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We present a framework called Semantic Streams that allows users
to pose declarative queries over semantic interpretations of sensor
data. For example, instead of querying raw sensor data, the user
can query vehicle speeds; the system decides which sensor data and
which operations to use to infer the vehicle speeds. The user can
also place constraints on values such as the confidence with which the
speed was measured or the amount of energy consumed to measure
the speeds. This framework is designed to work in a shared sen-
sor infrastructure, where multiple queries may coexist for extended
periods of time, instead of a hand-designed, single purpose sensor
network. We propose a semantic service programming model and
describe a service description language and a query processor that
support the programming model. We demonstrate how this system
can be used with a network of video, magnetometer, and infrared
break beam sensors deployed in a parking garage.
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1 Introduction

Networks of sensors are ubiquitous in our daily environments even today. For
example, most building and office environments have both HVAC and card key
sensors, many road intersections and highways have vehicle detection sensors,
and a large percentage of new homes have security sensors. Despite their ubig-
uity and potential for providing information utility, however, these sensors are
largely underutilized because the raw data are not readily consumable by end
users. A building manager might want to be alerted to excess building activity
over the weekends, or a safety engineer might want a histogram of vehicle speeds
in the parking garage. Neither the user nor the system can easily interpret raw
sensor data from card key readers, motion detectors, and infrared beams into
semantic values such as building activity or vehicle speeds. Thus, one of the
greatest barriers to the widespread use of sensor networks by non-technical users
today is the inability to synthesize semantic values from raw sensor data.

This paper presents a framework called Semantic Streams that allows users
to program sensor networks with a declarative statement such as, “I want the
speeds of vehicles near the entrance of the parking garage.” This is different
from other approaches in which the user poses queries over raw sensor data [8, 7].
The system allows multiple, independent users to use the same network simulta-
neously and automatically shares resources and resolves conflicts between their
applications. The system also allows the user to place constraints or objective
functions over quality of service parameters, such as, “I want the confidence of
the speed estimates to be greater than 90%,” or “I want to minimize the total
number of radio messages.”

Our framework uses a semantic services programming model, where each
service is a process that infers semantic information about the world and incor-
porates it into an event stream. Each service has a first-order logical description
of the semantic information that it needs to be in its input streams and that it
adds to its output streams. The input and output streams of services can be
wired together. This programming model was designed to allow the processes
of interpreting data to be composed to create semantically new applications.

Once a set of sensors and services are declared, possibly through libraries
or previous applications, the user can pose a query in first-order logic. The
query processor employs an inference engine to decide which sensors and services
will provide the semantic information that the user requires. The services are
converted into a set of rules with pre-conditions and post-conditions and the
inference engine uses a variant of backward-chaining. In other words, it tries
to match each element of the query with the post-condition of a service. When
successful, the pre-conditions of that service are added to the query. The process
terminates when all pre-conditions are matched with declarations of physical
sensors, which do not have pre-conditions. The main difference between pure
backward-chaining and service composition is that our inference engine actually
instantiates each service during the composition process and reuses existing
instances whenever possible. This allows mutual dependence between services
and the ability to check for legal flow of event streams, neither of which would



be possible with pure backward-chaining.

Semantic Streams is designed for the sensor infrastructure domain in which
a sensor network may be built by different hardware vendors. It is used re-
peatedly over long periods of time, for different types of applications, and by
independent users, perhaps from different organizations entirely. Sensor infras-
tructures pose several important problems such as sharing resources between
independent applications, resolving conflicts between separate user groups, and
coordinate between different users, groups, and hardware vendors. In our se-
mantic service model, all service interfaces are maintained in a central repository
(namely a query server) along with their complete semantic descriptions, so dif-
ferent groups and hardware vendors can share services without needing to share
or understand each other’s source code. Because our inference engine reuses
existing instances of services whenever possible, it automatically and efficiently
reuses resources and operations that are being performed by other users without
the need for explicit cooperation. Finally, the semantic markup language used
to describe services is designed to give the query processor as much freedom
in query execution as possible. This allows the query processor to automati-
cally resolve resource conflicts such as when two applications require different
sampling rates from the same sensor.

In general, many combinations of sensors and services will satisfy a given
query. The Semantic Streams markup language allows the user to specify con-
straints on quality of service parameters to help select among otherwise equiv-
alent alternatives. For example the user might specify, " The confidence level
on car detections should be above 90%, and latency less than 50 milliseconds.”
The query engine propagates these constraints through the components in the
service graph. If a particular combination does not satisfy the user’s constraints,
the engine tries the next combination. Allowing the user to specify ranges of
constraints instead of specific values is an important component to resource me-
diation between applications. For example, the system may need to provide one
application the largest allowable latency in order to meet the confidence require-
ments of a second application without increasing overall energy consumption in
the network.

The Semantic Streams model and its query processing engine are integral
parts of a service-oriented architecture for networked sensor systems, as shown
in Figure 1. In the overall architecture, when a user poses a query as an event
stream, the query planning engine generates a task graph. The graph is then
assigned to a set of physical nodes for execution, a process called service em-
bedding. The services are assigned in a way that the assignment preserves the
proximity in data flows and optimizes for resource usage, latency, and load.
This is an interesting variant of the classic task assignment problem, with the
additional sensor net constraints. The service runtime on each node, accepts
the task graphs, instantiates services on demand, resolves possible conflict be-
tween tasks and resource availability, and executes the query. The focuses of
this paper are on service interfaces and automated query planning. The service
embedding and execution work are presented in other papers.

To ease our discussion, we explore the interaction of Semantic Streams with
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Figure 1: Planning and Execution The user first poses a query to the query
processor, which derives an acceptable service graph. That graph is passed to the
execution engine along with all variable unification and constraint sets resulting
from planning. The execution engine may call back to the query processor during
replanning.

the usage model of sensor infrastructure through a sensor network that we de-
ployed in a parking garage. We demonstrate the semantic descriptions of several
services and their use in three queries from different users. We also discuss sev-
eral limitations and possible extensions of this work, including the ability to
give the user actionable error messages. For example, if the query cannot be
satisfied, the query processor should be able to suggest where to place new sen-
sors, what operations need to be implemented, or which constraints need to be
loosened in order to satisfy the query.

