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Abstract

It is easy to write and verify real-time specifications with existing lan-
guages and methods; one just represents time as an ordinary variable. The
resulting specifications can be verified with ordinary model checkers. This
basic idea and some less obvious details are explained with simple examples.
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1 Introduction

There is a simple and obvious way to describe a real-time algorithm, proto-
col, or system design:

• Introduce a variable now , whose value represents the current time,
and model the passage of time with an action that increments now .

• Express timing bounds as follows:

– Describe a lower bound by allowing certain actions to occur only
if now is greater than some value.

– Describe an upper bound by not allowing the action that incre-
ments now to occur if that would cause a violation of the bound.

This produces what I will call an explicit-time description.
No special language or tools are required to handle explicit-time descrip-

tions. They can be written and debugged exactly like untimed ones; they
can be verified with conventional assertional reasoning; and they can be
checked with conventional model checkers.

Another approach is to write implicit-time descriptions. One creates a
new language with special constructs for expressing timing properties, where
the current time is implicit rather than being represented by a variable. This
is often done by modifying an existing untimed language. Examples include
timed CSP [38], timed Petri nets [42], and timed I/O automata [30].

A new language requires a new semantics, new tools, and new proof
rules. Implicit-time methods have therefore been the subject of hundreds of
papers and theses. In contrast, nothing new is required to handle explicit-
time descriptions. They are apparently so simple and obvious that very
little has been written about them. Except for a handful of papers using
TLA [2, 26], the only published work I know of in which both the algo-
rithm or system description and the properties to be checked are expressed
in an ordinary untimed language is that of Dutertre and Sorea [14] and
Brinksma, Mader, and Fehnker [9]. The very fact that such specifications
are easily model checked seems never to have been stated explicitly in print,
though it has been known for many years and is implicit in several pub-
lished results [16]. Explicit-time specifications of the correctness properties
to be proved have been used [33], and Ostroff has described a method for
translating an implicit-time description into an explicit-time one for verifica-
tion [34]. However, other than the aforementioned TLA-based work and the
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work of Dutertre and Sorea and of Brinksma et al., I know of no previously
published, purely explicit-time approach.

An implicit-time approach may be necessary if we want to reason about
an actual implementation—for example, one written in a programming lan-
guage like Java or in a hardware description language. Modifying a real Java
program by adding extra variables to express the timing constraints would
be difficult and error-prone, and it would alter the program’s timing prop-
erties. The earliest published real-time verification method that I know of,
by Bernstein and Harter [7], was an implicit-time approach based on a toy
programming language. They presumably hoped that their method could
be extended to verify actual programs. However, the difficulties encountered
in trying to extend ordinary program verification to actual programs makes
such a hope now seem naive. Most recent work on real-time verification
has been directed toward higher-level descriptions of algorithms, protocols,
or system designs. There is no a priori reason to prefer an implicit-time
approach for such higher-level descriptions.

The preponderance of publications advocating implicit-time approaches
seems to have created the impression that explicit-time ones are not as
good—or perhaps even do not exist. In fact, implicit-time approaches offer
no practical advantage over explicit-time ones—except perhaps for use in
model checking, discussed below. Their proponents may argue that the more
complex implicit-time approaches are more elegant, abstract, hierarchical, or
compositional, or have some other wonderful attributes. I will not attempt
to challenge such claims. I assert only that implicit-time methods are no
better than the simple explicit-time approach for the practical problem of
describing and verifying the correctness of a high-level algorithm, protocol,
or system design.

A number of algorithms and programs have been developed especially
for model-checking real-time specifications [3, 18, 27, 43]. They have used
implicit-time languages, usually based on timed automata. Most of these
languages seem to have been developed for modeling finite-state controllers,
and they are not sufficiently expressive for describing more complicated sys-
tems such as network protocols. Such languages cannot model the simple
distributed algorithm of Section 4. The only real-time model checker capable
of handling this example that I know of is Uppaal [27].

Special-purpose model checkers may be needed if one wants to verify
a specification that models continuous time, since representing continuous
time by an ordinary variable produces an inherently infinite-state speci-
fication. (Dutertre and Sorea use a more general approach that handles
some other infinite-state specifications as well.) However, in practice, model
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checking is used to debug a specification by checking small instances of it.
Discrete-time specifications seem adequate for that purpose, and ordinary
model checkers can be applied to them.

The previously published recipe for writing explicit-time TLA specifica-
tions [2], formulated more recently in TLA+ [25], is a bit subtle because it
conjoins timing properties to a complete untimed specification. This makes
the method less obvious and a little more complicated than necessary. More-
over, the TLC model checker for TLA+ cannot handle the resulting specifi-
cations. So, I describe here an even simpler and more obvious approach and
show how to model check the resulting specifications.

The approach described here works with almost any language or for-
malism based on state machines [8] or shared-memory programs [4, 11, 40].
However, because they rely on the global variable now , explicit-time spec-
ifications are difficult to write in process-based languages and formalisms
with no explicit global state, such as CCS [32], CSP [19], Petri nets [39],
streams [10], and I/O automata [29]. Instead, those formalisms are usually
extended to allow writing implicit-time specifications.

Section 2 explains with a simple example how to write an explicit-time
specification in TLA+. Section 3 discusses how to prove the correctness of
such a specification. Section 4 is devoted to a more sophisticated example—a
real-time message-passing algorithm. A potential pitfall of the approach and
how to avoid it are discussed in Section 5. Section 6 explains how to model
check explicit-time specifications and presents the results of checking the
examples of Sections 2 and 4. It also describes how ordinary model checkers
compare with the Uppaal real-time model checker on these examples. A
concluding section briefly discusses objections to the method that I have
heard and the extension of explicit-time specifications to hybrid systems.

The method of writing and checking real-time specifications described
here appears not to have been published before—perhaps because it seems
too simple to be worth publishing. Yet that simplicity is what makes the
method so appealing. In the face of a succession of more complicated
implicit-time methods, it is useful to state the obvious: a simple explicit-
time approach works at least as well.

Although basically simple, some aspects of writing and verifying explicit-
time specifications may not be obvious. These include the different choices
of which actions update timers (Section 2.3), the relation between the proofs
of liveness and of real-time progress (Section 3.3), how to check that a spec-
ification is nonZeno (Section 5), and several techniques for model checking
the specifications (Section 6).
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2 Specifying a Simple Algorithm

The explicit-time approach is described mainly in terms of a single exam-
ple. Space constraints require that the example be simple. The question
then arises of whether larger problems can be handled with explicit time,
or whether implicit-time methods are needed. I can answer this only by
observing that explicit-time specifications can be written in languages such
as TLA+ that have been applied to problems at least as large as any tackled
by the formalisms on which implicit-time methods are based [6]. Adding a
variable now clearly does not change how things scale—except perhaps for
model checking, which is discussed in Section 6.

I have chosen as the example Fischer’s mutual exclusion algorithm [41],
mainly because it is the simplest interesting real-time algorithm I know. It
is a shared-memory, multithreaded algorithm. There seems to be a com-
mon misconception that methods based on shared variables or global state
are not good for specifying and reasoning about distributed systems, and
one must instead use a process-based method. It has been known for years
that shared-variable languages are fine for specifying distributed systems,
and that one wants to reason about such systems in terms of global in-
variants [21]. Section 4 briefly presents an explicit-time specification of a
real-time distributed algorithm. It should serve as yet one more illustration
that process-based methods offer no practical advantage for specifying or
reasoning about distributed systems.

2.1 The Algorithm

Fischer’s algorithm uses a single shared variable x whose value is either
a thread identifier or the special value NotAThread ; its initial value is
NotAThread . Figure 1 shows the program for thread t without the tim-
ing constraints needed to ensure mutual exclusion. Those constraints are as

ncs : noncritical section;
a : wait until x = NotAThread ;
b : x : = t ;
c : if x 6= t then goto a;

cs : critical section;
d : x : = NotAThread ; goto ncs;

Figure 1: The program of thread t, with timing constraints omitted.
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follows, where δ and ε are parameters:

• Step b must be executed at most δ seconds1 after the preceding exe-
cution of step a.

• Step c cannot be executed until at least ε seconds after the preceding
execution of step b.

Additional constraints are needed to ensure progress. Two kinds of con-
straints can be used:

1. Suitable fairness conditions on certain program statements, or

2. Upper bounds on the execution times of those statements.

I explain how to specify both kinds of constraints and prove their corre-
sponding progress properties.

2.2 The Untimed Version in TLA+

Before discussing the timing constraints, I describe how the untimed algo-
rithm can be specified in TLA+, a complete specification language based on
the logic TLA [25]. TLA has a trace-based semantics in which a specifica-
tion describes a set of behaviors, and a behavior is a sequence of states. I
assume no knowledge of TLA+. All TLA+ syntax appearing in the specifi-
cations that differs from ordinary mathematical or programming notation
is explained. I do assume that the reader is at least somewhat acquainted
with the basic concepts of safety, liveness, and fairness [40].

The customary form of a TLA specification is

Init ∧2[Next ]vars ∧ Liveness

where the state predicate Init describes the possible initial states, the next-
state action Next describes possible state changes, Liveness is the conjunc-
tion of liveness or fairness conditions, and vars is the tuple of specification
variables.

We first determine the specification variables. We obviously want a
variable x that represents the program variable of that name. We also
need a variable to represent the algorithm’s control state. We introduce a

1For the sake of euphony, I assume that the unit of time is the second. There is no way
for a specification, which is ultimately a mathematical formula, to state formally that one
unit of time equals a certain multiple of the frequency of an emission line of cesium.
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variable pc, where pc[t ] describes the control state of thread t . For example,
pc[t ] = “a” means that control in thread t is at program statement a.

We won’t specify any liveness requirement on the untimed algorithm,
so the interesting part of its specification is the definition of the next-state
action Next that describes possible steps—that is, possible pairs of successive
states in an allowed behavior of the algorithm. An algorithm step is a step
of some thread, so Next is defined by

Next ∆= ∃ t ∈ Thread : TNext(t)

where TNext(t) is the next-state action of thread t . A step of thread t is
one that is performed by executing one of t ’s program statements, so

TNext(t) ∆=
NCS (t) ∨ StmtA(t) ∨ StmtB(t) ∨ StmtC (t) ∨ CS (t) ∨ StmtD(t)

where each of the actions NCS (t), StmtA(t), . . . describes an execution of
the corresponding program statement. We now define these actions.

In a conventional programming language, a step that changes the value
of a variable v can be described by an assignment statement v := exp. In
TLA+, the corresponding change to v is expressed by the action expression2

v ′ = exp. However, while the assignment statement leaves all variables other
than v unchanged3, the TLA+ action expression says nothing about the new
values of any other variables. The change to an array variable v described by
an assignment statement v [c] := exp is represented by the action expression
v ′ = aexp, where aexp is an expression whose value is the same as that of
v , except aexp[c] = exp. This expression aexp is written in TLA+ as

[v except ![c] = exp]

Before defining the actions corresponding to a thread’s program statements,
we define some operators for describing the control state. The state predicate
At(t , loc) is true iff control in thread t is at program location loc, and
GoTo(t , loc) is the action expression that describes t ’s control state changing
to loc:

At(t , loc) ∆= pc[t ] = loc

GoTo(t , loc) ∆= pc′ = [pc except ![t ] = loc]

2I am using the term action expression to mean a formula containing primed and
unprimed variables. I reserve the term action to mean an action expression that deter-
mines the new (primed) values of all the specification variables as functions of their old
(unprimed) values.

3More precisely, in a programming language, what variables an assignment statement
leaves unchanged must be determined from the context [28].
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We define GoFromTo(t , loc1, loc2) to assert that control in thread t goes
from loc1 to loc2:

GoFromTo(t , loc1, loc2) ∆= At(t , loc1) ∧GoTo(t , loc2)

We assume that each of the statements a, b, c, and d is an atomic operation,
meaning that its execution is described by a single step. Statement a of
thread t can then be represented by the action StmtA(t) defined as follows,
where a list of assertions bulleted with ∧ (or ∨) denotes their conjunction
(or disjunction), and the expression unchanged exp is defined to equal
exp′ = exp, asserting that expression exp is left unchanged:

StmtA(t) ∆= ∧ x = NotAThread
∧ GoFromTo(t , “a”, “b”)
∧ unchanged x

A conjunct of an action that, like x = NotAThread , contains no primed vari-
ables is an enabling condition for the action. Action StmtC (t), describing
program statement c of thread t , is:

StmtC (t) ∆= ∧ At(t , “c”)
∧ if x 6= t then GoTo(t , “a”)

else GoTo(t , “cs”)
∧ unchanged x

The definitions of actions StmtB(t) and StmtD(t) should be obvious. We
represent the noncritical section by the action

NCS (t) ∆= ∧ GoFromTo(t , “ncs”, “a”)
∧ unchanged x

Since TLA specifications allow “stuttering steps” that do not change any
of the specification’s variables, our specification allows the execution of t ’s
noncritical section to consist of any number of steps that do not change
pc or x , followed by an NCS (t) step that changes pc[t ] from “ncs” to “a”
and leaves x unchanged. The critical section is similarly represented by a
single action CS (t), so execution of the critical section can also consist of
any sequence of steps that change neither pc nor x .

Except for the definitions of the initial predicate Init , actions StmtB(t),
and StmtD(t), and the liveness condition Liveness, this completes the spec-
ification of the untimed algorithm. I will not bother writing the remaining
definitions.
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2.3 Adding Timing to an Untimed Specification

In an explicit-time specification of the actual real-time algorithm, a variable
now represents the current time. For our purposes, it makes no difference
whether time is continuous or advances in femtosecond steps. Moreover,
instead of representing nature’s time (measured in some inertial coordinate
system), now could represent some particular digital clock. We could there-
fore pretend that time is discrete and let now assume only integral values.
However, it’s just as easy to represent continuous time by letting now assume
real values.

The variable now is incremented by a special action, which I like to
call Tick , that can increment now by any positive real value. Thus, even
though the range of possible values of now is continuous, now increases
in discrete ticks. We can view a behavior, which is a sequence of states,
to be a sequence of snapshots of the system, each taken at some instant
of time. These snapshots are taken often enough to capture every state
reached by the ordinary variables—that is, the variables of the untimed
systems, such as x and pc in the specification of Fischer’s algorithm. Since
the ordinary variables are assumed to change in discrete steps, and now
can be incremented by arbitrary amounts, nothing is lost by representing
continuous time in this way.

Timing constraints are expressed by adding special timer variables. A
constraint that something must occur within or after τ seconds is expressed
by having a variable timer set to time out in precisely τ seconds. There seem
to be three basic ways to do this. The method I have used before [2], which
is perhaps the simplest, is with expiration timers. An expiration timer timer
is left unchanged by the Tick action. It can be set to now +τ , in which case
the timeout occurs when now = timer , or it can be set to now , in which
case the timeout occurs when now = timer + τ . A possibly more intuitive
way is with a countdown timer that is decreased by the Tick action. If the
timer is set to τ , then the timeout occurs when it becomes equal to 0. The
third type of timer is a count-up timer that is increased by the Tick action.
If the timer is set to 0, then timeout occurs when it becomes equal to τ .
Timers may be reset when not in use; countdown and count-up timers that
have been reset are left unchanged by the Tick action. Typically, the value
of a reset timer equals 0, ∞, or −∞. Although it makes little difference to
TLC, some model checkers require the use of countdown or count-up timers,
so I will use countdown timers here.

Dutertre and Sorea [14] and Brinksma et al. [9] use an alternative ap-
proach in which timer variables store the exact time at which future actions
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will occur. Such a timer variable is set, perhaps nondeterministically, when
it becomes possible to predict that the action will happen. The Tick ac-
tion advances now directly to the time at which the next action is to occur.
This approach eliminates intermediate Tick actions and could reduce the
number of reachable states in some models, but it can be more awkward for
describing some systems. I will not consider it further.

