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1 Introduction

Technology advances have greatly changed the landscape of embedded systems. Today,
an embedded system may no longer be limited to a single application. Embedded
software is no longer developed once for the entire lifetimeof a product. The ubiquity
of (wireless) networking has opened the gate for embedded systems to participate in
the larger digital world. They can be re-tasked, re-configured, and reprogrammed on
the fly. They can execute user defined tasks on demand.

In this paper, we consider a particular class of networked embedded devices called
microservers, which can gather physical information through sensors andcan respond
to queries sent over the network. Like application servers in enterprise computing,
microservers dynamically accept and host user tasks that define the application logic.
But, unlike business applications, tasks on microservers are typically long-running and
their inputs are physical events and sensor data in real time.

Microservers can take various forms. For example, in a healthcare scenario, the
cellphone an elderly person carries can be a microserver. Itcan accept tasks from
family members and healthcare providers sent through the cellular data link, and run
them over real-time data gathered from wearable sensors (e.g. location sensing, activ-
ity sensing, and vital sign monitoring). The results can go back to the family members
and caregivers wirelessly. A telematics computer in a car can be a microserver. The car
manufactures, the dealer, and the car maintenance shops mayinject different monitor-
ing tasks into the microserver to gather specific events tailored to their interests. The
results of those tasks are sent via a cellphone or a satellitelink. In a retail warehouse,
portable RFID readers with WiFi links, possibly equipped with location, temperature,
and humidity sensors, can be microservers that track products and their storage envi-
ronments on demand. Inad hocsensor networks, a mesh network of microservers can
serve as gateway nodes to connect resource constrained embedded sensors to larger
network/data infrastructures.

A common challenge for these microservers is that they must hostuncoordinated
tasks, such as user queries, simultaneously. By uncoordinated tasks, we mean that
the tasks are injected by different users at unpredictable times. These tasks may have
different life time depending on users’ interests. Since microservers are not general-
purpose computers, the information they collect and process depends highly on their
surroundings. It is very likely that there are partial overlaps among simultaneous user
tasks. For example, in the healthcare scenario, the caregiver may want to detect certain
walking patterns as an early sign of Alzheimer disease. The daughter of the elderly
person, seeing that the weather today is nice, wants to set upa reminder that if her
parent has not gone out for a walk until 10AM, she will be notified so that she can give
her parent a call. The two tasks are independent and have verydifferent time scales —
one is long running and the other expires by 10AM. However, parts of the two tasks,
namely detecting the behavior of “walking” from various rawsensor data (e.g. from
accelerometers or cameras), can be shared.

Many microservers are battery powered mobile devices, theyare constrained by
the CPU speed, memory size, communication bandwidth, and energy storage. Thus,
it is crutial for microservers to find the maximum amount of overlapping sensing and
computation in uncoordinated tasks and reduce runtime redundancy. This is anin-
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termediate information reuseproblem, that is, whether a task can reuse intermediate
computation results from other tasks. In order to achieve this, a microserver runtime
system must:

I. identify overlapping sensing and computation from multiple tasks;
II. suppress parts of a task but keep the rest active;

III. share intermediate results from one task to another.

In this paper, we describe the architecture and task management design of SERUN1

with an emphasis on enabling intermediate information reuse. SERUN has a component-
based architecture. Each task is built using a set of event-driven components, called
services. The communication between services has a publish/subscribe semantics. A
user task is sent to a microserver as a service composition graph (SCG). For each in-
coming user request, the runtime system examines the existing tasks and tries to find
out whether parts of the new request can be fulfilled by existing computations. If so, the
redundant services are not instantiated, and their downstream services are subscribed
to corresponding existing publishers.

There are several approaches to promote the sharing of intermediate results across
tasks. For example, some commonly used services can be manually started and their
outputs published in a local tuple space. New tasks can then subscribe to these interme-
diate results, so that they are computed only once. However,this introduces run-time
overhead if those services are not used by any tasks. It is also hard to draw the line
between what services should be system provided vs. user defined. Another approach
is to compare syntactically the composition of services. This is the most conserva-
tive and rigid approach. Two subtasks are considered redundant if they are exactly the
same, including service composition topology, service parameters, and their internal
states. For example, if taskA uses a servicevehicleSpeedDetection to compute both
the presence and the speed of a vehicle, and taskB plans to usevehicleDetection
to obtain only the vehicle presence information, thenB cannot use the outputs from
vehicleSpeedDetection even though its outputs contain all the informationB needs.

SERUN takes a different and more flexible approach by allowing users to annotate
semantics of the data transmitted between services. We relyon a runtime signal type
system (STS) to check and automatically convert between data semantics whenever
possible. In fact, the input task may not be followed verbatim, if the runtime system
can find existing alternative services that provides intermediate results with compatible
semantics. This is more sophisticated than simply giving each piece of data a name
and matching names at runtime . Since services are event driven, the events passing
between services not only carry their value information, but also serve as triggers for
service execution. For example, a service that expects temperature sampled at 10Hz
cannot be triggered by a 100Hz event source. A big advantage of STS is that it handles
this sequencing property naturally within the type system and performs trigger rate
conversions as well as data type conversions.