The rest of this paper is organized as follows: Section 2 discusses related work
such as macroprogramming and Semantic Web Services. Section 3 describes an
parking garage sensor network that we deployed as a motivating example of a
tiered sensor network architecture and usage model. Section 4 describes the
semantic services programming model. Section 5 describes the first-order logic
and CLP(R) semantic markup language used to declare sensors, services, and
queries. We explains how to expose quality of service parameters in each ser-
vice and how to declare constraints or objective functions over them in queries.
Section 6 describes the implementation of the query processor, where modifica-
tions are made to a standard inference engine to result in valid service graphs.
Section 7 describes limitations of this work and possible extensions.

2 Related Work

Semantic Streams adapts work on the composition of Semantic Web Services to
the problem of macroprogramming in sensor networks. Macroprogramming is a
term often used to refer to the process of writing a program that specifies global
network behavior as opposed to the behavior of individual nodes. Semantic Web
Services (SWS) is a movement to semantically describe modular programs so
that they can be automatically composed in different ways to form new services.



2.1 Macroprogramming

Most sensor network programs specify the behavior of individual nodes, with
the assumption that these behaviors at the node level will result in the desired
emergent behaviors at the network level. Macroprogramming attempts to do the
reverse: the user specifies the global network behavior and the macroprogram-
ming framework determines the appropriate local node behaviors. Sensor net-
works have seen two main classes of macroprogramming: database approaches
like TinyDB [8, 2, 6] and functional language approaches such as Regiment [11].
Database approaches allow the user to issue declarative queries over sensor data
such as SELECT, JOIN, SUM, or MAX and the system must collect the ap-
propriate sensor data to answer the query. Regiment allows the user to perform
more general operations such as MAP, FOLD, and FILTER, which map a func-
tion over, aggregate over, or filter all data in a region. The system determines
where and when data is stored and operations are performed in the network.

Semantic Streams is similar to these approaches in that the user issues a
query specifying global behavior. One main difference is that, in both systems
above, the user is required to understand which operations to run over the
raw sensor data and how to interpret the meaning of the results. Semantic
Streams allows the user to issue queries over semantic values directly without
addressing which data or operations are to be used. The advantages of semantic
queries are analogous to those of macroprogramming in general: the user of
macroprogramming need not specify the best time and place to execute each
operation, while the user of semantic queries need not specify which operations
to run or which data to run them over. This allows the user to make less low-
level decisions while allowing the system an extra degree of freedom to optimize
during execution.

2.2 Composition of Semantic Web Services

No pre-specified language can provide semantic programming without operating
on a sophisticated model of the world. To address this problem, Semantic
Streams borrows an idea from SWS: the world model is incorporated into each
component of code, and the code can be composed in different ways to substitute
for a world model. A markup language is used to indicate the semantic meaning
of each piece of code, and as more code is added to the system the world model
becomes more complete.

Web services are modular programs that are accessible over the web, per-
haps from different companies, and may provide services such as credit card
authentication or the ability to reserve a plane, hotel or restaurant (see e.g.
www.xmethods.com). A main goal of web services is to be easily composable
to provide, for example, a unified travel agent service that plans a complete
vacation through several different companies. To facilitate composability, sev-
eral languages including WSDL, SOAP, and UDDI describe service interfaces,
formalize message protocols, and ease in service discovery. These descriptions,
however, are merely syntactic and the composition of services typically requires



a human to identify the appropriate services and choreograph them into a work-
flow. SWS is a movement to semantically describe web services so that they
can be composed automatically by computers. Several frameworks such as IRS-
II, OWL-S, and WSMF have been proposed for this purpose. See [3] for an
thorough overview of this topic.

Semantic Streams adopts the solution provided by SWS by using a markup
language to semantically describe pieces of code and automatically compose
them into a service graph to answer a query. However, the two approaches are
also very different. Web services represent actions on the world while semantic
services are stream processors. The execution model is very different: a web
services workflow begins with a user-initiated request and continues with a single
point of execution through a series of choreographed operations. When it is
needed, each web service takes an input, provides an output, and terminates.
In contrast, Semantic Streams services operate continuously on a data type
called an event stream, which is a series of asynchronous events. All services run
concurrently. Because of the different execution models, the composition process
is also different. The composition of web services usually requires reasoning
about execution time; our system does not reason about execution time but
does require spatial reasoning.

3 A Motivating Scenario

Most research today focuses on low-power, wireless sensor networks that are
deployed in harsh, remote environments and are owned, managed, and pro-
grammed by a single group of individuals [9, 16]. However, wired, powered,
and stationary sensor networks are much more common today than their more
extreme counterparts. In contrast to special purpose networks, these sensor
infrastructures could be used repeatedly over long periods of time by many
different people and for several different applications. Several new problems
arise under this usage model, such as resource mediation between applications
of multiple, independent users. New opportunities also arise, such as the ability
of Semantic Streams to exploit this usage model by reusing semantic inferences
required for older applications to automatically generate solutions to new ap-
plications. To better illustrate the challenges and opportunities of this problem
domain, we present a concrete sensor network deployment to represent a typical
shared, general-purpose sensing infrastructure.

3.1 Example of Sensor Infrastructure

We deployed a sensor network on the second floor of a parking deck on the
Tinyware corporate campus. The network consisted of three different types of
sensors: a web camera, a magnetometer and infrared break beam sensors. A
break beam sensor bounces an infrared beam against a distant reflector. When
an object comes between the sensor and the reflector, it detects that the beam
has been broken; when the object moves away it detects that the beam has been
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Figure 2: Sensor Infrastructure The break beam sensors were laid out in
a row on the wall in the focus area. The digital camera was focused on the
same area. The magnetometer was placed several meters downstream near the
MICTOSETVer.

re-detected. This is the same sensor that might be found at a store entrance to
detect customers entering and leaving. Both the break beam and magnetometer
sensors were controlled by micaZ motes and communicated wirelessly with our
microserver, a headless Upont Cappuccino TX-3 Mini PC. The camera and
microserver were both connected to the corporate network by Ethernet.

The focus of the network was a 4x5 meter area directly in front of an elevator.
All vehicles entering this floor of the parking deck passed through this area, as
did most pedestrians using the elevator. We placed 5 infrared break beam
sensors in a row across the area, Im apart and about .5m from the ground, such
that the beams were broken in succession by any passing human or vehicle. The
camera was also focused on the area and a magnetometer was placed about 10m
downstream. The focus area and the arrangement of the six wireless sensors,
camera, and microserver is shown in Figure 2.