If an operation of an untimed program is represented by action A, then
a timing constraint on when that operation may or must occur is expressed
as a bound τ on the length of time between when some predicate P becomes
true and when an A step may or must occur. (Typically, P is the predicate
enabled A that is true iff A is enabled.) Such a constraint is expressed by
having a timer variable that is set to τ when either the value of P changes
from false to true or an A step occurs that leaves P true. The timer is reset
when P becomes false. For most timing constraints that occur in practice,
any A step makes P false.

There are two kinds of timing constraints. A lower-bound constraint
requires that the operation not occur until P has been true for at least
τ seconds. An upper-bound constraint requires that the operation must
occur if P has been true for τ seconds. For each of these constraints, we
have the choice of allowing the elapsed time before the operation occurs to
equal exactly τ seconds, or of requiring a strict inequality to hold. With
continuous time, the choice has no significance because an infinitely precise
measurement would be required to determine whether exactly τ seconds
had passed. When using count-down timers, it’s a bit more convenient for
a lower-bound constraint to allow the operation to occur when τ seconds
or more have elapsed. This is done by representing the program operation
with the action (timer = 0) ∧A, taking 0 to be the special value indicating
that the timer has been reset. For an upper-bound constraint, we arbitrarily
choose to require that the operation occur strictly less than τ seconds after
P becomes true. This is done by requiring that the Tick action increase now
by less than the current value of timer . In other words, Tick must imply
now ′ < now + timer . In this case, P must imply enabled A; otherwise, the
requirement could assert that a step of a disabled action must occur, which
is impossible.4 It is most convenient to let ∞ be the special value indicating
that the timer is reset.

We next must decide what specification actions set and reset variable
timer . There are two choices: the Tick action, which increments now , or

4More precisely, this would result in a Zeno specification. Such specifications are
discussed in Section 5.
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the “ordinary” actions that modify the ordinary variables. Either is possible,
but I find it easier to let the ordinary actions do it.5 We therefore conjoin,
to actions of the untimed specification, action expressions that specify the
new values of timer variables. For a multithreaded algorithm like Fischer’s,
there are three natural ways of doing this. Action expressions describing a
timer’s new value can be conjoined to:

• each of the individual actions NCT (t), StmtA(t), etc.,

• the action TNext(t), which describes the steps of thread t , or

• the entire next-state action Next .

Different choices could be made for different timers in the same specification.
We use the first method for our first specification of the Fischer algo-

rithm, in which progress is achieved by liveness. We will use the second for
our second specification, in which progress is achieved by timing bounds.

2.4 Specification FSpec1: Progress Through Liveness

The specification of the untimed algorithm was developed above in a top-
down fashion, starting with the complete specification. However, TLA+

requires that every identifier be defined or declared before it is used, which
leads to a bottom-up description. (Splitting the specification into multiple
modules would allow it to be read in a more top-down fashion.)

We put declarations and definitions shared by both specifications in mod-
ule FischerPreface, which appears in Figure 2. The module begins by im-
porting the standard Reals module that defines the set Real of real numbers
and the usual arithmetic operations on them. It then defines Max (a, b) to
be the maximum of a and b, if they are real numbers. Next comes the dec-
laration of the specification’s constant parameters: the set Thread of thread
identifiers and the timing bounds Delta and Epsilon. The assume state-
ment asserts assumptions about those bounds. The constant NotAThread
is then defined to be an arbitrary value that is not a thread.

Module FischerPreface next declares the specification’s variables and
defines some state functions. Variables ubTimer and lbTimer are arrays of
timers used to express upper and lower time bounds, respectively. For later
use, vars is defined to be the tuple of all specification variables.

The state predicate Init specifies the initial values of the variables. It
uses the TLA+ notation that [x ∈ S 7→ exp] is the function f with domain

5There are lower-bound constraints for which the corresponding timer must be set by
the ordinary actions, but such constraints do not seem to occur in practice.
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module FischerPreface
extends Reals

Max (a, b) ∆= if a ≥ b then a else b

constants Thread , Delta, Epsilon

assume ∧ (Delta ∈ Real) ∧ (Epsilon ∈ Real)
∧ 0 < Delta
∧Delta ≤ Epsilon

NotAThread ∆= choose t : t /∈ Thread

variables x , pc, ubTimer , lbTimer , now
vars ∆= 〈x , pc, ubTimer , lbTimer , now〉
Init ∆= ∧ pc = [t ∈ Thread 7→ “ncs”]

∧ x = NotAThread
∧ now = 0
∧ ubTimer = [t ∈ Thread 7→ Infinity ]
∧ lbTimer = [t ∈ Thread 7→ 0]

MutualExclusion ∆=
∀ t1, t2 ∈ Thread : (t1 6= t2) ⇒ (pc[t1] 6= “cs”) ∨ (pc[t2] 6= “cs”)

At(t , loc) ∆= pc[t ] = loc
GoTo(t , loc) ∆= pc′ = [pc except ![t ] = loc]
GoFromTo(t , loc1, loc2) ∆= At(t , loc1) ∧GoTo(t , loc2)

TimedOut(t , timer) ∆= timer [t ] = 0

Figure 2: Module FischerPreface, containing declarations and definitions
common to our two specifications of Fischer’s algorithm.
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S such that f [x ] = exp for all x in S . (An array indexed by a set S is just a
function whose domain is S .) Since absolute time values have no significance
to the algorithm, I have chosen to initialize now with the arbitrary value 0.
Another natural choice would be to let now initially equal any real number—
a choice expressed by the assertion now ∈ Real .

The state predicate MutualExclusion asserts that two different processes
are not both in their critical section. (The symbol ⇒ denotes implication.)
Mutual exclusion means that this predicate is always true. So, to prove that
Fischer’s algorithm implements mutual exclusion, we have to prove that
MutualExclusion is an invariant of the algorithm’s specification.

The module next defines the operators At , GoTo, and GoFromTo intro-
duced in Section 2.2 above. It concludes by defining TimedOut(t , timer) to
be the state predicate asserting that timer variable timer [t ] has timed out.
For count-down timers, this predicate is simply timer [t ] = 0.

Our first specification continues in Module Fischer1 of Figure 3, which
begins by importing module FischerPreface. It then defines two action
expressions for setting timer variables: SetTimer(t , timer , tau) sets timer
timer [t ] to time out in tau seconds and ResetUBTimer(t , timer) resets it
to Infinity , which is defined in the Reals module to be a value greater than
any real number.

The structure of the timed specification is similar to that of the un-
timed one, with the algorithm’s next-state action Next , the next-state action
TNext(t) of thread t , and actions NCS (t), StmtA(t), . . . , corresponding to
the program statements. However, there is also the Tick action, so Next is
defined by

Next ∆= Tick ∨ (∃t ∈ Thread : TNext(t))

Moreover, the actions corresponding to program statements specify the new
values of lbTimer and ubTimer , and they assert that now is left unchanged.
An additional enabling condition is also needed in action StmtC (t) to express
the lower-bound timing constraint on the execution of statement c.

The Fischer algorithm has one upper-bound timing constraint—that a
thread must execute statement b within δ seconds after it executes statement
a. In our specification, this means that action StmtB(t) must be executed
within Delta seconds of when control reaches b. We express this constraint
with the timer ubTimer [t ]. Since control reaches b only by a StmtA(t) step,
we let StmtA(t) set the timer. As we’ll see, StmtA(t) should leave lbTimer [t ]
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module Fischer1
extends FischerPreface

SetTimer(t , timer , tau) ∆= timer ′ = [timer except ![t ] = tau]
ResetUBTimer(t , timer) ∆= SetTimer(t , timer , Infinity)

NCS (t) ∆= ∧GoFromTo(t , “ncs”, “a”)
∧ unchanged 〈x , now , lbTimer , ubTimer〉

StmtA(t) ∆= Defined on page 14.

StmtB(t) ∆= Defined on page 14.

StmtC (t) ∆= Defined on page 14.

CS (t) ∆= ∧GoFromTo(t , “cs”, “d”)
∧ unchanged 〈x , now , lbTimer , ubTimer〉

StmtD(t) ∆= ∧GoFromTo(t , “d”, “ncs”)
∧ x ′ = NotAThread
∧ unchanged 〈now , lbTimer , ubTimer〉

Tick ∆= Defined on page 15.

TNext(t) ∆= NCS (t) ∨ StmtA(t) ∨ StmtB(t) ∨ StmtC (t) ∨ CS (t) ∨ StmtD(t)

Next ∆= Tick ∨ (∃ t ∈ Thread : TNext(t))

SafetySpec ∆= Init ∧2[Next ]vars
theorem SafetySpec ⇒ 2MutualExclusion

Liveness ∆=
∧ ∀ t ∈ Thread : WFvars(StmtA(t) ∨ StmtB(t) ∨ StmtC (t) ∨ StmtD(t))
∧ ∀ r ∈ Real : 3(now > r)

FSpec1 ∆= SafetySpec ∧ Liveness

Progress ∆=
(∃ t ∈ Thread : pc[t ] ∈ {“a”, “b”, “c”}) ; (∃ t ∈ Thread : pc[t ] = “cs”)

theorem FSpec1 ⇒ Progress

Figure 3: Module Fischer1, containing the specification of our first version
of Fischer’s algorithm.
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unchanged. Therefore, it is defined by

StmtA(t) ∆= ∧ x = NotAThread
∧ GoFromTo(t , “a”, “b”)
∧ SetTimer(t , ubTimer , Delta)
∧ unchanged 〈x , now , lbTimer 〉

Setting an upper-bound timer to a real value τ prevents now from advancing
more than τ seconds. So, an upper-bound timer must be reset to Infinity
to turn it off when it is not in use. A StmtB(t) step must therefore reset
ubTimer [t ], so StmtB(t) needs the conjunct ResetUBTimer(t , ubTimer).
All other actions corresponding to program statements must leave ubTimer [t ]
unchanged.

The algorithm has one lower-bound constraint—that a thread may not
execute statement c until at least ε seconds after it executes statement b. We
use lbTimer [t ] to assert that StmtC (t) may not be executed until at least
Epsilon seconds after control reaches c. Since a StmtB(t) step sets pc[t ]
to “c”, action StmtB(t) must set lbTimer [t ]. Remembering that StmtB(t)
must also reset ubTimer [t ], we have:

StmtB(t) ∆= ∧ GoFromTo(t , “b”, “c”)
∧ x ′ = t
∧ RestUBTimer(t , ubTimer)
∧ SetTimer(t , lbTimer , Epsilon)
∧ unchanged now

We express the requirement that a StmtC (t) step may occur only after
lbTimer [t ] has timed out by conjoining to StmtC (t) the enabling condition
TimedOut(t , lbTimer). A lower-bound timer is turned off when it times
out and reaches 0, so there is no need for StmtC (t) to change lbTimer . The
definition is therefore

StmtC (t) ∆= ∧ At(t , “c”)
∧ TimedOut(t , lbTimer)
∧ if x 6= t then GoTo(t , “a”)

else GoTo(t , “cs”)
∧ unchanged 〈x , now , lbTimer , ubTimer 〉

Actions NCS (t), CS (t), and StmtD(t) are the same as in the untimed speci-
fication, except that they also leave now , lbTimer , and ubTimer unchanged.

A Tick step increments now by some positive number d , which must
be less than the value of all upper-bound timers. It decreases all timers
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by d , except that lower-bound timers must stop at 0. So, a lower-bound
timer is set to 0 if its value is less than d . (An upper-bound timer cannot
become negative because d must be less than its current value.) The Tick
action leaves the “ordinary” variables x and pc unchanged. Its definition is
therefore

Tick ∆=
∃ d ∈ {r ∈ Real : r > 0} :
∧ ∀ t ∈ Thread : ubTimer [t ] > d
∧ now ′ = now + d
∧ ubTimer ′ = [t ∈ Thread 7→

if ubTimer [t ] = Infinity then Infinity
else ubTimer [t ]− d ]

∧ lbTimer ′ = [t ∈ Thread 7→ Max (0, lbTimer [t ]− d)]
∧ unchanged 〈x , pc〉

This completes the definition of Next , the algorithm’s next-state action. The
safety part of the specification is the formula

SafetySpec ∆= Init ∧ 2[Next ]vars

That the algorithm implements mutual exclusion is expressed formally by
the assertion that the predicate MutualExclusion is true throughout every
behavior satisfying this specification. In TLA+, this assertion is written

theorem SafetySpec ⇒ 2MutualExclusion

In addition to satisfying mutual exclusion, we want an algorithm to ensure
progress. For the Fischer algorithm, progress means that, if some thread
is waiting to enter its critical section, then some thread (not necessarily
the same one) will eventually enter. In the standard terminology of mutual
exclusion, Fischer’s algorithm is deadlock free but not starvation free. A
thread is waiting to enter its critical section iff control is at statement a, b,
or c. The progress condition can therefore be expressed in temporal logic as

Progress ∆= (∃t ∈ Thread : pc[t ] ∈ {“a”, “b”, “c”})
; (∃t ∈ Thread : pc[t ] = “cs”)

where P ; Q (read P leads to Q) asserts that, if P ever becomes true, then
Q will be true then or at some later point in the execution. Observe that
this condition is satisfied if some thread ever enters its critical section and
remains there forever.
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To ensure that the algorithm makes progress, we must conjoin some
liveness assumption to the safety specification. Our first specification does
this by placing weak fairness assumptions on program statements a, c, and
d . (The upper-bound constraint implies that b must be executed within δ
seconds of when control reaches it, so we don’t need a fairness assumption
on statement b.) Weak fairness of an action A means that, if A remains
continuously enabled, then an A step must eventually occur. It is usually
expressed in TLA by the formula WFv (A), where v is the tuple of all specifi-
cation variables. To anyone familiar with reasoning about fairness, it is clear
that the conjunction of weak fairness of each of the three actions StmtA(t),
StmtC (t) and StmtD(t) is equivalent to weak fairness of their disjunction.
Hence, the fairness assumption can be expressed as

∀t ∈ Thread : WFvars(StmtA(t) ∨ StmtC (t) ∨ StmtD(t))

We must also require now to keep advancing. (Otherwise, the lower-bound
constraint could keep a StmtC (t) step from ever happening.) This assump-
tion can be expressed as:6

∀r ∈ Real : 3(now > r)

Deadlock freedom of Fischer’s algorithm is shown by proving that the con-
junction of SafetySpec and these two liveness assumptions imply formula
Progress.

The definition of FSpec1, the specification of Fischer’s algorithm with
these liveness assumptions, and the statement of its correctness appear in
module Fischer1 of Figure 3. As indicated, some definitions that appear in
the text are omitted.

Observe that the variable now appears only in the conjunct of Tick that
increments it and in unchanged conjuncts. It acts as a history variable,
recording the passage of time but not affecting the values of other variables.
Eliminating now would not materially change the specification. The ability
to eliminate now is important for model checking, but there is no reason to
remove it from the specification now.

Although I have written the specification in TLA+, it could be written
in other languages. Many languages might have difficulty expressing a Tick
action that allows now to be incremented by an arbitrary real number.

6Had we restricted now to have integral values, then we could instead have required
strong fairness of the Tick action. However, since now can assume arbitrary real values, its
value can remain bounded despite an infinite sequence of Tick steps. Therefore, fairness
of the Tick action does not assure that now increases without bound.
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However, as mentioned above, little is lost by letting now assume discrete
values, in which case Tick can just increment now by 1. The specification
can then be written in any language with global variables that can describe
multithreaded algorithms.

2.5 Specification FSpec2: Progress Through Timing Bounds

Specification FSpec1 of module Fischer1 uses fairness assumptions on the
execution of statements a, c, and d to ensure progress. We now write a
specification FSpec2 that ensures progress by placing upper bounds on the
execution times of these statements. More precisely, we place an upper
bound on the length of time that the action representing the statement’s
execution can be enabled without its “being executed”. For statements c
and d , that is simply the maximum length of time between control reaching
the statement and the statement being executed. For statement a, it means
that, when control in thread t is at a, it is an upper bound on the length
of time that x can continuously equal NotAThread without a StmtA(t) step
occurring.

