes more advantageous.

Variation in Microserver Radius

In Figure 14, there is a spike in the average percentage increase
in migrations when the radius is 2. This may be because the
problem is most constrained when the radius is around 2, since
this is the smallest radius for which the area is mostly covered.
The multicommodity flow algorithm performs better in the more
constrained, challenging problem settings.

VI. CONCLUSION

We studied the Kinetically Stable Task Assignment problem using
two heuristics that take the knowledge of future trajectories into
account. The results show that as the knowledge of the trajecto-
ries become stronger, both heuristics perform better, but the MCF

Variation in Microserver Radius
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Fig. 14. Variation in microserver radius
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algorithm improves more than the matching algorithm. When future
knowledge is weak, the matching algorithm is a better choice. Since
it is less complex and is amenable to distributed implementation, we
suggest using the matching algorithm unless the future trajectories
of the objects are clear. Also, the matching algorithm is guaranteed
to produce an integral solution, whereas the MCF solution may be
fractional.

A particularly attractive option for distributing the matching al-
gorithm over the microservers is the reverse auction for asymmetric
assignment problems due to [6], [7]. This auction is well suited for
a fast and distributed implementation in our setting because of its
accelerated convergence time in simulations [7]. In our context, we
do not assume that the tasks have computational power. Therefore,
a microserver will serve as a proxy for the tasks it can monitor.
For each task there will be some sort of election from amongst the
servers that are candidates (perhaps using ID numbers), so that each
task is processed by only one server. In the auction algorithm, each
task (server) must communicate with every adjacent server (task).
With our proxy system, this communication is achieved by a server
broadcasting to twice the distance it monitors, so that it reaches all
other servers that can monitor the task. Once the proxies have been
established, the servers proceed in implementing the forward auction
described in [6], assigning tasks to servers. We assume that every
server has information about the probability that in the future it will
be able to cover the tasks it can currently be assigned to (and therefore
the weights of relevant edges is known). When all of server A’s tasks
have been assigned and no changes made over several time periods, a
‘finished’ message is sent to the coordinator with the smallest price
for every server that has been assigned to a task proxied by A. If
during the course of the auction one of the tasks is reassigned to a
new server, server A sends a ‘processing’ message to the coordinator.
When the coordinator has received finished messages from all servers
and no changes have been made for several time periods, the auction
is deemed to have completed. The coordinator now computes the
min price over all assigned servers, and broadcasts this value as it is
essential knowledge for the next reverse phase of the auction. Once
the servers have received the min price, they proceed with the reverse
auction. To detect termination, every server sends another ‘finished’
message to the coordinator once their price is sufficiently low. Note
also that the matching problems we are solving at successive time
steps are highly correlated (the respective windows overlap in all
but one position). We may be able to take advantage of this fact to
initialize the auction algorithm so that termination occurs quickly.

We leave as future work the exploration of the auction algorithm
or other distributed implementations of the matching algorithm and
the multicommodity flow algorithm [4], [2]. There is also future work
to be done on the theoretical aspects of the Deterministic Kinetically
Stable Matching Algorithm, including refining the integrality gap,
explaining why fractional optimal solutions appear only very rarely,

and designing algorithms with theoretical approximation guarantees.
The probabilistic formulation can also benefit from a deeper un-
derstanding of the correlations in the presence of microserver-task
edges across successive time steps. We expect that this will further
demonstrate the advantage of being able to look ahead and perform
microserver assignments taking future positions of the tasks into
account.
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