3.2 Example Users and Applications

Although the number of sensors in our deployment is small, they can be used for
many different purposes. For example, they can infer the presence of humans,
motorcycles and cars as well as their speeds, directions, sizes and, in combination
with data from neighboring locations, even their paths through the parking



garage. In this paper, we consider three hypothetical users at Tinyware that
might want to use the sensor infrastructure described above:

e Police Officer Pat wants a photograph of all vehicles moving faster than
15mph.

e Employee Alex wants to know what time to arrive at work in order to get
a parking space on the first floor of the parking deck.

e Safety Engineer Kim wants to know the speeds of cars near the elevator
to determine whether or not to place a speed bump for pedestrian safety.

Pat’s application can be solved by using the break beam sensors to infer
the speeds of vehicles and triggering the camera to take a photograph. The
magnetometer sensor could be used to provide extra confidence that the ob-
served object is indeed a vehicle. Alex’s application can be solved simply by
observing the distribution of times when cars are observed on the second floor
of the parking deck since, presumably, most people do not park on the second
floor when there are still spaces on the first floor. Vehicles can be detected by
either the break beam sensors or the magnetometer sensors, and the times of
their detections can be plotted in a histogram for Alex. Kim’s application is a
combination of the other two applications. The break beam sensors can be used
to infer the speeds of vehicles as in Pat’s application, and these speeds can be
plotted in a histogram as in Alex’s application.

All three applications must run continuously and simultaneously using the
same hardware. There are several places where conflicts can arise, such as
which nodes are on or off, which program image each node is running, what
sampling rates they are using etc. However, all three users are from different
organizations within the company and would not be able to easily coordinate.
In this paper, we will show how the Semantic Streams framework avoids the
need for coordination between the users. Furthermore, we show how the system
is able to reuse functionality from Pat and Alex’s applications to automatically
compose an application for Kim.

4 The Semantic Services Programming Model

The Semantic Streams programming model contains two fundamental elements:
event streams and semantic services. Event streams are sequences of asyn-
chronous events in time, each of which has a set of associated properties such as
time and location. The events can represent objects, such as people or cars, and
can have properties such as speeds, directions, or identities. Semantic services
are processes that infer semantic information about the world and incorporate
it into an event stream. Every event stream originates at a single service and
new properties can be added to its events as the stream is processed by other
services. For example, one service may infer the presence of an object, another
service may identify it as a vehicle, and a third service may infer the speed of
that vehicle from the sensor data. Semantic services can be composed in new
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Break Beam Service

Function: A wrapper service around the break beam sensor.

Inputs: None.

Outputs: A stream of break events with two properties: the rising edge time
at which the beam was broken and the falling edge time at which it was redetected.

Object Detection Service

Function: Analyzes the break events to infer the presence or absence of an
object.

Inputs: Multiple break streams

Outputs: An object stream, where each object event has time and region
properties indicating where and when it was detected.

Speed Service

Function: Compares the rising and falling edges of the break events to infer
the speed of the object.

Inputs: An object stream and the break streams that support it

Outputs: An object stream, where each event has a speed property.

Vehicle Detection Service
Punction: Identifies an event as a car by thresholding the speed of the event .
Inputs: An object stream with speed properties
Outputs: An object stream, where each event indicates whether or not the
object is a vehicle.

Camera Capture Service

Function: Captures an image from the digital camera when a vehicle is detected
with speed greater than 15mph.

Inputs: An object stream with vehicle and speed properties

Outputs: An object stream, where each event has a photo property.

Figure 3: Pat’s Application requires services that read the break beam sensors,
detect objects, identify them as cars, infer their speeds and use these speeds to
trigger a camera. a) shows the service composition and b) provides descriptions
of the services



ways with different sensors to enable new types of semantic inference about the
world.

Figure 3 and Figure 4 represent the required services, descriptions of how
they function, and the service compositions that could be used to provide Pat’s
and Alex’s desired application respectively in our example testbed. Note that,
although each event stream originates at a single service, it is not necessarily
processed by other services in a linear fashion. For example, a user may want
to take pictures of both speeding vehicles and pedestrians. To facilitate the
branching and merging of event streams, the service that originates the stream
(in this case, the object detector service) assigns each event in the stream a
unique ID.

Semantic services are different from both web services and software com-
ponents like NesC modules [5]. Semantic services can be connected simply by
wiring them together, similar to NesC modules. However, semantic services
communicate through a publish/subscribe mechanism, placing events into an
output buffer, where they are read by subscribing services. This is different
from the event/command semantics in NesC where a module effectively evokes
the function of another module. It is also different from Web Services, which
do not usually communicate directly but only through a third entity which
orchestrates them into a single workflow.

Semantic services also differ from NesC modules in that their basic function
is to infer new information about the world and to explicitly encode it into an
event stream. All communication or computational operations are internal to
the service. This is different from a NesC module, whose sole function may be to
mechanically move data from one node to another; the inference of information
about the world is often an emergent behavior from the collaboration of many
NesC modules.

Semantic services are thus a higher-level programming abstraction than
NesC modules and can in fact be built from NesC modules. Figure 5(a) shows
how the breakbeam and object detection services could be implemented as NesC
modules. The breakbeam service is conceptually just a single NesC module, with
one breakbeam service running on each of the 3 break beam sensors. This im-
plementation of the object detection service, however, is conceptually the com-
bination of 3 distributed NesC modules, which might share their break events
using radio packets and elect a leader to analyze them and generate the ob-
ject detection events. All communication between the NesC modules is internal
to the semantic service. Thus, unlike NesC modules, semantic services can be
distributed entities. Furthermore, just from the event stream semantics point
of view, this implementation is the same as the centralized implementation as
shown in Figure 5(b), even though the centralized service can be both easier to
program and more efficient (it requires one less radio message). They can only
be differentiated by quality of service and resource utilization characteristics.

Obviously, the two applications shown in Figure 3 and Figure 4 can both
be written and composed manually by the users. In the following sections,
we explain how the users can incorporate their applications into the Semantic
Streams framework so that the services can be reused by other applications and



the composition can be automated.