For convenience, we use the same upper bound δ for statements a and
d that we have already used for statement b. To avoid contradictory timing
conditions, we must make the upper bound on the execution time for c larger
than its lower bound ε, which is greater than or equal to δ. So we let the
upper bound on the execution time of c be a new parameter γ, which we
assume to be greater than ε.

We use the timers ubTimer [t ] to express these upper bounds. As in
specification FSpec1, we could let ubTimer be set by the actions represent-
ing the individual program statements. However, this is more complicated
than before because execution of statement d by one thread must set the
upper-bound timer in any other thread that is waiting to execute statement
a. Instead, to specify how an action of thread t changes the upper-bound
timers, we conjoin an action expression to the entire next-state action of
thread t . For uniformity, we describe the setting of the lower-bound timers
the same way. The specification’s next-state action is therefore

Next ∆= Tick ∨ (∃t ∈ Thread : TNext(t) ∧ SetTimers(t))

where Tick is the same as in FSpec1; action TNext(t) is almost the same
as in the untimed specification; and SetTimers(t) describes how an action
of thread t changes lbTimer and ubTimer , as well as asserting that now is
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left unchanged. The definition of SetTimers(t) therefore has the form

SetTimers(t) ∆= ∧ lbTimer ′ = . . .
∧ ubTimer ′ = . . .
∧ unchanged now

An action of thread t changes only the t component of lbTimer , setting it
to Epsilon if the new value of pc[t ] is “c” and to Infinity otherwise. So a
SetTimers(t) step should set lbTimer to

[lbTimer except ![t ] = if pc′[t ] = “c” then Epsilon
else Infinity ]

A SetTimers(t) step should change the value of ubTimer [s] as follows:

• If s = t , so this is a step that changes pc[s], then ubTimer ′[s] should
equal:

– Delta if the new value of pc[s] is “b” or “d”, or if it is “a” and
the new value of x equals NotAThread .7

– Gamma if the new value of pc[s] is “c”.

– Infinity otherwise.

• If s 6= t , so ubTimer [s] is a timer for a different thread’s action, then
ubTimer ′[s] should equal:

– Delta if pc[s] = “a” and the action changes the value of x to
NotAThread .

– Infinity if pc[s] = “a” and the action changes the value of x to a
thread identifier.

– ubTimer [s] (the current value) otherwise.

The complete definition of SetTimers(t) is in Figure 4.
The next-state action TNext(t) of thread t is the same as for the un-

timed algorithm, except that action StmtC (t) has the additional conjunct
TimedOut(t , lbTimer) to describe the lower-bound constraint on its execu-
tion. The complete specification is in module Fischer2, shown in Figure 5.
The module’s theorem asserts that the specification satisfies mutual exclu-
sion. The assertion and proof that it satisfies a real-time progress condition
appears in Section 3.3 below.

7In the latter case, the step does not change x , so its new and old values are actually
the same.
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SetTimers(t) ∆=
∧ lbTimer ′ = [lbTimer except ![t ] = if pc′[t ] = “c” then Epsilon

else 0]
∧ ubTimer ′ = [s ∈ Thread 7→

if s = t
then if ∨ pc′[s] ∈ {“b”, “d”}

∨ (pc′[s] = “a”) ∧ (x ′ = NotAThread)
then Delta
else if pc′[s] = “c” then Gamma

else Infinity
else if ∧ pc[s] = “a”

∧ (x ′ = NotAThread) 6= (x = NotAThread)
then if x ′ = NotAThread then Delta

else Infinity
else ubTimer [s]]

∧ unchanged now

Figure 4: The action describing how a step of thread t changes lbTimer,
ubTimer, and now.

This way of writing the specification, conjoining the action expression
SetTimers(t) to the next-state action TNext(t) of thread t , is quite nat-
ural with TLA. It would be difficult or impossible to do it with most
programming-language based specification methods. In those methods, one
would have to add the timer-setting actions to the individual statements.
While this makes the specification perhaps less elegant, it presents no fun-
damental difficulties.

Just as with specification FSpec1, we can eliminate the variable now from
FSpec2 without affecting the algorithm. However, we will use now in the
next section for expressing the real-time progress property that corresponds
to the liveness property Progress of module Fischer1.

3 Proving Correctness of Fischer’s Algorithm

Just as an explicit-time specification can use existing languages, its correct-
ness can be proved with existing proof methods. Such methods have been
around for almost three decades and should by now be well-known. So, I
will just state what are essentially the fundamental lemmas necessary to
prove correctness of Fischer’s algorithm. The actual proofs are left to the
motivated reader.
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module Fischer2
extends FischerPreface
constant Gamma
assume Epsilon < Gamma

NCS (t) ∆= ∧GoFromTo(t , “ncs”, “a”)
∧ unchanged x

StmtA(t) ∆= ∧ x = NotAThread
∧GoFromTo(t , “a”, “b”)
∧ unchanged x

StmtB(t) ∆= ∧GoFromTo(t , “b”, “c”)
∧ x ′ = t

StmtC (t) ∆= ∧At(t , “c”)
∧ TimedOut(t , lbTimer)
∧ if x 6= t then GoTo(t , “a”)

else GoTo(t , “cs”)
∧ unchanged x

CS (t) ∆= ∧GoFromTo(t , “cs”, “d”)
∧ unchanged x

StmtD(t) ∆= ∧GoFromTo(t , “d”, “ncs”)
∧ x ′ = NotAThread

Tick ∆= Same definition as in Module Fischer1 (page 13).

SetTimers(t) ∆= Defined on page 19

TNext(t) ∆= NCS (t) ∨ StmtA(t) ∨ StmtB(t) ∨ StmtC (t) ∨ CS (t) ∨ StmtD(t)

Next ∆= Tick ∨ (∃ t ∈ Thread : TNext(t) ∧ SetTimers(t))

FSpec2 ∆= Init ∧2[Next ]vars

theorem FSpec2 ⇒ 2MutualExclusion

Figure 5: Module Fischer2, containing the specification FSpec2 of our sec-
ond version of Fischer’s algorithm.
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3.1 Proof of Mutual Exclusion

In TLA, one proves that an algorithm with specification Spec satisfies a prop-
erty F by proving the theorem Spec ⇒ F . Often, F has the same form as
Spec. In that case, one usually says that the algorithm implements the high-
level specification F , or that it implements the abstract model/algorithm de-
scribed by F . To show that the Fischer algorithm satisfies mutual exclusion,
we take F to be the invariance property 2MutualExclusion.

The basic method of proving this invariance property was first published
by Ashcroft in 1975 [5]. It involves finding an inductive invariant that
implies MutualExclusion. An inductive invariant for a specification Init ∧
2[Next ]vars is a state predicate Inv satisfying

I1. Init ⇒ Inv
I2. Inv ∧Next ⇒ Inv ′

where Inv ′ is obtained from Inv by priming all variable occurrences.
The differences between our two versions of Fischer’s algorithm do not

affect the basic mutual exclusion protocol, and the same inductive invariant
Inv proves mutual exclusion for both of them. That invariant is defined
in Figure 6. It contains the conjunct TypeOK , which is a simple type-
correctness invariant asserting that each variable is an element of the appro-
priate set. For example, it asserts that ubTimer is a function from Thread
to Real ∪ {Infinity}. In a typed formalism, TypeOK would be implicit in
the type declarations, and its invariance would be shown by type checking.8

We prove mutual exclusion by proving I 1 and I 2, which imply that
Inv is always true, and then proving Inv ⇒ MutualExclusion, which shows
that MutualExclusion is always true. This is all straightforward. In other
formalisms, I2 is replaced by some verification condition. For example, in the
Owicki-Gries method [35], Inv is written as a program annotation, and I2 is
expressed as “sequential correctness” and “interference freedom” conditions.

3.2 Proof of Eventual Progress

We want to prove that the specification SafetySpec ∧ Liveness of Fischer’s
algorithm in module Fischer1 satisfies property Progress. This property
has the form P ; Q . The basic method of proving such a property was

8Simple type checking proves a type-correctness invariant only if all operators are
“total”. For example, if the tail of an empty list is undefined, then proving a type-
correctness invariant requires showing that the algorithm never takes the tail of an empty
list.
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Inv ∆=
∧ TypeOK
∧ ∀ t ∈ Thread :

∧ now ≤ ubTimer [t ]
∧ (pc[t ] = “b”) ⇒ (ubTimer [t ] < now + Epsilon)
∧ (pc[t ] = “c”) ⇒

∀ s ∈ Thread : (x = t) ∧ (pc[s] = “b”)
⇒ (lbTimer [t ] > ubTimer [s])

∧ (pc[t ] ∈ {“cs”, “d”}) ⇒ (x = t) ∧ (∀ s ∈ Thread : pc[s] 6= “b”)

Figure 6: The inductive invariant for the proof of mutual exclusion, where
TypeOK is a simple type-correctness invariant.

explained two decades ago [36]. One decomposes the proof of P ; Q into
the proof of simpler ; formulas using a proof lattice. A lattice for the proof
of P ; Q is an acyclic directed graph, whose nodes are temporal formulas,
having P as the only source and Q as the only sink, and such that every
path from P to Q is finite. A node G is a successor of a node F in the
lattice iff there is an arc from F to G . A non-sink node F represents the
assertion that F leads to the disjunction of its successor nodes—that is, the
formula F ; (∃ i ∈ S : G i), where {G i : i ∈ S} is the set of successors of
F . The conjunction of the formulas represented by all the non-sink nodes
of the proof lattice implies P ; Q .

Formula P ; Q asserts that, if P ever becomes true, then Q is true then
or at some later point in the execution. This is usually proved by proving
(P ∧ 2¬Q) ; false, which asserts that P true and Q never again true
leads to a contradiction.

A proof lattice for proving eventual progress of Fischer’s algorithm ap-
pears in Figure 7. For compactness, it uses the following definitions. State
predicates A, B , C , and D assert that control in some thread is at the
corresponding control point—for example:

B ∆= ∃t ∈ Thread : pc[t ] = “b”

State predicate Crit asserts that some thread is in its critical section:

Crit ∆= ∃t ∈ Thread : pc[t ] = “cs”

State predicates ABC , DCrit , BDCrit , and X are defined by:

ABC ∆= A ∨ B ∨ C

DCrit ∆= D ∨ Crit

BDCrit ∆= B ∨D ∨ Crit

X ∆= x ∈ Thread
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Figure 7: A proof lattice for ABC ∧ 2¬Crit ; false, used in the proof of
SafetySpec ∧ Liveness ⇒ Progress.

Hence, Progress equals ABC ; Crit , which can be proved by proving

ABC ∧2¬Crit ; false

Figure 7 is a proof lattice for the latter formula. Thick arrows from a node
indicate that the node implies the disjunction of its successors. (Obviously,
F ⇒ G implies F ; G , for any formulas F and G .)

Intuitive proofs that SafetySpec∧Liveness implies each of the ten formu-
las of this proof lattice are straightforward. Those proofs can be formalized
with the proof rules of TLA [23]. They require the easily proved lemma that
the following state predicate is an invariant of the specification.

LInv ∆= (x ∈ Thread) ⇒ (pc[x ] ∈ {“c”, “cs”, “d”})
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Essentially the same proof should be possible in any formalism that can
prove liveness properties of multithreaded algorithms.

The proof lattice of Figure 7 is fine grained, in the sense that when any
non-sink node formula becomes true, it remains true until one of its suc-
cessors becomes true. This implies that each thin arrow indicates a change
effected by a single step. For example, once C ∧ ¬X ∧ 2¬DCrit becomes
true, it remains true until one of its two successors becomes true. The thin
arrow from it to C ∧ X ∧ 2¬DCrit indicates a state change that is caused
by a StmtB(t) step, for some thread t .

3.3 Proof of Real-Time Progress

An eventual progress property P ; Q asserts that, whenever P is true,
Q will eventually become true. In the real-time version of this property,
eventually is replaced by within Ω seconds, for some Ω. Proving this property
can be reduced to proving an invariant by introducing a history variable [1].
A history variable is an auxiliary variable, meaning that adding it does not
change the behavior of the other variables. Formally, HSpec is said to be
a specification obtained by adding an auxiliary variable h to a specification
Spec if hiding h in HSpec produces a specification that is equivalent to Spec.
In TLA, this condition is expressed as

AV. Spec ≡ ∃∃∃∃∃∃ h : HSpec

A history variable h is added to a specification Spec as follows. Suppose
Spec equals Init∧2[Next ]vars , where vars is the tuple of all the specifications
variable, and h is not one of those variables. Condition AV is then satisfied
if HSpec equals HInit ∧2[HNext ]〈vars, h 〉, where

HInit ∆= Init ∧ (h = hIni) HNext ∆= Next ∧ (h ′ = hNew)

for some hIni and hNew such that h does not occur in hIni and h ′ does
not occur in hNew . Other formalisms also have rules for introducing history
variables [35, 40].9

Suppose we introduce a history variable h that is set to now when P∧¬Q
becomes true, is set to ∞ when Q is true, and otherwise remains unchanged.
Then Q must become true within Ω seconds of when P does iff now − Ω is
always less than h. Hence, proving the real-time progress property is then

9Most formalisms cannot express condition AV; they must instead define semantically
what it means to add an auxiliary variable.
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module HFischer2
extends Fischer2
variable h

HInit ∆= ∧ Init
∧ h = Infinity

HNext ∆= ∧Next
∧ h ′ = if ∃ t ∈ Thread : pc′[t ] = “cs”

then Infinity
else if ∧ h = Infinity

∧ ∃ t ∈ Thread : pc′[t ] ∈ {“a”, “b”, “c”}
then now
else h

HFSpec2 ∆= HInit ∧2[HNext ]〈vars, h〉

theorem HFSpec2 ⇒ 2(now − (4 ∗Delta + 2 ∗Gamma − Epsilon) < h)

Figure 8: The specification HFSpec2, obtained by adding the history variable
h to specification Spec of module Fischer2.

reduced to proving the invariance of now − Ω < h. This particular history
variable h is defined as indicated above by letting

hIni ∆= if P ∧ ¬Q then now else ∞
hNew ∆= if Q ′ then ∞

else if P ′ ∧ (¬P ∨Q) then now else h

A little thought reveals that hNew can also be defined by:

hNew ∆= if Q ′ then ∞
else if P ′ ∧ (h = ∞) then now else h

For the Fischer algorithm, P asserts that some thread is at statement a,
b, or c, and Q asserts that some thread is in its critical section. Figure 8
contains the TLA+ specification HFSpec2 obtained by adding the history
variable h to specification FSpec2 of Fischer’s algorithm.

Proving real-time progress requires showing that now − Ω < h is an
invariant of HFSpec2, for a suitable constant Ω. Although this is a standard
invariance problem, few people have experience finding Ω and constructing
the necessary inductive invariant. So, I will show how it is done.
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Specification FSpec2 satisfies essentially the same progress property as
FSpec1, except with “eventually” replaced by “within some period of time”.
The proof that it does is also essentially the same as for FSpec1, except with
each eventuality assertion replaced by a real-time progress assertion. We
obtain the proof of the real-time property from the proof of the eventuality
property by converting the proof lattice of Figure 7 into the timing graph
of Figure 9. A timing graph is a directed graph whose nodes are state
predicates, labeled with certain timing information. To obtain this timing
graph, we first modify the proof lattice as follows:

• We replace every formula of the form 2F with F . (A state predicate
describes only the current state, not future behavior.)

• We make gray the sink and every state predicate that implies the
disjunction of its successors—that is, the sources of the thick arrows
in the lattice. (Any state satisfying such a grayed node satisfies one of
its successors.)

We then transform this in the obvious way into a graph containing only the
black nodes—that is, with an edge from node F to node G iff there is a
path from F to G in the original graph with no intermediate black nodes.
To keep the correspondence with the proof lattice clear, I have omitted this
transformation in Figure 9.

Throughout an execution of the algorithm, a black predicate of Figure 9
is true iff h < ∞. Suppose that, as the algorithm executes, we move a token
according to the following rules.

1. The token is initially off the graph.

2. When h is set to a finite value, the token is placed on some black
predicate that is true.

3. As soon as one or more black successors (in the transformed graph) of
a predicate containing the token becomes true, the token is moved to
one of those successors.

4. When all black predicates become false (so h is changed to ∞), the
token is removed from the graph.

Obviously, the token will be on the graph iff h < ∞. Because the original
proof lattice was fine grained, a successor of a formula F in the timing graph
must become true before F can become false. This ensures that the token
will never be on a predicate that is false.
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Figure 9: The timing graph for Fischer’s algorithm obtained from the proof
lattice of Figure 7.
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The invariant now − Ω < h asserts that the token can remain on the
graph for a period of at most Ω seconds. To calculate Ω, we simply have to
know how long the token can remain on each black predicate. This length
of time is indicated by the number (either δ or γ) in square brackets besides
the node. It is obtained from the upper-bound constraints on the actions
that must make the predicate false. When the token is on the graph, h
equals the value now had when it was last moved onto the graph. From
the numbers in brackets and the graph structure, it is easy to calculate, as
a function of h, the greatest value that now can have when the token first
reaches each node. Those values are also placed next to the nodes. The sum
of the two numbers attached to a node is the largest value that now can
have while the token is still on that node. The largest of those sums, in this
case, h + 4δ + 2γ, is the largest value now can have while the token is on
the graph. Hence, 4δ + 2γ is the desired value Ω.

We can now use this timing graph to construct the inductive invariant
HInv used to prove the invariance of now − 4δ + 2γ < h. The interesting
conjunct of this invariant equals

(h = ∞) ∨ TD(F 1) ∨ . . . ∨ TD(F k )

where F 1, . . . , F k are the (black) nodes of the timing graph, and TD(F ) is
constructed from F as follows. Suppose h + α [β] is the timing information
associated with node F , asserting that now < h + α + β holds when the
token is on that node. The state predicate TD(F ) essentially implies F
and now < h + α + β. It implies the bound on now by implying now +
ubTimer [t ] ≤ h + α + β, for some upper-bound timer ubTimer [t ]. This
implies the bound on now because HInv will also imply 0 < ubTimer [t ].

For example, consider the predicate A ∧ ¬X ∧ ¬DCrit , which has the
associated timing information h + δ + γ [δ]. The upper-bound timer used to
imply now < h+2δ+γ is the one for the thread whose control is at statement
a. (The existence of such a thread is asserted by the state predicate A.) We
define TCond(t , ctl , tau) to assert that thread t is at control point ctl , and
its upper-bound timer will time out before time h + tau.

TCond(t , ctl , tau) ∆= (pc[t ] = ctl) ∧ (now + ubTimer [t ] < h + tau)

The predicate TD(A ∧ ¬X ∧ ¬DCrit) can then be written:

∧ ¬X ∧ ¬DCrit
∧ ∃t ∈ Thread : TCond(t , “a”, 2 ∗Delta + Gamma)

The first conjunct does not assert A because A is implied by the second
conjunct.
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One slight complication is that the strict inequality of TCond does not
hold for the source node of the graph, since h is set to now and ubTimer [t ]
is set to δ when thread t exits the critical section. Its condition is expressed
with the operator

TCondIni(t , ctl , tau) ∆=
(pc[t ] = ctl) ∧ (now + ubTimer [t ] ≤ h + tau)

The definition of HInv appears in Figure 10. The fourth conjunct is the
interesting one. The first two conjuncts are the invariants Inv and LInv ,
defined in Figure 6 and Section 3.2, respectively. The third conjunct asserts
bounds on the values of upper-bound timers as a function of the threads’
control states. These bounds hold because, if an upper-bound timer was
last set to time out in τ seconds, its current value is at most now + τ . The
two penultimate disjuncts of the fourth conjunct, which correspond to the
nodes B ∧ ¬DCrit and C ∧ ¬DCrit ∧ X of Figure 9, contain an additional
conjunct asserting a property of the upper-bound timers of all threads with
control at statement b.

The observant reader will have noted that the value of Ω derived from
the timing diagram of Figure 9 is larger than the one that appears in the
theorem of module HFischer2 in Figure 8. Fischer’s algorithm actually
satisfies a smaller bound on the waiting time than the one proved with the
invariant HInv . The proof of the stronger bound requires a more complicated
invariant; it is left as an exercise.

4 A Simple Distributed Algorithm

Because they are subtle and hard to debug, distributed algorithms are an
important application domain for specification and verification. Such algo-
rithms typically have features not present in the simple Fischer algorithm.
These features include queues or sets of messages in transit—each message
with a separate upper bound on its delivery time—and dynamically com-
puted timeout delays. Uppaal [27] is the only real-time model checker I know
of that can handle algorithms with such features. But Uppaal’s modeling
language lacks the high-level data structures of TLA+, so it must use a lower-
level encoding of these algorithms. Language limitations can be a significant
barrier to the practical verification of complex distributed algorithms.

We now consider an algorithm that, while very simple, exhibits the inter-
esting features of more complicated distributed algorithms. It is inspired by
a classic algorithm of Radia Perlman [37]. The original algorithm constructs
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HInv ∆=
∧ Inv
∧ LInv
∧ ∀ t ∈ Thread :

∧ (pc[t ] ∈ {“b”, “d”}) ⇒ (ubTimer [t ] ≤ Delta)
∧ (pc[t ] = “a”) ∧ (x = NotAThread) ⇒ (ubTimer [t ] ≤ Delta)
∧ (pc[t ] = “c”) ⇒ (ubTimer [t ] ≤ Gamma)

∧ ∨ ∧ h = Infinity
∨ ∧ABC ∧ ¬Crit
∧ ∃ t ∈ Thread : TCondIni(t , “d”, Delta)

∨ ∧ ¬X ∧ ¬DCrit
∧ ∃ t ∈ Thread : TCond(t , “c”, Delta + Gamma)

∨ ∧ ¬X ∧ ¬DCrit
∧ ∃ t ∈ Thread : TCond(t , “a”, 2 ∗Delta + Gamma)

∨ ∧ ¬DCrit
∧ ∀ t ∈ Thread : (pc[t ] = “b”) ⇒ TCond(t , “b”, 4 ∗Delta + Gamma)
∧ ∃ t ∈ Thread : TCond(t , “b”, 3 ∗Delta + Gamma)

∨ ∧X ∧ ¬DCrit This conjunct and LInv imply C

∧ ∀ t ∈ Thread : (pc[t ] = “b”) ⇒ TCond(t , “b”, 4 ∗Delta + Gamma)
∧ ∃ t ∈ Thread : TCond(t , “b”, 4 ∗Delta + Gamma)

∨ ∧ ¬DCrit ∧X ∧ ¬B
∧ TCond(x , “c”, 4 ∗Delta + 2 ∗Gamma)

Figure 10: The inductive invariant HInv for proving real-time progress of
Fischer’s algorithm.
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a spanning tree and maintains that tree by having the root periodically prop-
agate an “I am alive” message down it. A new tree is constructed if a failure
caused some node to time out before receiving the message.

Our simple algorithm assumes an arbitrary network of nodes. Each node
can send messages to its neighbors. The network need not be connected.
Define the leader of a connected component to be the lowest-numbered node
in the component. The goal of the algorithm is for each node n to learn its
leader—that is, the leader of its connected component.

As in Perlman’s algorithm, the leader of a component maintains its lead-
ership by periodically sending messages that are forwarded to all nodes in
its component. A message contains a hops field, indicating how many times
it has been forwarded. A node uses that field to determine its distance to
the leader. (The distance between two nodes is the number of links in the
shortest path joining them.) A node forwards messages that have reached
it via a shortest path from the leader, and it ignores all other messages.

After sending a message, the leader sets a timer that will “awaken” it
to send the next message. A node that receives a message from the leader
sets its timer to awaken it if the leader’s next message does not arrive when
it should. When a node is awakened by the timeout, it assumes itself to be
the leader and sends the appropriate message to its neighbors. Initially and
after failure of a node or communication link, nodes can have a mistaken
idea of who their leaders are. However, within a fixed period of time, every
non-failed node learns who its leader is.

A node that believes itself to be the leader sets its timer to awaken it
Period seconds after sending a message. We assume that the node can be
awakened up to TODelay seconds after the timeout. (By letting Period
be the minimum timeout interval, this models both delay in reacting to
a timeout and variation in the running rate of physical timers.) We also
assume that a message is received at most MsgDelay seconds after it is sent.
A simple calculation shows that the algorithm achieves stability if, upon
receiving a message from its leader, a node n sets its timer to time out no
sooner than Period + TODelay + dist [n] ∗MsgDelay seconds in the future,
where dist [n] is the distance from n to its leader.

Correctness of this algorithm means that if no failure or repair has oc-
curred for a sufficiently long period of time, then every node knows its leader.
Stating this condition formally requires adding a history variable to record
the time of the last failure or repair. To simplify the algorithm’s descrip-
tion and the statement of its correctness, we assume that nodes do not fail.
Correctness then means that, by a certain time, every node n knows its
leader.
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For simplicity, the TLA+ specification assumes that there are N nodes,
numbered from 1 to N . The set Node of node numbers equals 1 . . N . The
network topology is described by a constant parameter Nbrs, where Nbrs(n)
is the set of neighbors of node n—that is, the set of nodes with a link to n.

The specification LSpec is defined in module Leader of Figure 11, on
pages 33–34. A node n maintains the following variables:

ldr [n] The node that n believes to be its leader.

dist [n] What n believes to be its distance to ldr [n].

timer [n] A countdown timer for node n’s timeout action. To further sim-
ply the specification, we use this timer to express both upper-
and lower-bound constraints by allowing the action to occur
only after timer [n] becomes negative and requiring it to occur
before timer [n] reaches −TODelay .

The variable msgs represents the messages in transit. A message has the
following fields:

src The sender.

dest The destination node.

ldr The leader that originated the message.

hops The number of times the message has been forwarded.

rcvTimer A countdown timer used to express the upper-bound con-
straint on message-delivery time.

There could be multiple copies of the same message in transit at the same
time. The value of msgs is therefore a bag. A bag (also called a multiset)
is like a set, except that it can contain more than one copy of an element.
The following operators on bags are defined in the standard Bags module:

BagToSet(B) The set of distinct elements in bag B .

SetToBag(S ) A bag containing one copy of each element in set S .

B1 ⊕ B2 The union of bags B1 and B2.

B1 ª B2 Bag B1 with elements of bag B2 removed, one copy of
an element being removed from B1 for every copy of the
same element in B2.
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module Leader
extends Reals, Bags

constants N , Nbrs( ), MsgDelay , TODelay , Period
Node ∆= 1 . . N

variables ldr , dist , timer , msgs, now

Init ∆= ∧ ldr = [n ∈ Node 7→ n]
∧ dist = [n ∈ Node 7→ 0]
∧ timer = [n ∈ Node 7→ Period ]
∧msgs = EmptyBag
∧ now = 0

MsgsSent(n, S ) ∆= SetToBag([src : {n}, dest : S , ldr : {ldr ′[n]},
hops : {dist ′[n]}, rcvTimer : {MsgDelay}])

TimeOut(n) ∆= ∧ timer [n] < 0
∧ ldr ′ = [ldr except ![n] = n]
∧ dist ′ = [dist except ![n] = 0]
∧msgs ′ = msgs ⊕MsgsSent(n, Nbrs(n))
∧ timer ′ = [timer except ![n] = Period ]
∧ unchanged now

RcvMsg(n) ∆=
∧ ∃ms ∈ BagToSet(msgs) :

∧ms.dest = n
∧ if ∨ms.ldr < ldr [n]

∨ ∧ms.ldr = ldr [n]
∧ms.hops + 1 ≤ dist [n]

then ∧ ldr ′ = [ldr except ![n] = ms.ldr ]
∧ dist ′ = [dist except ![n] = ms.hops + 1]
∧msgs ′ = (msgs ª SetToBag({ms}))

⊕ MsgsSent(n, Nbrs(n) \ {ms.src})
∧ timer ′ =

[timer except ![n] = Period + TODelay +
(ms.hops + 1) ∗MsgDelay ]

else ∧msgs ′ = msgs ª SetToBag({ms})
∧ unchanged 〈ldr , dist , timer〉

∧ unchanged now

Figure 11a: Module Leader (beginning).
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Tick ∆= ∃ d ∈ {r ∈ Real : r > 0} :
∧ ∀n ∈ Node : timer [n] + TODelay ≥ d
∧ ∀ms ∈ BagToSet(msgs) : ms.rcvTimer ≥ d
∧ now ′ = now + d
∧ timer ′ = [n ∈ Node 7→ timer [n]− d ]
∧msgs ′ = let Updated(ms) ∆=

[ms except !.rcvTimer = ms.rcvTimer − d ]
in BagOfAll(Updated , msgs)

∧ unchanged 〈ldr , dist〉
Next ∆= (∃n ∈ Node : TimeOut(n) ∨ RcvMsg(n)) ∨ Tick

LSpec ∆= Init ∧2[Next ]〈ldr , dist ,msgs, timer ,now〉

We now state the assumptions about the constants, and define the predicate Correctness
whose invariance asserts correctness of the algorithm.

assume ∧N ∈ Nat
∧ ∀n ∈ Node : ∧Nbrs(n) ⊆ Node

∧ ∀m ∈ Nbrs(n) : n ∈ Nbrs(m)
∧ {MsgDelay , TODelay , Period} ⊆ {r ∈ Real : r > 0}

Ball(i , n) ∆= The set of nodes a distance of at most i from node n.

let B [j ∈ 0 . . i ] ∆= if j = 0
then {n}
else B [j − 1] ∪ union {Nbrs(m) : m ∈ B [j − 1]}

in B [i ]

Min(S ) ∆= choose i ∈ S : ∀ j ∈ S : i ≤ j
The minimum of a non-empty set S of numbers

Dist(m, n) ∆= Min({i ∈ 0 . . N : m ∈ Ball(i , n)})
The distance between nodes m and n, if it is finite.

Correctness ∆=
let Ldr(n) ∆= Min(Ball(N , n)) The leader of node n.

in ∀n ∈ Node :
(now > Period + TODelay + Dist(n, Ldr(n)) ∗MsgDelay)
⇒ (ldr [n] = Ldr(n))

theorem LSpec ⇒ 2Correctness

Figure 11b: Module Leader (end).
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The actions of node n are TimeOut(n), which is enabled by a timeout,
and RcvMsg(n), which describes the receipt of a message. The operator
MsgsSent is used in these two actions to describe the bag of messages being
sent. The Tick action advances now and and decreases the timers. Its
first two conjuncts (the enabling conditions) enforce the upper bounds on
message delay and on the execution of TimeOut(n).

The last part of module Leader asserts the algorithm’s correctness, start-
ing with the required assumptions about the parameters. The state predi-
cate Correctness asserts that, for each node n, if now is large enough, then
ldr [n] equals n’s leader. (The definition relies on the observation that, in
a graph of N nodes, the distance between any two nodes is less than N .)
Invariance of Correctness implies that, whenever enough time has elapsed,
every node knows its leader.

An inductive invariance proof of correctness is straightforward and is left
as an exercise for the reader.