5 A Service Markup and Query Language

The Semantic Streams framework requires that the semantics of each service’s
inputs and outputs be declared, along with the type and location of each sensor.
These declarations allow the query processor to compose sensors services in
semantically meaningful ways.

5.1 Background on Logic Programming

The Semantic Streams markup and query language is built on Prolog and its
constraint logic programming (real) (CLP(R)) extension. Prolog is a logic pro-
gramming language in which facts and logic rules can be declared and used to
prove queries. In Prolog, words beginning with a capital letter (eg. X) are
variables, those beginning with lower case letters (eg. const) are constants, and
those followed by parenthesis are predicates (eg. value(X,const)). A Prolog rule
consists of a conjunction of antecedents and their consequent, such as the fact
that Z is the grandparent of X if Z is the parent of Y and Y is the parent of X.

grandparent(Z,X) :-parent(Z,Y) ,parent(Y ,X).

A fact is simply a rule with no antecedents, such as the facts that Pat is the
parent of Alex and Alex is the parent of Kim.

parent(pat,alex) .

parent(alex,kim) .

A query is a set of antecendents with no consequent. The solution to a
query is all sets of bindings to the query variables that make the query true.
For example, the following two queries ask who is a grandparent of whom, and
who is a grandparent of Pat, respectively. The answer to the first query is that
pat is the grandparent of Kim. The second query evaluates to false, indicating
that Pat has no known grandparent.

grandparent(X,Y).
ans: X=pat, Y=kim.

grandparent(X ,pat) .

ans: false.

CLP(R) allows the user to declare numeric constraints on variables. Each
declared constraint is added to a constraint set and each new constraint dec-
laration evaluates to true iff it is consistent with the existing constraint set.
CLP(R) constraints can be combined with Prolog facts, rules and queries by
enclosing all CLP(R) statements in brackets. For example, the following rules
state that all dates are between 1 and 31 and that the date next week is today’s
date plus seven.

10



isDate(X) :- {X=>1,X=<31}.
neztiWeek(X,Y) :- {YV=X+7}.

Unlike standard Prolog, CLP(R) queries are answered not by bindings on
each variable but by the resulting constraint sets on each variable. For example,
a statement declaring that Y is neztWeek of X results in several constraints on
both X and Y.

{ isDate(X), tsDate(Y), nextWeek(X,Y) }.
ans: {X=>1},
{X=<24},
{y=>8},
{Y=<31}.

In this example, if one date is known, the constraint set on the other variable
reduces to a singleton.

{X=12, isDate(Y), neztWeek(X,Y)}.
ans: {Y=19}.

For a more complete description of Prolog and CLP(R), see [1, 15]. Our
language design takes the advantage of CLP(R) and are implemented using
SICStus prolog which has a CLP(R) extension.

5.2 Declaring Sensors and Simple Services

Semantic Streams defines eight special predicates that can be used to declare
sensor and services. The font of each predicate indicates whether it is a top-level
or an inner predicate.

sensor( <sensor type>, <region> )

service( <service type>, <needs>, <creates> )
needs( <streaml>, <stream2>, ... )

creates( <streaml>, <stream2>, ... )

stream( <identifier> )

isa( <identifier>, <event type> )

property( <identifier>, <property> )

The sensor() predicate defines the type and location of each sensor. For
example

sensor (magnetometer, [[60,0,0],[70,10,10]11).
sensor (camera, [[40,0,0],[55,15,15]]).
sensor (breakBeam, [[10,0,0],[12,10, 2]1]).

defines three sensors of type magnetometer, camera, and breakBeam. Each sensor
is declared to cover a 3D cube defined by a pair of [z,y, z] coordinates. For
simplicity, we approximate all regions as 3D cubes, although this restriction
does not apply to Semantic Streams in general.

11



The stream(), isa(), and property() predicates describe an event stream and
the type and properties of its events. The service(), needs(), and creates() pred-
icates describe a service the semantic information that it needs and creates. In
query processing, these are treated as rules and their pre-conditions and post-
conditions. For example, the Vehicle Detector in Alex’s application could be
described as a service that uses a magnetometer sensor to detect vehicles and
creates an event stream with the time and location in which the vehicles are
detected.

service( magVehicleDetectionService,
needs(
sensor(magnetometer, R) ),
creates(
stream(X),
isa(X ,vehicle),
property(X ,T ,time),
property(X,R,region) ) ).

5.3 Variable Input Streams

The histogramService used for Alex’s application must plot the arrival times of
vehicle detection events. The service could be declared only for this purpose:

service( histogramService,
needs(
stream(X),
1sa(X ,vehicle),
property(X,T ,time),
creates(
stream(Y),
isa(Y ,histogram) ) ).

However, this description only allows the histogram to plot time properties
of venicle events, even though the actual service implementation can plot any
type of numeric values; this service cannot be composed to plot any other event
streams or properties. To solve this problem, Alex would define the histogram
service to plot any property value of any type of event stream, as follows:

service( histogramService,

needs(
stream(S),
property(S,V,P),

creates(
stream(Y),
isa(Y ,histogram),
property(Y,S, plottedStream) ) ).
property(Y ,P, plottedProperty) ) ).

12



The value of S defines the type of stream and the value of P defines the
property that is to be plotted. By defining the input stream to be a variable,
this re-parameterization allows the user to query for histograms over different
types of event streams.

5.4 Querying

A query is simply a first-order logic description of the event streams and prop-
erties desired by the user. For example, a simple query could be:

stream(X), isa(X,vehicle).

This query would be true iff a set of services could be composed to generate
events X that are known to be vehicles. The query interpreter will generate all
such possible service compositions. To constrain the resulting composition set,
we could simply add more predicates to the query. For example, we could query
only for car events in a certain region:

stream(X, object),
isa(X, car),
property(X, [[10,0,0],[30,20,201], region).

A more sophisticated query might require specific relationships between
event streams. For example, Alex’s query would request a stream of histogram
events where the values to be plotted are the arrival times of vehicle events from
a different stream. The last line of the query further constrains the plot to only
those events detected in a particular region.

stream(Y, histogram),
property(Y, X, stream),
property(Y, time, property),
stream(X),
isa(X, vehicle),

property(X, [[10,0,0],[32,12,02]]1, region).

Queries are solved using backward chaining. For example, the first three
predicates in Alex’s query can be proved by the post-conditions of the histogramService.
In order to use the histogram service, however, a stream of events with time
properties must be available. This can be provided by the post-conditions of
the magVehicleDetectionService, which in turn requires a magnetometer sensor. The
last two predicates in Alex’s query further constrain the stream X to be a vehicle
stream originating in a particular region. The steps of the final proof become
the application that runs on a sensor network. The execution results of that
application are the query answers.

13



5.5 Reasoning About Space

Sensors have real-world spatial coordinates and, as such, our query proces-
sor must be able to reason about space. For example, The declaration of the
magVehicleDetectionService above uses the same variable R in both the needs()
predicate and the creates() predicate to indicate that the region in which vehi-
cles are detected is the same region in which the magnetometer is sensing.

The object detection service used in Pat’s application, however, is more
complicated. It requires a number of break beam sensors with close proximity
to each other and with non-intersecting infrared beams. One way for Pat to
declare this is to require three sensors in specific, known locations:

service( objectDetectionService,
needs(
sensor(breakBeam,
[[10,0,0],[12,10, 211),
sensor(breakBeam,
[[20,0,0],[22,10, 2]1),
sensor(breakBeam,
[[30,0,0],[32,10, 211) ),
creates(
stream(X),
isa(X ,object),
property(X,T ,time),
property(X,
[[10,0,0]1,[32,10, 211) ),
region) ) ).

This service description, however, cannot be composed with other sets of
break beams. It also cannot be used in any region besides that which has been
hard coded. To solve this problem, Pat would use two logic rules about spatial
relations:

® subregion( <A>, <B> )
® intersection( <A>, <B>, <C> )

The first rule proves that region A is a subregion of region B while the
second rule proves that region A is the intersection of region B and region C.
An example of the first rule written in CLP(R) notation is:

subregion(
[ [X1A, Y1A, Z1A1,[X2A, Y2A, Z2A] 1,
[ [X1B, Y1B, Z1B],[X2B, Y2B, Z2B] 1):-
{min(X1A,X24)>=min(X 1B, X2B),
min(Y 1A,Y 2A)>=min(Y 1B,Y 2B),
min(Z1A,Z2A)>=min(Z1B,Z2B),
maz(X 1A, X2A)=<maz(X 1B, X2B),
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maz(Y 1A,Y 2A)=<maz(Y 1B,Y 2B),
maz(Y 1A, Z2A)=<maz(Z1B,Z2B) }.

The objectDetectionService can now be defined to require any three break
beams that are within a region R and that do not intersect each other.

service( objectDetectionService,
needs(
sensor(breakBeam, R1),
sensor(breakBeam, R2),
sensor(breakBeam, R3) ),
subregion(R1,R),
subregion(R2,R),
subregion(R3,R),
\+ intersect( _,R1,R2),
\+ intersect( _,R1,R3),
\+ intersect( _,R2,R3) ),
creates(
stream(X),
1sa(X ,object),
property(X,T ,time),
property(X,R,region) ) ).

Where, in prolog the line \+ intersect( _,R1,R2) is true if no region is the
intersection of regions R1 and R2. Using this semantic description, the service
can be used with any three non-intersecting break beam sensors in any region
R.

5.6 Variable Numbers of Input Streams

While reasoning about space is essential to any query processor that uses real-
world sensors, arbitrary reasoning ability is also often convenient. Because
the Semantic Streams query processor uses Prolog, the user can add arbitrary
reasoning capabilities to it.

For example, the objectDetectionService as described requires exactly three
break beam sensors. Similar services that use two or four sensors would need
to be defined as completely separate services. We could define a recursive logic
rule to allow the service to operate over an arbitrary number of break beam
sensors. The breakGroup predicate is true for any group of non-intersecting break
beam sensors that are within a specific region.

breakGroup( <region>, <initial group>, <group>).

For brevity, we do not reproduce the entire definition here. Using this rule,
the objectDetectionService could then be redefined very simply to require a group
of at least three break sensors:

service( objectDetectionService,

15



needs(
breakGroup(R, [1, Group),
length(Group,Length) ,
Length>=3 ),

creates(
stream(X),
1sa(X ,object),
property(X,T ,time),
property(X ,R,region) ) ).

5.7 Quality of Service Constraints

Purely logic queries may be answerable by multiple different service graphs. For
example, the query stream(X), isa(X,vehicle). could be answered by Alex’s
magVehicleDetectionService Or Pat’s vehicleDetectionService. In general and espe-
cially in a network with many sensors, dozens of similar service graphs will pro-
vide the same semantic information. In such cases, the query processor should
be able to choose between comparable service graphs based on quality of service
(QoS) information such as total latency, energy consumption, or the confidence
of data quality. In this section, we explain how to declare QoS parameters with
each service description and to define constraints or objective functions defined
in the query that place an ordering on QoS values.

We can associate a confidence parameter ¢ with each event stream by
adding a confidence property. Each service can derive the value for that pa-
rameter from the sensors and other services that it is using. For example, the
objectDetectionService may be more confident in its detection rate when it is
using more than three break beams for redundancy:

service( objectDetectionService,
needs(
breakGroup(R, [], Group),
length(Group,Length) ,
Length>=3,
{C=>Length*20, C=<100} ),
creates(
stream(X),
isa(X ,object),
property(X,T ,time),
property(X,R,region),
property(X ,C',confidence) ) ).

A query can then request a specific confidence value and the appropriate
number of break beam sensors will be used while the rest will remain off.

stream(X), %sa(X,object),
property(X, C,confidence), {C>80}.
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Similar techniques can be used to constrain latency, power consumption,
bandwidth or other QoS parameters. For example, a service that requires 10ms
to compute the speed of an object will define its own latency to be the latency
of the previous service plus 10ms.

service( speedService,

needs(
stream(X),
isa(X ,object),
property(X,LS, latency),
{L=LS+10} ),

creates(
stream(X, object),
property(X, S, speed),
property(X, L, latency) ) ).

The QoS parameters and constraints described in this section are used only
at planning time, i.e. the time at which the query processor composes sensors
and services in response to a query. It is assumed that all quality of service pa-
rameters are known. In the next section, we describe how to extract parameter
information from planning time and use it at runtime.