5 Avoiding Zeno Specifications

If now is just another variable, nothing prevents us from writing specifica-
tions in which it does not behave like time. It is easy to convince ourselves
that the value of now is always a real number that never decreases. How-
ever, more subtle unphysical behaviors are possible. For example, our second
specification of Fischer’s algorithm allows “Zeno” behaviors, in which now
remains bounded. We could disallow such behaviors by conjoining to the
specification the formula

NZ ∆= ∀r ∈ Real : 3(now > r)

requiring that now increase without bound. But there is no need to do that.
We don’t care what happens in behaviors in which time is bounded, because
such behaviors do not represent actual executions of the algorithm. We
showed that both the physically possible behaviors and the Zeno behaviors
satisfy mutual exclusion and the real-time progress property.

While allowing Zeno behaviors is not a problem, forcing them is. A
specification would be incorrect, in the sense of not being physically imple-
mentable, if it ever required time to remain bounded—that is, if it could
reach a state from which time was unable to increase without bound. A
nonZeno specification is defined to be one such that any finite behavior that
satisfies it can be extended to an infinite behavior satisfying it in which now
is unbounded [2]. A sensible real-time specification must be nonZeno.
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As an example of Zeno (non-nonZeno) and nonZeno specifications, con-
sider our second specification of Fischer’s algorithm. Statement c must be
executed when less than Gamma seconds and more than Epsilon seconds
has elapsed after control reaches it. This implies that, if Gamma ≤ Epsilon,
then now can advance by at most Gamma seconds after control reaches c.
The specification is therefore Zeno if Gamma ≤ Epsilon. It is nonZeno if
Gamma > Epsilon.

Conjoining formula NZ does not solve the problem of Zeno specifications.
If a specification is Zeno, requiring time to be unbounded simply rules out
all finite behaviors that reach states in which now must remain bounded.
But those behaviors were probably allowed because of an error in the speci-
fication. If Gamma ≤ Epsilon, conjoining NZ to our second specification of
Fischer’s algorithm asserts that thread t cannot execute statement b when
x = t .

The problem of avoiding Zeno specifications exists for implicit-time as
well as explicit-time specifications. Implicit-time languages can be con-
strained to permit only nonZeno specifications, but at a cost to their ex-
pressiveness. Such constraints would probably turn out to be instances of
a general theorem for showing that specifications written in a conjunctive
style are nonZeno [2, Theorem 1]. However, that theorem does not apply to
the kind of simple explicit-time specifications considered here.

Being nonZeno means that for any real number r , from any reachable
state it is possible to reach a state in which now is greater than r . This
assertion can be expressed and proved in some logics, but not in the linear-
time logic underlying TLA. There is a general method of using TLA to prove
that a specification is nonZeno. Let Next be the specification’s next-state
action and let s A−→ t mean that the pair s, t of successive states is an action
A step. Define a subaction of the specification to be an action A satisfying
the following condition: for any reachable state s, if there exists a state t such
that s A−→ t , then there exists a state u such that s A∧Next−→ u. In particular,
A is a subaction if A implies Next . To prove that a specification is nonZeno,
one finds weak and/or strong fairness conditions on subactions of the next-
state action such that they and the specification imply NZ [2]. (This is an
instance of a general method for proving possibility properties [24].) For
specification FSpec1 of Fischer’s algorithm, it suffices to take weak fairness
of StmtB(t) for every thread t and strong fairness of Tick∧(now ′ ≥ now+1).

An analogous method for proving that a specification is nonZeno should
be possible with other formalisms. However, in most other formalisms, ac-
tions are linguistic constructs rather than formulas, so the corresponding
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proof may require using semantic reasoning to rewrite the specification.
I expect that in most applications, the intended specification will be

obviously nonZeno—as is the case with our examples. However, when writ-
ing a formal specification, it is easy to make small mistakes that yield a
specification quite different from the intended one. It’s therefore a good
idea to check a specification in as many ways as we can. Verifying that an
“obviously” nonZeno specification is really nonZeno provides a useful check.

6 Model Checking

6.1 General Observations

Model checking a specification consists of mechanically verifying that all
possible executions satisfy the desired correctness properties. Specifications
typically contain unspecified parameters, such as the number of processes
or the size of a buffer. Ordinary model checking is performed for specific
instances of the specification obtained by substituting actual values for the
parameters. The likelihood that model checking has missed an error in the
specification depends on the variety of different instances that have been
checked. There are more sophisticated forms of model checking that employ
abstraction techniques, sometimes with simple mechanical theorem check-
ing, to verify the specification for all values of the parameters. However,
these approaches are still primarily topics of research and are not widely
used. I will restrict my attention to ordinary, naive model checking algo-
rithms.

Model checking requires that the set of reachable states be finite. In
practice, not only must that set be finite, but it must not be too large.
The size of the state space is often an exponential function of the parame-
ters. This usually means that one cannot check large enough instances of
the specification to obtain complete confidence in its correctness. However,
checking even small instances usually catches many bugs.

Real-time specifications have an infinite set of reachable states because
time is unbounded. A simple method for checking infinite-state specifica-
tions is to restrict model checking to a finite subset of the set of reachable
states. The TLC model checker can be instructed to limit itself to examining
states that satisfy a constraint, which can be an arbitrary state predicate.
For a discrete-time specification that starts with now = 0, we can remove
the infinite number of times by using the constraint now ≤ MaxNow for
some constant MaxNow . Of course, the model checker can then find only
errors that manifest themselves within MaxNow seconds.
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There is a better way to model-check real-time specifications than by
explicitly bounding time. A clue to how it can be done is provided by the
specifications of Fischer’s algorithm. As observed above, we could simply
eliminate now from those specifications without changing the algorithm.
The resulting specifications then have a finite number of reachable states
and can easily be model checked. Fischer’s algorithm illustrates the fact
that almost all real-time specifications are symmetric with respect to time
translation. What a system does next generally depends on the amount of
time that has elapsed since other events have occurred, not on the actual
time. To explain how to take advantage of this time symmetry, I first explain
what symmetry means and how it can be used in model checking.

6.2 Model Checking with Symmetry

6.2.1 Specifications and Temporal Properties

For now, I take a semantic view in which a state is an assignment of values
to the sequence vars of all the specification’s variables10. The state space of
a specification is the set of all such states. Semantically, a state predicate
is a predicate (Boolean function) on states, and an action is a predicate on
pairs of states. The formula s A−→ t asserts that action A is true on the pair
s, t of states.

A behavior is a sequence of states. A temporal property is a predicate on
behaviors. Temporal properties are represented syntactically as temporal
formulas. We usually conflate the property and the formula that represents
it.

I assume a specification S that consists of an initial predicate Init , a
next-state action Next , and a liveness assumption L. (If the specification
has no liveness assumption, then L = true.) For TLA, Next is an action
of the form [N ]vars that allows stuttering steps. The initial predicate and
next-state action form the safety part of the specification S, which I write S.
A behavior s1, s2, . . . satisfies S iff s1 satisfies Init and s i

Next−→ s i+1 for all i .
The behavior satisfies S iff it satisfies both S and the liveness assumption L.

6.2.2 Symmetry

A symmetry is an equivalence relation on states. A state predicate P is
symmetric with respect to a symmetry ∼ iff, for any states s and t with

10This is different from the usual semantics of TLA in which a state is an assignment
of values to all variables.
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s ∼ t , predicate P is true in state s iff it is true in state t . An action A is
symmetric with respect to ∼ iff for any states s1, s2, and t1,

s1
A−→ t1 s1

A−→ t1

o implies there exists t2 such that o o
s2 s2

A−→ t2

In other words, for any states s1 and s2 with s1 ∼ s2 and any state t1, if
s1

A−→ t1 then there exists a state t2 with t1 ∼ t2 such that s2
A−→ t2. I

usually omit with respect to ∼ when it is clear what the relation ∼ is.
A symmetry ∼ is extended to an equivalence relation on behaviors in the

obvious way by letting two behaviors be equivalent iff they have the same
length and their corresponding states are equivalent. A temporal property
is symmetric (with respect to ∼) iff, for every pair of behaviors σ and τ with
σ ∼ τ , the property is true of σ iff it is true of τ .

A temporal formula is constructed from state predicates and actions
by applying temporal operators, logical connectives, and ordinary (non-
temporal) quantification. The formula is obviously symmetric if each of
its component state predicates and actions is symmetric. The converse is
not true. For example, the formula 2P ∨ 3¬P is symmetric even if the
predicate P is not symmetric, because it is true for all behaviors.

6.2.3 Model Checking

An explicit-state model checker such as TLC works by computing the di-
rected graph G of a specification’s reachable states. The nodes of G are
states, and G is the smallest graph satisfying the following two conditions:
(i) G contains all states satisfying the initial predicate Init , and (ii) if state
s is a node of G and s Next−→ t , then G contains the node t and an edge
from s to t . Paths through G (which may traverse the same node many
times) starting from an initial state correspond to behaviors satisfying the
specification’s safety part S. Those behaviors that also satisfy its liveness
assumption are the ones that satisfy the specification.

The model checker constructs G by the following algorithm, using a set
U of unexamined reachable states.

• Let U equal the set of states satisfying Init and let G be the graph
with set of nodes U and no edges. More precisely, start with U and G
empty, sequentially enumerate the states satisfying Init , and add each
state not already in G to both U and G.
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• While U is nonempty, choose some state s in U and enumerate all
states t satisfying s Next−→ t . For each such t : (i) if t is not in G then
add it to G and to U ; (ii) if there is no edge from s to t in G, then add
one.

When model checking under a constraint, a state is added to U and G only
if it satisfies the constraint.

Model checking under a symmetry ∼ consists of constructing a smaller
graph E by adding a state to U and E only if E does not already contain an
equivalent state. The graph E constructed in this way satisfies the following
properties:

• s 6∼ t for every distinct pair of nodes s, t of E .

• For every state s satisfying Init , there is a node t in E such that t
satisfies Init and s ∼ t .

• For every node s of E and every state t such that s Next−→ t , the graph
E contains a node t ′ with t ∼ t ′ and an edge from s to t ′.

The model checker then checks the specification as if E were the reachable-
state graph.

A real model checker can execute such an algorithm only if the graph it
constructs is finite. Otherwise, it will never finish and will eventually run
out of storage. However, we can define a theoretical model checker that
performs these algorithms even for an infinite state space. Such a model
checker can check all the specifications in Sections 2–4, with or without
symmetry, despite their infinite state spaces. I will show in Section 6.3 how
these specifications can be checked with a real model checker. For now, I
ignore practical concerns and assume a theoretical model checker that can
handle an infinite state graph. All the results apply a fortiori if the state
graph is finite.

We would like model checking with symmetry to be equivalent to ordi-
nary model checking. For this to be the case, the following condition must
hold:

SS. A behavior satisfies S iff it is equivalent (under ∼) to a behavior de-
scribed by a path through E starting from an initial state.

This condition does not imply that the behaviors described by paths through
E satisfy S. It asserts only that those behaviors are equivalent to ones that
satisfy S.
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A simple induction argument shows that condition SS is true if the spec-
ification satisfies two properties:

S1. (a) Init is symmetric, or
(b) No two states satisfying Init are equivalent.

S2. Next is symmetric.

Let us call the specification safety symmetric (with respect to ∼) iff it sat-
isfies S1 and S2.

An explicit-state model checker checks that a correctness property holds
for every behavior described by a path through the state graph starting from
an initial state. More precisely, if the specification’s liveness assumption is
L, a property F is checked by checking that L ⇒ F holds for every such
behavior. A symmetric property is true of a behavior iff it is true of any
equivalent behavior. Condition SS therefore implies that if L is symmetric,
then model checking with symmetry is equivalent to ordinary model checking
for verifying a symmetric property F . Thus, model checking and model
checking with symmetry are equivalent for a safety symmetric specification
with a symmetric liveness assumption.

The simplest kind of temporal property is a state predicate P , which
as a temporal formula asserts that P is true initially. It is obvious that
if the specification satisfies S1(b), then model checking with symmetry is
equivalent to ordinary model checking for verifying that P is satisfied, even
if P is not symmetric.

6.2.4 Expressing Symmetry

TLC provides two ways of describing symmetries. The first is symmetry
under a set Π of permutations of a constant set C . States s and t are
equivalent under this symmetry iff there is a permutation π in Π such that
replacing every c in C by π(c) transforms s to t . The general definition of
symmetry under a set of permutations is difficult, but its meaning is fairly
obvious for the permutation sets that TLC handles.

In the Fischer algorithm, we can let Π be all permutations of the set
Thread of threads. It is easy to see that the initial condition and the next-
state action of the two Fischer algorithm specifications FSpec1 and FSpec2
are symmetric under this set of permutations, so those specifications are
safety symmetric. The invariant MutualExclusion is also symmetric. Hence,
we can (theoretically) check that our specifications of Fischer’s algorithm
guarantee mutual exclusion by model checking with symmetry under per-
mutations of threads.
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The liveness property Progress of the specification FSpec1 is symmetric
under this symmetry relation, since it has the form P ; Q where predicates
P and Q are symmetric. However, the liveness assumption Liveness is
not. This is not obvious, since performing a permutation of the threads
throughout a behavior does not change whether or not the behavior satisfies
Liveness. However, the definition of symmetry requires that the truth of the
property not change even if we permute the threads differently in different
states of the behavior. Property Liveness is the conjunction of fairness
conditions on all the individual threads. By choosing the permutation for
the threads separately in each state, we can transform a behavior satisfying
Liveness into an equivalent one in which some particular thread never takes a
step. (There is no requirement that the equivalent behavior satisfy the safety
part of the specification.) In general, we can be sure that the conjunction
of fairness conditions for different actions is symmetric only if each of those
actions is symmetric. This is not the case for property Liveness, since each
of its fairness conditions is for an action of a particular thread. We therefore
cannot check liveness property of FSpec1 by model checking with symmetry
under permutations of threads.

The second method TLC provides for describing a symmetry is view
symmetry. A view symmetry is defined by an arbitrary state function called
a view. (A state function is an expression that contains only constants and
unprimed variables.) Two states are equivalent under a view V iff the value
of V is the same in the two states. Many explicit-state model checkers test
if a state s is in the state graph G constructed so far by keeping the set of
fingerprints of nodes in G and testing if G contains a node with the same
fingerprint as s. Such a checker is easily modified to implement checking
under view symmetry by keeping fingerprints of the views of states rather
than of the states themselves.

For the Fischer algorithm, we let V consist of the tuple of all the spec-
ification’s variables except now . This means that two states are equivalent
iff they differ only in the value of now . It is easy to see that our two speci-
fications of the algorithm are safety symmetric under this symmetry. (The
Init predicates are not symmetric, but condition S1(b) holds.) The invariant
MutualExclusion is symmetric, so we can use model checking with symmetry
under this view to verify mutual exclusion. Both the property Progress and
the liveness assumption Liveness of module Fischer1 are symmetric under
this view. We can therefore use model checking under this view to check
that FSpec1 satisfies its liveness property.

We can try using this same idea for any real-time specification, defining
a view to consist of the tuple of all variables except now . The specification
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LSpec of the leader algorithm in Section 4 is safety symmetric, but its invari-
ant Correctness is not symmetric because it depends on the value of now .
The specification HFSpec2 of the Fischer algorithm with history variable h
in Section 3.3 is not safety symmetric under this view because its next-state
action can set h to a value that depends on the value of now . Its correctness
condition is the invariance of a state predicate that is also not symmetric
under this view because it depends on the value of now .

View symmetry is equivalent to abstraction [12, 15] for a symmetric spec-
ification S. Abstraction consists of checking S by model checking a different
specification A called an abstraction of S. The view corresponds to the
abstraction mapping from states of S to states of A. For our specifications
of Fischer’s algorithm, view symmetry under the view V defined above is
equivalent to an abstraction in which A is obtained from S by eliminating
the variable now .

A model checker may support checking under view symmetry or abstrac-
tion. If not, one must construct the abstract specification A by hand.

6.2.5 Symmetry Under Time Translation

We have seen above that our two versions of Fischer’s algorithm are safety
symmetric under the view consisting of the tuple of all variables except now .
That symmetry is a special case of time-translation symmetry, in which two
states are equivalent iff they are the same except for absolute time. I now
define what this means, using the notation that s.v is the value of variable
v in state s.

A time translation is a family of mappings T d on the state space of the
specification S that satisfies the following properties, for all states s and all
real numbers d and e.

• T d (s).now = s.now + d

• T 0(s) = s

• T d+e(s) = T d (T e(s))

Specification S is invariant under this time translation iff it satisfies the
following two conditions, for all real numbers d .

T1. (a) A state s satisfies Init iff T d (s) does, or
(b) s.now = t .now for any states s and t satisfying Init .

T2. s Next−→ t iff T d (s) Next−→ T d (t), for any states s and t .
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Given a time translation, we define the time-translation symmetry ∼ by
s ∼ t iff s = T d (t) for some d . It is easy to check that T1 and T2 imply S1
and S2 for this symmetry. Hence, a specification that is invariant under a
time translation is symmetric under the corresponding time-translation sym-
metry. Invariance under time translation is stronger than time-translation
symmetry because, in addition to implying SS, it implies the following prop-
erty.

TT. Let s1, . . . , sk and t1, t2, . . . be two behaviors satisfying S (the second
behavior may be finite or infinite). If sk = T d (t j ), then the behavior
s1, . . . , sk ,T d (t j+1),T d (t j+2), . . . also satisfies S.

To define a time translation, we must define T d (s).v for every real number
d , state s, and variable v . Explicit-time specifications have three kinds
of variables: now , timer variables, and “ordinary” variables that are left
unchanged by the Tick action. We know that T d (s).now equals s.now + d .
Time translation should not change the value of an ordinary variable v , so
we should have T d (s).v = s.v for such a variable. For a timer variable t , we
should define T d (s).t so that the number of seconds in which t will time out
is the same in s and T d (s). We have defined three kinds of timer variables:
countdown timers, count-up timers, and expiration timers. The value of a
countdown or count-up timer directly indicates the number of seconds until
it times out, so T d (s).ct should equal s.ct for such a timer ct . Whether or
not an expiration timer et has timed out depends on the value of et − now .
The time translation T d preserves the number of seconds until et times out
iff T d (s).et−T d (s).now equals s.et−s.now . Since T d (s).now = s.now +d ,
this is true iff T d (s).et = s.et + d .

With this definition of the T d , any explicit-time specification is invariant
under time translation, and hence safety symmetric under time-translation
symmetry, if it expresses real-time requirements only through timer vari-
ables. Let v1, . . . , vm be the specification’s ordinary variables and count-
down and count-up timer variables, and let et1, . . . , etn be its expiration
timer variables. Then symmetry under time translation is the same as view
symmetry with the view

〈v1, . . . , vm , et1 − now , . . . , etn − now 〉
(In case an expiration timer can have the value ∞ or −∞, we define ±∞−r
to equal ±∞ for any real number r .)

Since the specifications FSpec1 and FSpec2 of Fischer’s algorithm and
LSpec of the leader algorithm use only countdown timers, time symmetry is
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the same as view symmetry with the view consisting of the tuple of all vari-
ables other than now . In the specification HFSpec2 of module HFischer2,
the variable h is an expiration timer, being set to now when a certain con-
dition becomes true and reset to Infinity when it becomes false. Variables
ubTimer and lbTimer are countdown timers and pc and x are ordinary
variables, so this specification is invariant under time translation, and time
symmetry is the same as view symmetry under the view

〈pc, x , ubTimer , lbTimer , h − now 〉
This is not quite correct in TLA+because the standard Reals module defines
Infinity only to satisfy −Infinity < r < Infinity for any real r , not to satisfy
Infinity − r = Infinity . We therefore define ª by

s ª r ∆= if s = Infinity then Infinity else s − r

and write the view as

〈pc, x , ubTimer , lbTimer , h ª now 〉
Specification HFSpec2 is safety symmetric under this view. Moreover, its
correctness property

2(now − (4 ∗Delta + 2 ∗Gamma − Epsilon) < h)

simply asserts that the timer h never times out, so it is also symmetric
under this view. It is easy to see this symmetry directly, since the condition
is equivalent to

2(−(4 ∗Delta + 2 ∗Gamma − Epsilon) < h ª now)

which depends only on hªnow . We can therefore use model checking under
this view symmetry to check that HFSpec2 satisfies its correctness property.

6.2.6 Periodicity and Zeno Behaviors

A nonZeno behavior is one that satisfies property NZ , which asserts that
time increases without bound. Property NZ is not symmetric under time
translation. By replacing states of a behavior with ones translated back
to the behavior’s starting time, we can construct an equivalent behavior in
which now never changes.

A specification S is nonZeno iff every finite behavior satisfying S can be
extended to an infinite one satisfying S and NZ . Since NZ is not symmet-
ric under time translation, model checking with time-translation symmetry
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cannot be used to check that a specification is nonZeno. However, we can
take advantage of time-translation invariance when using ordinary model
checking to show that a specification is nonZeno. I now explain how this is
done.

Let S be a specification that is invariant under time translation. For sim-
plicity, let’s assume that the initial condition of S asserts that now equals 0,
so s.now ≥ 0 for all reachable states s. For any reachable state s, let
LeastTime(s) be the greatest lower bound of the values t .now for all states
t equivalent to s (under time-translation symmetry). The period of S is de-
fined to be the least upper bound of the values LeastTime(s) for all reachable
states s of S. Intuitively, if a system’s specification has a finite period λ,
then all its possible behaviors are revealed within λ seconds. More pre-
cisely, any λ-second segment of a system behavior is the time translation of
a segment from the first λ seconds of some (possibly different) behavior.

Let us define the condition NZλ as follows, where λ is a positive real
number.

NZλ. Every finite behavior satisfying S that ends in a state s with s.now ≤ λ
can be extended to a behavior satisfying S that ends in a state t with
t .now ≥ λ + 1.

Assume that specification S is time-translation invariant, has a period less
than or equal to the real number λ, and satisfies NZλ. The following proof
shows that S is then nonZeno.

1. Assume: Any finite behavior σ satisfying S with final state s can be
extended to a behavior τ satisfying S with final state t such
that t .now ≥ s.now + 1.

Prove: S is nonZeno.
1.1. For any natural number k , any finite behavior σ satisfying S with

final state s can be extended to a behavior τ k satisfying S with final
state t such that t .now ≥ s.now + k .
Proof: By simple induction from the step 1 assumption.

1.2. Q.E.D.
Proof: To prove that S is nonZeno, we must show that any finite
behavior σ satisfying S can be extended to an infinite behavior τ
satisfying S in which the value of now grows without bound. We can
let τ equal the limit as k →∞ of the behaviors τ k whose existence is
asserted by step 1.1. The behavior τ satisfies S because every finite
prefix of it does.

2. Assume: σ is a finite behavior satisfying S with final state s.
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Prove: There exists a behavior τ satisfying S that extends σ and has
final state t with t .now ≥ s.now + 1.

2.1. Choose real number d and reachable state u with u.now ≤ λ and
s = T d (u).
Proof: d and u exist by the reachability of s and the assumption
that S has period at most λ.

2.2. Let ρ be a behavior satisfying S that ends in u.
Proof: ρ exists by step 2.1, which asserts that u is reachable.

2.3. Extend ρ by appending a sequence of states w1, . . . ,wn to obtain a
behavior satisfying S such that wn .now ≥ λ + 1.
Proof: This can be done because ρ satisfies S by 2.2 and S is
assumed to satisfy NZλ.

2.4. The behavior τ obtained by appending T d (w1), . . . ,T d (wn) to σ
satisfies S.
Proof: Since s = T d (u) (step 2.1) and ρ has final state u (step 2.2),
TT and 2.3 imply that τ satisfies S. (TT holds because S is assumed
to be invariant under time translation.)

2.5. Q.E.D.
Since T d (wn) is the final state of τ , 2.4 implies that to complete the
proof of step 2, we need only show that T d (wn).now ≥ s.now + 1.
This follows from u.now ≤ λ (step 2.1) , wn .now ≥ λ+1 (step 2.3),
and

T d (wn).now = wn .now + d
≥ u.now + d + 1 [by wn .now ≥ λ + 1 ≥ u.now + 1]
= s.now + 1 [because s = T d(u) by 2.1]

3. Q.E.D.
Proof: Steps 1 and 2 trivially imply that S is nonZeno.

Let us review what has just been proved. Under the assumption that the
initial states of S all have now = 0, I showed that if S is invariant under
time translation, has a period of at most λ, and satisfies NZλ, then it is
nonZeno. To use model checking to prove that S is nonZeno, the checker
must be able to verify that S has a period of at most λ and that it satisfies
NZλ.

Here is how we can use model checking under time-translation symme-
try to find an upper bound on the period of S. Let E be the state graph
constructed by model checking under this symmetry. Because every reach-
able state is equivalent to a node in E , the period of S is less than or equal
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to the least upper bound of the values s.now for all nodes s of E . (Since
all initial states have now = 0, the period of most specifications will equal
this least upper bound if the model checker uses a breadth-first construc-
tion of the state graph.) Debugging features allow the TLC user to insert in
the specification expressions that always equal true, but whose evaluation
causes TLC to perform certain operations. Using these features, it is easy
to have TLC examine each state s that it finds and print the value of s.now
iff s.now > t .now for every state t it has already found.11 This makes com-
puting an upper bound on the period of S trivial, if the graph E is finite.
An explicit-state model checker that lacks the ability to compute the upper
bound can verify that λ is an upper bound on the period by performing
model checking under time-translation symmetry to verify the invariance of
now ≤ λ.

To check that S satisfies NZλ, we must show that from every reachable
state with now ≤ λ, it is possible to reach a state with now ≥ λ+1. We can
do this by model checking with the constraint now ≤ λ + 1, in which the
model checker ignores any state it finds with now > λ+1. This is easy to do
with a model checker that can check possibility properties. With one that
checks only linear-time temporal properties, we must show that S together
with fairness assumptions about subactions of its next-state action imply
that the value of now must eventually reach λ + 1. That is, we add fairness
assumptions on certain actions and check the property 3(now ≥ λ + 1)
under the constraint now ≤ λ + 1.

There is one tricky point to checking a liveness property F under a
constraint. The liveness assumption L might be violated by all behaviors
satisfying the constraint, in which case the checker would decide that the
property F holds because it finds L ⇒ F to be trivially true. In particular, a
fairness assumption on the Tick action could imply that now grows without
bound, which would be false for every path through the state graph con-
structed under the constraint now ≤ λ+1. Model checking with a constraint
P is equivalent to ordinary model checking of the specification obtained by
conjoining the condition P ′ to the next-state action. For our specifications,
model checking with the constraint now ≤ λ + 1 is equivalent to chang-
ing the Tick action to Tick ∧ (now ′ ≤ λ + 1). The fairness conditions we
use to check NZλ must be on subactions of the modified next-state action.
Recall that we can prove that the specification FSpec1 of Fischer’s algo-
rithm is nonZeno by proving NZ under the assumptions of weak fairness on
StmtB(t) for every thread t and strong fairness of Tick ∧ (now ′ ≥ now +1).

11One of the features needed was added to TLC after publication of [25].
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For verifying NZλ by model checking with the constraint now ≤ λ + 1,
we must replace the latter assumption with strong fairness of the action
Tick ∧ (λ + 1 ≥ now ′ ≥ now + 1).

All of this, including the definition of period, has been under the assump-
tion that now = 0 for all initial states. Extending the definition of period to
the general case is not hard, but there is no need to do it. Invariance under
time translation (in particular, condition T1) requires that either (a) the
set of initial states is invariant under time translation, or (b) the value of
now is the same in all initial states. In case (b), that value will probably
either be 0 or else a parameter of the specification that we can set equal to
0. In case (a), we conjoin the requirement now = 0 to the initial predicate.
Invariance under time translation implies that, in either case, modifying the
specification in this way does not affect whether or not it is nonZeno.

6.2.7 Checking Inductive Invariance

Model checking can at best verify specific instances of a specification. At-
taining sufficient confidence in a specification’s correctness may require a
proof. Hand proofs are error-prone, but mechanical verification is usually
too time-consuming to be practical. A compromise is to make hand proofs
more reliable by using a model checker to find errors in it.

At the heart of any assertional proof is an inductive invariant—an in-
variant Inv such that, for any state s (not necessarily reachable) satisfying
Inv , every state t satisfying s Next−→ t also satisfies Inv . A model checker can
easily check that Inv is an invariant of the specification. In principle, it can
just as easily check that Inv is inductive by checking that it is an invariant
of the specification obtained by replacing the initial predicate with Inv .

While this works in principle, it seldom works in practice. There are
usually too many states that satisfy the inductive invariant—many more
than are reachable. Moreover, even if the set of states satisfying the in-
variant is not too large, computing it may take too long. Most inductive
invariants start with conjuncts that express type correctness. To compute
the set of states satisfying such an invariant Inv , TLC enumerates all type-
correct states and throws away the ones not satisfying the rest of Inv . This
process can sometimes be made more efficient by using a more sophisticated
type-correctness invariant that takes advantage of relations among the vari-
ables. However, it is still usually feasible only for very small instances of the
specification.

For a time-translation invariant specification and a time-symmetric in-
ductive invariant, model checking can use time symmetry. However, the
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type invariant for a discrete-time specifications asserts only that now is a
natural number. To bound the state space, we must modify the type invari-
ant to assert that 0 ≤ now ≤ µ for some sufficiently large µ. The value of
µ is large enough if every reachable state found by the model checker is an
initial state. TLC finds reachable states by a breadth-first search and prints
the depth of the search tree, which equals 1 iff every reachable state is an
initial state. TLC’s ability to print the maximum value of now allows one to
find a large enough value of µ. For a specification that uses only countdown
or count-up timers and no expiration timers, µ can be taken to equal 0.
Even if checking cannot be performed with a large enough µ to ensure that
the invariant is inductive, it is still a good way to try to find errors.

An explicit-state model checker can seldom check inductive invariance
on large enough instances of a specification to gain much confidence in the
invariant’s correctness. However, because they don’t enumerate states, sym-
bolic model checkers based on Boolean decision diagrams or satisfiability
solving may be better at checking inductive invariance. I don’t know if they
have been used in this way. It is worth testing an inductive invariant with a
model checker even on tiny instances of the specification because any kind
of mechanical checking usually reveals errors. It’s best to correct all errors
the model checker can find before trying to write a proof.

6.3 Model Checking Our Specifications

6.3.1 Modifying the Specifications

TLA+ was not designed with model checking in mind. It is much too
expressive for every possible specification to be model checked. However,
the natural way of writing TLA+ specifications of systems and algorithms
yields specifications that TLC can almost always check—at least for small
instances. TLC was designed so that, in most cases, one can check the spec-
ification without having to modify it. For example, one can check particular
instances by instructing TLC to substitute specific constants for constant
parameters. In practice, one usually writes a “test harness” module that
imports the specification module and adds things like the definition of the
view.

Our specifications use continuous time. For model checking, we must
modify them to make time discrete. We do this by modifying their Tick
actions to increment now by 1. In all our specifications, this can be done
by simply replacing

Tick ∆= ∃d ∈ {r ∈ Real : r > 0} : . . .
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with

Tick ∆= let d = 1 in . . .

I could have avoided having to make this change by writing

PosReal ∆= {r ∈ Real : r > 0}
Tick ∆= ∃d ∈ PosReal : . . .

and then instructing TLC to substitute {1} for PosReal . However, that
would have been “cheating”, since I would have written the specification
that way only for this purpose.

Had we allowed now to assume any real value in the initial state, then
we would also have to modify the initial predicate by replacing the conjunct
now ∈ Real with now = 0.