5.8 Runtime Parameters & Conflicts

While planning-time values Prolog variables are used to wire the service in-
stantiations, values of CLP(R) variables can also be used at runtime to pass
parameters to each service. Instead of using the unification of the variables,
each service is passed the resulting constraint sets on each of its parameters.
For example, a sensor service that has a frequency parameter may be able to use
any frequency less than 400Hz. For efficiency reasons, it would like to use the
minimum frequency possible. This service may be defined as follows:

service( magnetometerService,

needs(
sensor(magnetometer, R),
{F<400},
minimize{F'}),

creates(
stream(X),
1sa(X ,mag),
property(X,T ,time),
property(X,R,region),
property(X,F,frequency) ) ).

Where minimize is a built in CLP(R) function that sets the variable to the
smallest value consistent with all existing constraints. Other constraints on its
frequency might come from services that use this sensor. For example, Alex’s
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magVehicleDetectionService might require that the sensor be using a frequency
that is a multiple of 5Hz.

service( magVehicleDetectionService,
needs(
stream(X),
isa(X ,mag) ,
property(X,F,frequency) ),
{F1 = 5 * N, N mod 1=0}),
creates(
stream(X),
1sa(X ,vehicle),
property(X,T ,time),
property(X ,R,region) ) ).

When these two services are composed, the frequency of sensor is constrained
to be the minimum value less than 400Hz that is a multiple of 5Hz. The resulting
constraint set is singular and the planner determines the sensor frequency to be
exactly bHz. This constraint set (while singular) is passed to the instantiation
of the service at runtime through the execution engine.

Because service parameters are represented as CLP(R) variables, parameter
conflicts can often be resolved automatically. For example, if another service
were to require that the magnetometer run at a multiple of 12Hz, the resulting
constraint set on the variable F would be

F is an integer multiple of 5.

F is an integer multiple of 12.

F is less than 400.

F is the minimum value satisfying all of the above.

The constraint set is the singular value of 60, which is passed to the magne-
tometer service at runtime.

The resulting constraint sets on QoS parameters can also be passed to each
service at runtime. For example, the objectDetectionService above is required
by the query to achieve confidence ¢> 80. At planning time, it estimated a
confidence level of 100 given five break beam sensors. However, if one sensor fails
or if the nominal confidence values percolating up from the sensors decreases, the
objectDetectionService may determine that it can not longer meet the required
confidence constraints. In this case, it will signal an error to the execution
engine which would ask the query processor for another service graph. This
process is also known as execution monitoring and replanning in the artificial
intelligence literature [13].

6 Implementation

Incorporating SICStus prolog with CLP(R) extension, our tool processes queries
by a variant of backward chaining on service and sensor declarations. Notice
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that the goal of our query processing is not to show whether a used query can
be answers, but to come up with a compact plan for service composition. It is
desirable to share services as much as possible among multiple queries.

6.1 Query Processing

In general backward chaining, each unproven element of the query is matched
with the consequent of a rule or fact in the Knowledge Base (KB). If it is
matched with a rule, the antecedents of the rule must be proved by matching
with another rule or fact. Backward chaining terminates when all antecedents
have been matched with facts, and otherwise fails after an exhaustive search
of all rules. Our system works similarly. The query processor can prove a
predicate in the query with the event streams that a service creates. It must
then prove everything that the service needs. This procedure recurses until the
pre-conditions of all service needs are satisfied by physical sensors definitions.

The main difference between general backward chaining and service compo-
sition is that our inference engine actually instantiates a virtual representation
of each service in the KB every time it is needed. For example, the following
query asks for an object event stream.

isa(X, object), stream(X).

When the inference engine processes the first predicate, it searches for any
service with a similar post-condition declared in its createsclause and finds the
objectDetectionService. At this point, it actually creates a virtual representation
of the service in the KB and adds all of the services preconditions to the query.
Once these preconditions are satisfied (by three or more break beam sensors),
the inference engine moves on to the second predicate in the query: stream(X).
Before matching this predicate to service descriptions in the KB, it matches it to
the post-conditions of all existing virtual service instantiations. In this case, the
predicate matches a post-condition of the existing objectDetectionService instance
and is satisfied immediately. The resulting proof is illustrated in Figure 8(a).

There are several advantages to this technique. First, it is efficient because
results from previous proofs are cached and reused; many predicates in a query
are likely to be querying the same subtree in a proof. Second, it allows mutual
dependence, where two services each declare the other as a pre-condition. Mu-
tual dependence cannot occur in a pure backward-chaining approach because it
would lead to infinite recursion.

A third advantage is that, by causing the inference engine to first check
which services already exist, a query will automatically reuse services that were
instantiated in response to other queries. If two users run queries that can both
be answered with an object detection service running over three break beam
sensors, the service will only be instantiated in response to the first query;
the second query will simply reuse the existing services. When the first query
terminates, the execution engine removes only those services upon which no
other services depend so as to not interrupt execution of the second query. In
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this way, Semantic Streams allows the automatic sharing of resources and the
reuse of processing and bandwidth consumption between independent users.
The fourth and most important reason for instantiating virtual representa-
tions of services during composition is to ensure proper flow of event streams, ie.
that all event streams originate at a single service. This requires that the query
processor reason about the entire existing service graph, which is not possible
with a pure backward-chaining approach. For example, the following query is
identical to the query above except that the order of the predicates is reversed.

stream(X), isa(X, object).

If inference engine were to use pure backward-chaining, it could prove the
first predicate in the query with any service that has an event stream as a post-
condition. In this case, it would initially try the first service listed in the KB,
eg. the magnetometerService. When the query proves the second predicate, it does
not match any post-condition of magnetometerService so it matches the predicate
with a service in the KB and completes the proof. The resulting proof is shown
in Figure 8(b), and clearly is not a valid solution to the query because the event
stream X originates in two different places, once in each subtree of the proof.
By creating a virtual representation of each service in the KB, we allow the
inference engine to check the entire service graph to verify legal flow after each
inference step. If flow is not legal, the inference engine backtracks and tries the
next legal step.

6.2 Comparing to Previous Automatic Service Composi-
tion Approaches

Our approach differs from the three main techniques that have previously been
used for the automatic composition of Web Services: agent-based, planning-
based, and inference-based approaches.

Agent-based approaches perform a heuristic search through the set of all Web
Services, either simulating or actually executing each of them to find a path to
the desired resultant state [10, 4]. This technique does not easily transfer to
semantic services because it explicitly assumes a sequential execution model.