Specification FSpec1 of Fischer’s algorithm has as liveness assumption
formula NZ , which equals ∀r ∈ Real : 3(now > r). TLC cannot handle
such a conjunction over an infinite set of values, so we must change this
condition for model checking. Since now is advanced only by a Tick action,
a behavior that satisfies NZ must take infinitely many Tick steps. Hence,
NZ implies strong fairness of a Tick action. Therefore, to verify a liveness
property, it suffices to replace the assumption NZ by SFvars(Tick). I have
done this for model checking. In discrete-time specifications, strong fairness
of Tick is better than NZ for asserting that time advances, since it allows
one to ensure syntactically that the fairness properties are on subactions of
the specification.

6.3.2 Measurements

The execution-time results reported here for TLC were obtained on a dual
processor 2.4 GHz PC running Windows XP. TLC is written in Java, and it
was run under the BEA WebLogic JRockitTM version 1.4.2 04 Java Virtual
Machine (JVM). TLC uses multiple threads when building the state graph
and checking safety properties. With a thread-friendly JVM, TLC achieves
speedups of close to N with N processors. With 2 processors, the speedup
under the BEA JVM is roughly a factor of 1.5. When checking a liveness
property on the completed state graph, TLC is single threaded.

The execution times include a fixed startup time of a little over 3 sec-
onds. For example, model checking Fischer’s algorithm with an empty set
of threads, so there is a single reachable state, takes about 3.2 seconds.
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I made no effort to achieve great precision in the timing measurements,
often using the computer concurrently for other tasks like editing and read-
ing mail that were not processor intensive. The time to model check the
same instance of a specification could vary by several seconds on short runs
and several percent on longer ones.

TLC stores on disk the state graph and the list of states whose next states
it has not yet examined. This means that, for checking safety properties, it
is usually limited in the size of the instance it can handle only by time and
not by space. When checking liveness properties, TLC uses a data structure
that must fit in memory. For most of the instances tested here, disk was not
needed. TLC was run with the Java runtime’s maximum memory allocation
parameter set to 700 MBytes, but most instances used much less memory
than that.

6.3.3 Specification FSpec1

Fischer’s algorithm is so simple that model checking it should be easy. If
not, it would be unlikely for model checking real specifications to be feasible.

To model check specification FSpec1, we must choose specific values
for the parameters Delta and Epsilon and for the set of threads. Clearly,
only the number of threads matters. Since Delta is an upper-bound tim-
ing constraint, decreasing its value just eliminates possible behaviors. The
algorithm assumes Delta ≤ Epsilon, so it makes most sense to let Delta =
Epsilon for model checking. I have done that for all the tests reported, so
only the value of Delta is mentioned.

I have used TLC to check the invariance of the predicate MutualExclusion
defined in module FischerPreface and the predicates Inv and LInv used in
the correctness proof. These invariants were checked by TLC using sym-
metry under both time translation and permutations of threads. Time-
translation symmetry is expressed in TLC with the view described in Sec-
tion 6.2.5.

The number of reachable states, and hence the execution time, increases
with the number of threads and the value of Delta. For complicated algo-
rithms, one is lucky to be able to test an instance with as many as 3 threads.
Fischer’s algorithm is so simple that TLC can check invariance properties for
small values of Delta with 6 threads in less than a minute. With N threads,
we expect the number of states to be roughly proportional to DeltaN . The
graph of Figure 12 shows the dependence of the number of states on Delta
for 4 threads. With this number of threads, TLC checks the specification
at an asymptotic rate of about 2700 reachable states per second, taking 102
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Figure 12: Number of reachable states for the specification in module Fis-
cher1 with 4 threads, under time-translation and thread-permutation sym-
metries.

seconds to find the 273134 reachable states for Delta = 30.
Figure 13 shows how the number of states grows with the number of

threads when Delta = 5. The execution time increases much more dramat-
ically than the number of reachable states:

5 threads 3311 states 7 seconds 950 states/second
6 threads 8213 states 35 seconds 260 states/second
7 threads 18530 states 556 seconds 35 states/second

where the number of states per second is obtained by subtracting the es-
timated 3.2 seconds overhead from the execution times. (Execution times
for fewer than 4 threads are too short for the timing measurements to be
meaningful.) There are two reasons for this increase:

• Although symmetry under permutations reduces the total number of
states in the state graph, it does not reduce the number of states t
satisfying s Next−→ t for each state s in the graph. That number increases
with the number of threads that can take a step. As a result, the
number of times TLC generates and examines each reachable state
increases with the number of threads—from an average of 1.7 for a
single thread to 4.6 for 7 threads.
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Figure 13: Number of reachable states for the specification in module Fis-
cher1 with Delta=5, under time-translation and thread-permutation sym-
metries.

• The invariants are universally quantified over the set of threads, so the
time required to check that they hold in an individual state increases
with the number of threads.

For all instances that I have checked having more than one thread, the
period equals 2 ∗ Delta − 1. In light of the many instances tested, it would
be remarkable if this were not true in general.

Symmetry under thread permutations is very effective at reducing the
number of reachable states. For N threads, this symmetry reduces the
number of reachable states by a factor approaching N ! as Delta goes to
infinity. For smaller values of Delta, a larger proportion of the states are
symmetric under some permutations of threads, so the number of reachable
states is reduced by a smaller factor. With 4 threads (N ! = 24), the number
of reachable states is reduced by a factor of 14.1 for Delta = 5 and by a factor
of 20.7 for Delta = 20.

Since we cannot use thread permutation under symmetry to check the
liveness property, we cannot check liveness for as large an instance of the
specification. The largest instance I have tested has 6 threads and Delta = 5,
which produces 2037987 reachable states and for which it takes TLC almost
3 hours to check liveness. However, TLC can check liveness with 6 threads
and Delta = 10 (138644 reachable states) in about 61

2 minutes. It is unlikely
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for the specification to have an error that does not manifest itself in this
instance.

As explained in Section 6.2.6, we check that a time-translation invariant
specification with period at most λ is nonZeno by checking that it satisfies
condition NZλ. This is done by adding a suitable fairness assumption to the
safety part and checking the property 3(now ≥ λ + 1) under the constraint
now ≤ λ+1. For arbitrary theoretical model checking, the fairness assump-
tion includes strong fairness of the action Tick ∧ (λ + 1 ≥ now ′ ≥ now + 1).
For a discrete-time specification in which the Tick action increments now by
1, this is equivalent to strong fairness of Tick ∧ (λ ≥ now). For this version
of Fischer’s algorithm, we also need weak fairness of the action StmtB(t) for
each thread t to ensure that t resets its upper-bound timer and allows now
to advance.

Because the property to be checked is not symmetric under time trans-
lation and the liveness assumption is not symmetric under thread permu-
tation, we can use neither of those two symmetries. The set of reachable
states is bounded by the constraint now ≤ λ+1. However, since states that
differ only in the value of now yield distinct nodes in the state graph, we
expect the graph to have about λ + 1 times as many nodes as under time-
translation symmetry. Because the lower-bound timing constraint rules out
some combinations of values of now and the other variables, there are only
about 60-80% that many nodes in the graph for checking that FSpec1 satis-
fies NZλ. Checking that an instance with four threads is nonZeno takes 11

2
minutes for Delta = 5 and 30 minutes for Delta = 10.

The Fischer algorithm is simple enough that we can hope to check
its inductive invariant on large enough instances to gain confidence in its
correctness—especially since we can use symmetry under thread permuta-
tions as well as time symmetry. The limiting factor in the size of instance
that TLC can handle is that the current implementation gives up if it finds
more than one million initial states. (We have not yet encountered an engi-
neer who writes inductive invariants, and real specifications are unlikely to
have more than a few hundred initial states, so there has been little incentive
to remove this limit.) The largest instances for which TLC can check that
Inv ∧ LInv is an invariant of this specification are

2 threads Delta = 12 490347 states checked in 11
2 minutes

3 threads Delta = 3 99372 states checked in 1 minute
4 threads Delta = 1 7140 states checked in 1

2 minute

(TLC can also check it for a single thread with Delta in the hundreds.)
These instances are large enough to give me much more confidence in my
hand proof.

55



6.3.4 Specification FSpec2

Specification FSpec2 has the additional parameter Gamma, which must be
greater than Epsilon. It is an upper-bound constraint, so increasing its value
increases the set of possible behaviors. As with FSpec1, I checked instances
with Epsilon equal to Delta.

The additional upper-bound timing constraints of FSpec2 give it more
reachable states than FSpec1 for comparable parameters. For example, using
the same symmetries under time translation and thread permutation, and
letting Gamma equal Delta +5, specification FSpec2 has roughly 3 times as
many reachable states as FSpec1 for values of Delta ranging from 5 to 25.
Invariance checking takes a little longer per state—2400 states per second
instead of 2700. For 6 threads and Delta = 5, specification FSpec2 with
Gamma = 12 has about 4 times as many states and takes about 50% longer
per state. For two or more threads, the period of FSpec2 appears to equal
the maximum of 2 ∗Delta − 1 and Gamma − 1.

To verify that FSpec2 is nonZeno, we check condition NZλ using the
fairness property

∧ ∀ t ∈ Thread :
WFvars( ∧ StmtA(t) ∨ StmtB(t) ∨ StmtC (t) ∨ StmtD(t)

∧ SetTimers(t))
∧ SFvars((now ≤ λ) ∧ Tick)

which clearly implies the specification’s next-state action. Its larger number
of reachable states makes checking that FSpec2 is nonZeno correspondingly
harder than checking FSpec1, though still not very hard. For example, with
4 threads, Delta = 5 and Gamma = 8, so the period is 9, checking that
FSpec2 is nonZeno produces a state graph with 248489 states and takes
about 51

4 minutes.
Checking that Inv is an inductive invariant of FSpec2 is also quite feasi-

ble. Maximal instances for which TLC can check it are

2 threads Delta = 10 Gamma = 15 492305 states 11
2 minutes

2 threads Delta = 12 Gamma = 13 467670 states 11
2 minutes

3 threads Delta = 2 Gamma = 5 121088 states 11
2 minutes

6.3.5 Specification HFSpec2

Specification HFSpec2 is obtained from FSpec2 by adding the history vari-
able h. As observed in Section 6.2.5, we check that

now − (4 ∗Delta + 2 ∗Gamma − Epsilon) < h
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is an invariant of HFSpec2 using view symmetry under the view

〈pc, x , ubTimer , lbTimer , h ª now 〉
We also use symmetry under permutations of threads.

The invariant asserts that the value of h can vary from now to now +4∗
Delta + 2 ∗Gamma −Epsilon − 1. Hence, the number of reachable states of
HFSpec2 should be larger than the number for FSpec2 by at most a factor
of 4 ∗ Delta + 2 ∗ Gamma − Epsilon − 1. In the tests I’ve run, the actual
factor lies between Delta and 2 ∗ Delta. The running time per reachable
state seems to be roughly the same for the two specifications. For example,
with 6 threads, Delta = 5, and Gamma = 10, specification HFSpec2 had
5.1 times as many reachable states (175071) and took 7.6 times as long (20
minutes 10 seconds).

As with FSpec1 and FSpec2, the period of HFSpec2 appears to be inde-
pendent of the number of threads. However, it does not seem to be a very
simple function of Delta and Gamma.

We can check that HFSpec2 is nonZeno using the same fairness assump-
tion as for FSpec2. (As explained in Section 5, fairness must be on a sub-
action of the specification. In general, if A is a subaction of a specification
S, then it is also a subaction of the specification obtained from S by adding
a history variable.) In addition to having a larger state space than FSpec2
for the same parameter values, HFSpec2 also has a larger period. With 4
threads, Delta = 3 and Gamma = 5, verifying NF15 for HFSpec2 required
examining 6 times as many reachable states (444638) and took 7.5 times as
long (9.5 minutes) as verifying NF9 for FSpec2.

As expected, inductive invariance checking for HFSpec2 can be per-
formed only on smaller instances than for FSpec2. The maximal values
of parameters for which TLC can check that HInv is an inductive invariant
are

2 threads Delta = 2 Gamma = 8 18182 states 3 minutes
2 threads Delta = 3 Gamma = 6 20414 states 31

2 minutes
3 threads Delta = 1 Gamma = 3 3514 states 21

2 minutes

Although small, these instances were large enough to reveal an error in an
earlier version of HInv .

6.3.6 Specification LSpec

The specification LSpec of the leader algorithm uses only countdown timers
and is invariant under time translation. It has no other symmetries; even if
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the node graph is symmetric, the specification uses the node identifiers and
is therefore not symmetric under permutations of nodes.

Although LSpec is time-translation symmetric, the invariant Correctness
is not because it explicitly mentions now . We could add a timer as a history
variable and restate the correctness property in terms of it, but that is not
necessary. Instead, we model check under a symmetry other than simple
time translation. Formula Correctness has the form

∀n ∈ Node : (now > c(n)) ⇒ (ldr [n] = Ldr(n))

for a constant expression c(n) independent of now . Let Σ be the maximum
of the c(n) for all nodes n. Define a symmetry ∼ by s ∼ t iff s.now and
t .now are either equal or are both greater than Σ. It is easy to see that
Correctness is symmetric under ∼. It is a little less obvious, but also true,
that specification LSpec is symmetric under ∼. This symmetry is described
by the view

〈 ldr , dist , timer , msgs, if now > Σ then Σ + 1 else now 〉
We check the invariance of Correctness by model checking under this view
symmetry.

The parameters of the specification are N and Nbrs, which describe the
graph, and the timing constants Period , TODelay , and MsgDelay . The
latter two are upper-bound constraints, so the number of reachable states
is an increasing function of their values. Figure 14 shows the results of
checking the invariance of Correctness on three different graphs, with 3–5
nodes, for some haphazardly chosen values of the timing bounds. Some of
those results are followed with the results of nonZeno checking for the same
instance, indicating the value of λ for which NZλ was verified. In about a
dozen instances checked for each, the periods are 2 ∗ Period + MsgDelay +
TODelay+1 for the 3-node graph and Period+3∗MsgDelay+2∗TODelay+1
for the 4-node graph.

We expect that increasing a timing bound will increase the number of
reachable states, since it increases the number of possible values of the timer
variables. However, the first three rows for N = 3 and N = 4 show that
increasing Period decreases the number of states. By slowing the system
down, increasing a lower-bound constraint can sometimes reduce the set of
possible behaviors. Increasing Period decreases the rate at which messages
are sent. Since Period is a lower bound on the time between the sending
of messages and MsgDelay is an upper bound on how long a message can
remain in the multiset msgs before being delivered, the maximum num-
ber of messages that can be in transit at any time depends on the ratio
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MsgDelay/Period . The following table gives some idea of what’s going on,
where the results are for the 3-node graph.

MsgDelay msgs in transit
Period MsgDelay TODelay Period states max mean

2 2 1 1 6579 6 3.46
1 2 1 2 240931 12 6.57
3 2 2 .67 20572 6 3.69
10 3 5 .33 247580 6 3.85

(The maximum and mean number of messages in transit were measured
using TLC’s debugging features.) The first two rows show the dramatic
effect of changing Period and leaving the other parameters the same. The
second two rows show that the MsgDelay/Period ratio is just one of the
factors determining the number of messages in transit and the number of
reachable states.

Checking inductive invariance seems to be infeasible for LSpec, even on
a 2-node graph.

6.4 Comparison With Uppaal

A number of algorithms have been developed and implemented in model
checkers for real-time systems [3, 18, 27, 43]. We would like to know how
they compare with the simple method described here.

Most real-time model checkers use continuous-time models and employ
clock-region constructions to check them that are more expensive than the
simpler algorithms of ordinary model checkers. On the other hand, their
execution speed depends only on the ratios of the timing parameters, not on
the absolute values. With the simple discrete-time method described here,
multiplying the parameters by a constant c usually increases the number
of reachable states by a power of c. So the two methods are not directly
comparable, and it would be easy to bias a comparison by the proper choice
of parameters. So we can at best hope for a qualitative comparison of how
the two approaches might work in practice.

Most real-time model checkers require the system to be described in
timed-automata languages that are not expressive enough to describe the
leader algorithm of Section 4. The only real-time model checker I know of
that can handle this algorithm is Uppaal [27]. I have therefore restricted my
attention to Uppaal, one of the most widely used real-time model checkers.

This section describes the use of Uppaal on two specifications—the leader
algorithm and a version of Fischer’s algorithm. The leader algorithm is the
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N = 3 N = 4 N = 5

1
©
H

2

3
1 2 3 4 1 2 3

4

5

©
H

N Period MsgDelay TODelay states time states/sec

3 3 2 1 5760 7 sec 800
2 2 1 6579 10 sec 625
1 2 1 240931 41

2 min 900
5 2 5 82105 70 sec 1150

NZ18 83890 140 sec 590
5 3 5 264225 41

2 min 1000
NZ19 270109 81

2 min 530
5 4 5 836152 16 min 850
3 2 2 20572 20 sec 1050

NZ11 21260 35 sec 630
10 3 5 247580 4 min 975

NZ29 251708 8 min 530
4 3 2 1 5606 12 sec 475

2 2 1 6656 13 sec 490
1 2 1 172531 61

2 min 440
5 2 5 179860 61

2 min 460
NZ22 185228 61

2 min 480
5 3 5 728411 29 min 410

NZ25 749163 281
2 min 440

5 4 5 2974572 1125 min 440
3 2 2 27576 45 sec 620

NZ15 29859 50 sec 600
10 3 5 586504 23 min 425

NZ35 604620 221
2 min 450

5 3 1 1 20961 75 sec 280
5 3 1 331292 34 min 160
3 2 2 691394 69 min 170

Figure 14: Checking that Correctness is an invariant of LSpec for the in-
dicated graphs with 3, 4, and 5 nodes, together with nonZeno checking for
some instances.
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more interesting example, because it is representative of the class of systems
for which one would most likely want to use existing languages and tools
that are not specialized for handling real time. However, since Fischer’s
algorithm is so popular a benchmark, I include it as well.

Uppaal and TLC differ not only in their basic model-checking algorithms,
but also in the level of their input languages. Like most model checkers, Up-
paal uses a lower-level modeling language that can be compiled into efficient
code. TLA+ is a very high-level language, so TLC must “execute” a specifi-
cation interpretively. TLC is therefore significantly slower than conventional
model checkers for verifying simple systems. To explore the difference this
makes, I also present data for Fischer’s algorithm obtained with two pop-
ular model checkers, Spin [20] and SMV [31], whose models are written in
lower-level languages.

Uppaal maintains all its working data in memory. Its use of memory
appears to cause the Windows XP memory management system to thrash.
I therefore ran Uppaal (with its default settings) under Linux, on a 3.1
GHz uniprocessor with 3 GBytes of memory. For the leader algorithm,
Uppaal was also run at Aalborg University on a 30-node network of 2.6
GHz processors, each with 1 GByte of memory. Uppaal can easily be used to
check that a specification is nonZeno, but such checking was not performed
on either of the examples.

6.4.1 The Leader Algorithm

Arne Skou, an experienced Uppaal user at Aalborg University, with the as-
sistance of Gerd Behrmann and Kim Larsen, translated LSpec to an Uppaal
model. Since Uppaal’s system modeling language is not as expressive as
TLA+, this required some encoding. In particular, Uppaal cannot represent
a potentially unbounded multiset, so the Uppaal model encodes the TLA+

variable msgs in a fixed-length array. Uppaal checks that this array does
not overflow to ensure that the model is a faithful representation of the
algorithm.

I ran the Uppaal specification with the same 3- and 4-node graphs on
which I ran TLC. Uppaal proved to be very sensitive to the MsgDelay/Period
ratio. As observed above, this ratio is related to the maximum number of
messages in transit at any time. On a single computer, Uppaal usually fails
by running out of memory at a MsgDelay/Period ratio around .6. (Whether
it runs out of memory also depends on the value of TODelay .) To get a bet-
ter picture of what was happening, Skou also ran Uppaal on the Aalborg
University 30-processor network. The results are tabulated in Figure 15.
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MsgDelay 30-proc
N Period MsgDelay TODelay Period TLC Uppaal Uppaal

3 10 3 5 .3 255 9.4 2.9
3 1 1 .33 4 9.4 13.4
5 2 5 .5 70 11.2 2.9
5 3 1 .6 13 30.8 3.0
5 3 5 .6 265 fail 20.9
3 2 1 .67 7 10.2 3.0
3 2 2 .67 20 fail 16.6
5 4 1 .8 27 32.5 9.2
5 4 5 .8 980 fail fail
2 2 1 1 11 fail fail
1 2 1 2 270 fail fail
1 2 2 2 1280 fail fail

4 10 3 5 .3 1385 42.2 2.5
3 1 1 .33 6 43.9 2.7
5 2 2 .4 42 48.3 4.2
5 2 5 .4 390 93.0 4.3
2 1 1 .5 6 48.2 3.7
5 3 1 .6 28 72.8 3.8
5 3 5 .6 1770 fail 84.6
3 2 1 .67 12 73.1 9.8
3 2 2 .67 44 fail 73.1
5 4 5 .8 6760 fail fail
2 2 1 1 13 fail fail
1 2 1 2 390 fail fail
1 2 2 2 1650 fail fail

Figure 15: Comparison of Uppaal and TLC execution times in seconds for
the same graphs with 3 and 4 nodes as in Figure 14.
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For MsgDelay/Period ratios significantly less than .6, Uppaal’s execution
time depends almost entirely on the graph and not on the other parameters.
TLC’s execution time depends on the magnitude of the parameters as well
as on this ratio. Hence, if Uppaal succeeds, it is usually faster than TLC
for small values of the parameters and much faster for larger values. Using
30 processors extends the range of parameters for which Uppaal succeeds.
TLC can be run on multiple computers using Java’s RMI mechanism. Tests
have shown that using C computers typically speeds it up by a factor of
about .7C . This suggests that, run on a network of processors, TLC’s
execution speed is comparable to Uppaal’s for the range of instances tested.
However, TLC will be slower than Uppaal for large enough values of the
timing-constraint parameters.

The overall result is that Uppaal can check models with larger timing-
constraint parameters, and hence with a finer-grained choice of ratios be-
tween the parameters. However, TLC can check a wider range of ratios
among the parameters. For finding bugs, the ability to check parameter ra-
tios of both 1:2 and 2:1 is likely to be more useful than the ability to check
ratios of both 1:2 and 11:20.

Skou and his colleagues subsequently rewrote the Uppaal model to im-
prove its performance. Because the TLA+ specification was written to be
as simple and elegant as possible, with no consideration of model-checking
efficiency, the fairest comparison seems to be with the first, unoptimized
Uppaal model. When checking the new model on a single computer, Uppaal
fails on only four of the instances of Figure 15. It is an average of 4.5 times
faster for the N = 3 instances and 50 times faster for the N = 4 instances.
However, it still fails when MsgDelay/Period is greater than about 1. The
new model therefore does not alter the basic result that Uppaal is faster
than TLC for the range of parameter ratios it can handle, but it cannot
handle as wide a range.

It is possible that these results reflect some special property of this ex-
ample. However, the sensitivity to the MsgDelay/Period ratio suggests
that it is the messages in transit that pose a problem for Uppaal. Each
message carries a timer, and the performance of real-time model checkers
tends to depend on the number of concurrently running timers. Perhaps
the most common use of real time in systems is for timing constraints on
message transmission—constraints that are modeled by attaching timers to
messages. This suggests that Uppaal might have difficulty checking such
systems if there can be many messages in transit. However, more examples
must be tried before we can draw any such conclusion.
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6.4.2 Fischer’s Algorithm

Comparisons with Uppaal for Fischer’s algorithm were made with a version
of the algorithm described by a model distributed with Uppaal. It is similar
to the version described by FSpec1, except that each thread has 4 control
points instead of 6. The Uppaal version has no explicit liveness assumption,
but Uppaal has a built-in assumption that time advances. The model has
a single parameter K , related to the parameters of FSpec1 by Epsilon =
Delta = K + 1.

The safety properties checked were mutual exclusion and absence of
deadlock. The liveness property checked is that a process with control at
statement b eventually reaches statement c. (This seems to be the only
liveness property satisfied by the Uppaal model.) TLC and Uppaal were
run as described above. For checking safety, TLC was run both with and
without symmetry under permutations of threads. (The liveness property
is not symmetric.)

Spin is an explicit-state model checker developed by Gerard Holzmann.
The Spin model was written by Holzmann, who executed it on a 3 GHz, 3
GByte uniprocessor. For checking liveness, Spin uses a separate model that
contains an extra process. This increases the number of states by a factor
of 2.3–2.7, depending on the value of K .

SMV is a symbolic model checker, based on binary decision diagrams,
that was developed by Ken McMillan. The SMV model was written by
McMillan, who executed it on a 3 GHz uniprocessor with 2 GBytes of mem-
ory.

The representations of Fischer’s algorithm used in all four model checkers
are essentially the same. For both Spin and SMV, there are other ways to
model the algorithm that can be checked more efficiently.

All the models were tested for 6 threads, which is the smallest number
for which Uppaal takes a significant amount of time. The results for different
values of K are shown in Figure 16. Checking for deadlock is essentially free
for explicit-state model checkers, and TLC and Spin do it unless explicitly
instructed not to. Uppaal and symbolic model checkers like SMV must be
instructed to check for deadlocks. The SMV model was run without deadlock
checking. About 49 seconds of Uppaal’s execution times was spent checking
for deadlock. TLC’s liveness tests also checked for safety; checking only for
liveness would reduce the execution times by a few percent.

Since Uppaal’s execution time is independent of K , we know that it
will be faster than a model checker whose running time depends on K .
All of the model checkers could check the specification for large enough
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Safety Liveness
K states TLCs TLC Spin SMV TLC Spin SMV
2 155976 9 29 .7 1.3 128 3.7 2.5
3 450407 10 78 2.4 3.8 385 13 6.3
4 1101072 16 194 6.9 6.5 1040 49 10
5 2388291 26 399 19 10 3456 171 16
6 4731824 47 784 51 14 5566 468 22
7 8730831 78 1468 142 25 13654 1317 40
8 15208872 132 2546 378 35 3593 54
9 25263947 244 4404 977 46 5237 73
10 40323576 446 7258 2145 62 95

Uppaal 82 135

Figure 16: Execution times in seconds for a simple version of Fischer’s al-
gorithm with 6 threads, where TLCs is TLC with symmetry under thread
permutations.

values of K to provide reasonable confidence of its correctness, though the
numbers do not bode well for the ability of TLC and Spin to check liveness
for more complicated examples. We do not expect TLC’s performance on
liveness checking to be good enough for large applications. But because
Fischer’s algorithm is so simple, it would be dangerous to infer from these
numbers that the performance of Uppaal and SMV would be good enough.
For example, SMV does much better than Spin, even though explicit-state
model checkers generally perform better than symbolic model checkers for
this kind of asynchronous algorithm.

One observation from which we can generalize is the dependence of exe-
cution time on the number of reachable states. For TLC without symmetry,
this dependence is linear because the time to compute possible next states
and to evaluate the invariant is independent of K . We expect the same to be
true for any explicit-state model checker. (Spin’s execution time increased
faster than the number of states because it was run with naive default set-
tings; this should not occur in practice when run by a knowledgeable user.)
SMV’s execution time increases more slowly than the number of reachable
states. Execution time for a symbolic model checker does not depend di-
rectly on the number of states, and I expect that it typically increases more
slowly with increasing values of a specification’s parameters than does the
number of states.

When using symmetry under permutations of threads, TLC does quite
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well, even running faster than Spin for larger values of K . (Spin and SMV
cannot use symmetry under permutations in this way.) However, these
results should not be taken very seriously. In real examples, symmetry sets
usually contain only 2 or 3 elements, and the resulting speedups are much
more modest.

It might also be a mistake to extrapolate from TLC’s relatively poor
performance on this simple example. The inefficiency of interpreting a spec-
ification may be less important than other factors for large problems. I
know of only one case in which TLC and a more conventional model checker
were applied to a large industrial specification—one that required days to
check. The conventional model checker was Murphi [13], which also runs
many times faster than TLC on small examples. On the large specification,
the execution times of TLC and Murphi were comparable. Of course, the
only conclusion we can draw from that example is that we should not try to
draw conclusions from any one example.

7 Conclusion

7.1 Objections

I have encountered three objections to explicit-time specifications. The first
is that they model system operations as happening at a particular instant of
time. Some people feel that, since an operation takes a finite length of time,
it should have a beginning and an ending time. But these people generally
find nothing wrong with the usual practice of modeling the execution of an
untimed system’s operation as a single atomic event. We typically model
execution of the statement y := 0 as one event, even though its actual ex-
ecution involves voltages changing continuously over some interval of time.
A discrete system is by definition one whose execution can be modeled as
a sequence of atomic events. Discrete real-time systems are no different. If
we need to distinguish between the starting and stopping times of the exe-
cution of an operation, we can model that execution by separate start and
stop events.

The second objection to explicit-time specifications is that they express
upper-bound timing constraints with a timer that prevents now from be-
coming too large. Some people feel that a timer should not be allowed to
prevent time from advancing. They seem to think that a program’s spec-
ification is causing the program’s actions to occur. In fact, a specification
causes nothing to happen. It just describes the program’s possible execu-
tions. When describing allowed behaviors, saying that time is not allowed to
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reach noon unless an event has occurred is completely equivalent to saying
that the event must occur before noon. A specification does not express
causality.

The third objection is that, because time advances in discrete steps,
a behavior may skip over an error state—allowing us to prove correctness
of an incorrect specification. For example, suppose correctness requires a
property P to hold during some time interval I . We verify this by showing
that (now ∈ I ) ⇒ P is an invariant of the system. A behavior could satisfy
this specification by skipping over the interval I when P is false, so the
value of now is never in I . This objection fails to take into account that
proving invariance of (now ∈ I ) ⇒ P shows that it holds in all states of all
behaviors. If there is a behavior in which now advances past the interval I
in a single step, then there is also a behavior in which now advances past I
in two steps, the first step assigning to it a value in I . In general, proving
correctness in a model in which time advances in discrete steps is sufficient
if time may advance in small enough steps.

7.2 Hybrid-System Specifications

A hybrid-system specification relates the behavior of a system to the val-
ues of physical quantities in its environment. A real-time specification is a
special case of a hybrid-system specification in which time is the only rele-
vant physical quantity. Like time, any physical quantity can be represented
by an ordinary specification variable. The basic idea behind explicit-time
specifications can therefore be applied as well to all hybrid-system specifi-
cations. The changes to variables representing physical quantities can be
specified as solutions to differential equations [25]. Although the resulting
TLA+ specifications are straightforward [22], TLC may not be able to handle
them unless the equations describing the evolution of the physical quanti-
ties are very simple—for example, if they are linear. (Most model checking
algorithms for hybrid systems assume linear equations of evolution [17].)

7.3 Concluding Remarks

The main reason for using an explicit-time approach is to be able to use ex-
isting languages and tools, instead of having to develop new ones. There is
no reason to develop new languages and tools unless they offer some advan-
tages over existing ones. Implicit-time specifications are not inherently any
easier to read or write than explicit-time ones. Nor are they any easier to
reason about mathematically. One justification for implicit-time languages
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is to take advantage of special algorithms for model checking real-time spec-
ifications. However, the results of Section 6 suggest that conventional model
checking will work fairly well.

There are practical reasons for using a higher-level language like TLA+

instead of one designed expressly for model checking. As one industrial
user observed, “The prototyping and debug phase through TLA+/TLC is so
much more efficient than in a lower-level language.”
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