A concurrent execution model can be captured by Artificial Intelligence tech-
niques such as Partial Order Planning (POP) and Hierarchical Task Networks
(HTN). These techniques assume an initial state of the world sy and can allow
a set of simultaneous actions to take place at time ¢; if the state of the world
at that time s; satisfies all of the actions’ preconditions. The next state of the
world s;41 is the combination of the previous state and the post-conditions of
all executed actions. Several studies have used planning techniques for auto-
composition of Web Services [14, 17]. The problem with this technique is that
the planner performs a rather mechanical matching of post-conditions provided
at time ¢; with pre-conditions needed at time ¢;;1; it cannot perform any rea-
soning, which is needed in our system to deal with spatial relationships, quality
of service properties, and parameter conflicts among other things
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Reasoning can be performed by an inference engine, which uses a set of
facts in a knowledge base (KB) along with a set of rules to prove a statement.
SWORD [12] uses an inference engine to automatically compose Web services by
converting each one into a set of logic rules which states that its post-conditions
will be true given its pre-conditions. For example, a address directory service
may be described by the rule:

person (X),
name (X, N)=> address(X, A), city(X, C)

While an internet mapping service that can provide the directions between two
places may be described as

address (X, XA), city(X, XC),
address(Y, YA), city(Y, YC) =>
directions(X,Y)

These services can be automatically composed to “prove” a query that asks for
driving directions between two places, e.g. directions(X,Y), given only the names
of two people. The proof itself represents the workflow with which the services
should be executed in order to satisfy the query.

SWORD is most similar to our approach. However, the problem with the
pure inference-based approach is that all proofs are tree-based while most ser-
vice graphs are general directed graphs. Because SWORD does not use virtual
representations of services during service composition, it cannot accurately rep-
resent the flow of event streams, which must always originate at a single service.
Moreover, it cannot represent a service graph with mutual dependence.

6.3 Putting It All Together

We revisit our example in section 3 and demonstrate how the system can 1) au-
tomatically share and reuse resource between independent users and 2) compose
services from two different applications to create a new semantic composition
for a third application.

If Pat and Alex are the first users of the system or if existing services do
not satisfy their queries, they may need to write services on their own. We are
assuming that only the services described in Figures 3 and 4 are available to the
Semantic Streams framework.

Each user is presented with a graphical user interface such as the one shown
in Figure 9. The interface also shows a 3D rendering of each sensor in our garage
testbed and the region that the sensor covers. The post-conditions of all services
in the system are listed on the left side of the screen. These post-conditions are
the only predicates that can be used in a query, although variable names may
be changed to create new compositions and CLP(R) constraints may be added.
Each user selects the appropriate predicates to create their desired queries:

Pat stream(X),
property(X,P, photo),
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property(X,Y, triggerStream),
property(X ,speed, triggerProperty),
stream(Y),

1sa(Y ,vehicle),

Alex stream(X),
property(X ,H, histogram),
property(X,Y, plottedStream),
property(X ,time, plottedProperty),
stream(Y),

isa(Y ,vehicle),

Kim stream(X),
property(X ,H, histogram),
property(X,Y, plottedStream),
property(X ,speed, plottedProperty),
stream(Y),

1sa(Y ,vehicle),

When Pat’s query is executed, the system generates the service graph ex-
actly as shown in Figure 3, which is reproduced in Figure 10(a) for conve-
nience. When Alex’s query is executed, a new histogramService is first instanti-
ated. However, it does not instantiate a magVehicleDetectionService as shown in
Figure 4 because another equivalent service already exists. It uses instead the
vehicleDetectionService instantiated for Pat’s application. The resulting com-
posite service graph is shown in Figure 10(b). Alex’s application illustrates
Semantic Streams automatically sharing resources between independent users.

Kim’s query reuses services from both Pat’s and Alex’s applications. The
histogramService from Alex’s application can be reused, although a new instance
must be created because the existing instance does not match Kim’s query (it
plots different values). The existing instance of the speedservice from Alex’s
application, however, can be reused because it is inferring the speeds of vehicle
objects. Kim’s application illustrates how a new application can be created
without creating any new services; existing services from the other two appli-
cations were composed to create a semantically new application. The service
graph in Figure 10(c) is then sent to the service embedding engine and get
executed on the sensor network.

7 Limitations and Future Work

Like any programming paradigm, the Semantic Streams framework has its
strengths and limitations. We discuss some limitations and possible improve-
ments in this section.
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7.1 Non-semantics Operations

The semantic services programming abstraction is meant to capture operations
that change the semantics of the input and output streams. This abstraction
allows the composition of semantic values. However, not all sensor network
problems are semantic transformations. For example, routing data from one
node to another does not change the semantics of the data. Even if we add
the current location where the data is cached to its semantic properties, seman-
tic services cannot easily differentiate between different routing algorithms. In
places where fine-grained operational control is of high priority, an imperative
programming abstraction like NesC modules would be more appropriate.

7.2 Reasoning About Runtime

A main limitation of the Semantic Streams framework is that the query pro-
cessor cannot reason about runtime. All runtime processing is expected to be
contained within a semantic service and all values outside of a semantic service
are time invariant. This becomes a problem with the service graph needs to
change at runtime. For example, two applications cannot both have control
of the same pan/tilt camera because they might need to point it in different
directions. Our inference engine would not allow these two applications to be
run simultaneously. However, it may be that the two applications never need to
use the camera at the same time, e.g. when vehicles are present one application
needs the camera and when they are not present the other application does.
While the query processor does currently have enough information to infer this
fact, the current implementation does not have the reasoning capability.

One possible solution is to embrace the query processor at runtime. At
each step, the query processor can be re-run based on the current information.
Obviously, this introduces significant overhead. A more interesting approach is
to enhance the query processor to generate plan skeletons rather then concrete
plans. The skeleton can be parameterized by time and information obtained at
run time. This way, the plans can be efficiently re-instantiated without going
through the entire planning process.

7.3 Quantifiers and Scoping

The semantic markup language described in Section 5 is sufficient for the simple
examples used in this paper. However, a main limitation to capturing more
complex applications is that the language lacks quantifiers and scoping. For
example, we should be able to add parameters to arbitrary services through
CLP(R) constraints without actually changing the service implementation, e.g.
adding a speed threshold to the camera capture service:
service( cameraCaptureService,
needs(
stream(S),
p?"ope'r‘ty(S’J/',Speed)7
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{v>=15} ),
creates(
st'ream(X),
property( X ,F, phOtO),
property(X,S, triggerStream) ) ).

The reason this constraint cannot be added is that it has global scope; it
cannot be differentiated from a case where the same constraint was placed on
the input or output of a different service that processes the same stream.

Quantifiers are also necessary for more sophisticated reasoning at planning-
time, such as the use of an ontology. Adding a simple ontological rule such as
“all vehicles are objects” could be useful.

isa(X ,object) :- isa(X,vehicle)

This rule would allow the query stream(X),isa(X,object) to be satisfied by
the vehicleDetectionService. However, the meaning of this service is not the
same under this new context; it detects all vehicles in a region but it only
detects some of the objects in a region. This relationship cannot be concisely
captured without quantifiers.

7.4 Actionable Error Messages

If the existing sensors and services are not adequate for a particular query, the
current implementation of the query processor simply returns failure. However,
because we have a goal-oriented query from the user, we should be able to
provide actionable error messages. For example, the query processor could
provide suggestions like: “To answer this query, you can add a magnetometer
sensor to region XYZ.” This functionality is possible by allowing the query
processor to analyze the failure points in a failed query and present the unproven
pre-conditions to the user. The main challenge with this technique is that there
may be thousands of unproven pre-conditions and the system must identify
those that would be easiest for the user to satisfy. This task may prove feasible
if the feedback to the user is limited to, for example, sensor placement.

8 Conclusions

Semantic Streams is a step toward providing a high level abstraction for end
users to interact with sensor networks and enabling transparent in-network pro-
cessing and component reuse. In many domains, the users only need to specify
the end goal in terms of what semantic information to collect, and the service
composition framework automatically specifies and glues the necessary compo-
nents to achieve that goal.

The framework presented in this paper provides a declarative language for
describing and composing event-based sensor services. There are several benefits
to this framework:
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e Declarative programming is easier to understand than low-level, distributed
programming and allows common people to query high-level information

from sensor networks.
e The declarative language allows the user to specify desired quality of ser-

vice trade-offs and have the query interpreter execute on them, rather

than writing imperative code that must provide the QoS.
e The framework allows multiple users to task and re-task the network con-

currently, optimizing for reuse of services between applications and auto-
matically resolving resource conflicts.

Together, the declarative programming model and the constraint-based plan-

ning engine in our service-oriented architecture let non-technical users to quickly
extract semantic information from raw sensor data, thus addressing one of the
most significant barriers to widespread adoption today.
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Histogram Service

i

Mag Vehicle
Detection Service

i

Magnetometer
Service
A

‘ Magnetometer ‘

Magnetometer Service

Function: A wrapper service around the magnetometer sensor.

Inputs: None.

Outputs: A stream of magnetometer events with a single property indicating
the magnetic field in the region.

Mag Vehicle Detection Service

Function: Analyzes the magnetometer stream to infer the presence of vehicles.

Inputs: A magnetometer stream

Outputs: An object stream, where each object event has time and region
properties indicating where and when it was detected as well as a property
indicating that it is a vehicle.

Histogram Service

Function: Plots the time properties of an event stream as a histogram.

Inputs: An object stream with a vehicle property

Outputs: An histogram stream, where each event contains an update to the
histogram.

Figure 4: Alex’s Application requires services that read the magnetometer
sensors, detect objects, and plot their speeds in a histogram. a) shows the service
composition and b) provides descriptions of the services
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(b) Centralized Implementation

Figure 5: Execution Model Services can be distributed objects or can imple-
mented on a central server. With sensor infrastructure, the centralized imple-

mentation is often both more efficient and easier.
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service( breakBeamService,

needs(
sensor(breakBeam, R),

creates(
stream(X),
isa(X ,break),
property(X,T ,time),
property(X,R,region) ) ).

service( objectDetectionService,

needs(
breakGroup(R, [1, Group),
length(Group,Length) ,
Length>=3 ),

creates(
stream(X),
1sa(X ,object),
property(X ,Group, support), property(X,T,time),
property(X ,R,region) ) ).

service( speedService,
needs(

stream(X),
1sa(X ,object),
property(X ,Group, support) ), creates(
stream(X),
isa(X ,object),
property(X,S,speed) ) ).

service( vehicleDetectionService,
needs(
stream(X),
1sa(X ,object),
property(X,S,speed) ),
creates(
stream(X),
isa(X ,vehicle) ) ).

service( cameraCaptureService,

needs(
stream(S),
property(S,V,P) ),

creates(
stream(X),
property(X,F, photo), property(X,S, triggerStream),
property(X,P, triggerProperty))).

Figure 6: Pat’s Service Markup for the services shown in Figure 3
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service( magnetometerService,

needs(
sensor(magnetometer, R),
{F<a00},
minimize{F}),

creates(
stream(X),
isa(X ,mag) ,
property(X ,T ,time),
property(X,R,region),
property(X ,F,frequency) ) ).

service( magVehicleDetectionService,
needs(
stream(X),
isa(X ,mag) ,
property(X ,F,frequency) ),
{F1 = 5 % N, N mod 1=0}),
creates(
stream(X),
1sa(X ,vehicle),
property(X ,T ,time),
property(X ,R,region) ) ).

service( histogramService,

needs(
stream(S) ,
property(S,V,P),

creates(
stream(Y),
isa(Y ,histogram),
property(Y,S, plottedStream) ) ). property(Y,P,

plottedProperty) ) ).

Figure 7: Alex’s Service Markup for the services shown in Figure 4
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(b) Backward-Chaining

Figure 8: Service Composition The backward chaining algorithm must be

slightly modified in order to yield valid service graphs; pure backward-chaining
cannot guaranteed valid flow.
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Figure 9: User Interface Fach user is presented with a 3D rendering of the
sensors in the testbed and, on the left, all predicates that are queryable.
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Figure 10: Composite Service Graphs In step 1, Pat’s query produces the
expected service graph. In step 2, Alex’s query reuses one of the services that
is instantiated in response to Pat’s query. In step 3, Kim’s query composes
services from Alex’s and Pat’s queries to create a new semantic composition.
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