The rest of the paper is organized as following. In Section 2 we present the archi-
tecture of SERUN focusing on the features that enables information reuse. We then
focus on the signal type system in Section 3, defining signal types and show how

1SERUN stands for SErvice-oriented RUNtime.
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type checking and type conversion mechanisms can help identify and reduce redun-
dant computation. Section 4 presents a testbed deployment of the runtime system in a
parking garage microserver. Section 5 discusses related work. Section 6 concludes the
paper and points out future directions.

2 SERUN Architecture

2.1 Service and Composition

In order to facilitate the reuse of intermediate computation results, we must introduce
some granularities in build user tasks. In SERUN, an unbreakable piece of computation
is called aservice. A service is an asynchronous piece of computation. Services have
input and outputports. Input ports accept events, and output ports produce events
for other services. A service may have internal state, and its behavior depends on
both input events and its internal state. To this extent, services are similar to actors
in Ptolemy II [4], element classes in Click [17], actions in UML’s action semantics
extension [19], among many component-based frameworks.

There is no global state in a task other than the data communicated between ser-
vices. The communication has a publish/subscribe semantics. Conceptually, all outputs
from services go into an event mediator that is visible to allother services. If one of
the services is interested in processing an event in the mediator, it reactsto a copy of
that event. Events are not cached. After it is delivered to every subsciber’s input port,
it is garbage collected. Since the mediator separates the publishers and subscribers, a
service does not care where its inputs come from nor where itsoutputs go to. Thus
intermediate computation results can be easily shared across tasks.

Since all services are local to the microserver, the publish/subscribe semantics is
efficiently implemented using an event/delegate mechanism[15] in SERUN. Objects
called Relations2 are introduced to serve as mediators for publishers and subscribers.
However, instead of having a single mediator for all publishers and subscribers, there is
one relation per event type. The relation connects to one or more output ports (publish-
ers) and zero or more input ports (subscribers). It maintains a list of all connected input
ports, and registers itself to every connected output portsas an event handler. Once an
event is sent by an output port, the relation sends a copy of the event to every connected
input port. The connections between ports and relations areestablished only once
when a user task is first injected to the microserver and remain unchanged through-
out the lifetime of the task. Since tasks on microservers areusually long-running, this
implementation greatly reduces the overhead of data pattern matching in typical pub-
lish/subscribe architectures [6].

In SERUN, service executions are event-driven. Some eventsmay carry time
stamps, but service executions are triggered by the presence of events in the input ports.
This kind of reactive execution is usually more resource efficient when the inputs are
sparse, which is the case for many embedded applications such as wireless sensor net-
works. In SERUN, each service has its own thread. It reacts toevery input event on a
first-come-first-serve basis. Once triggered, it performs afinite piece of computation,

2The name is influenced by Ptolemy II.
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which may change its internal state and may produce outputs,and then go to an inac-
tive mode waiting for the next input event. An input port has an FIFO queue that keeps
triggering the inactive service if the queue is not empty.

2.2 Task Management

A user task consists of a set of services and the connections among their ports, called
a service composition graph (SCG). It is given to SERUN as an XML document. For
most of the paper we use a graphical representation as shown in Figure 1. Services are
shown as blocks with their names annotated. Service ports are implicit. Connections
between ports are indicated by arrows. A relation is implicit if it connects exactly one
output port and one input port, otherwise, it is shown as a diamond.

Once given to the runtime system, the SCG may not be followed verbatim. It can
be merged with existing tasks. Figure 1 illustrates the desired optimization result. If
Task1 is already running on a microserver, andTask2 is later injected, we would like
the run time image to be the bottom part of the Figure 1. WhenTask1 has finished,
not all its elements are garbage collected. Part of it, although may have been started by
Task1, can be used by other active tasks, as show in Figure 1(b).

Service lifetime management is achieved bydemand analysis. Each service is indi-
vidually started and stopped. A service maintains a list of tasks that demand it. When
a service subscribes to a relation, the subscriber’s task ispropagated to all services
backward-reachable from the relation. That is, all services that are used to generate
the data that the subscriber needs is part of the task. When a task terminates, its cor-
responding entry is removed from all services it demands. When the list is empty, the
service wraps up and hands itself to the garbage collector. Thus, requirements [II] and
[III] introduced in Section 1 can be relatively easy to achieve in our service-oriented
architecture. The rest of the paper focuses on achieving requirement [I] — how to
maximally identify redundant sensing and computation in anefficient way.

3 A Signal Type System for Information Reuse

The approach we take to reducing runtime redundancies is based on event semantics.
As stated before, the semantics of events in event-driven systems has two parts: the
value it carries and the triggering role it plays for services. When reusing events, we
must consider both properties. The mechanism we capture andreason about event
semantics is a signal type system (STS). The goal of the STS isto capture the property
that events produced from an output port “contain all the information needed” by an
input port. This section first defines the singal types and then describes how the STS is
used to help information reuse.

3.1 Signal types

Inspired by the tagged signal model [14], we define an event asa pair: a tag and a value.
A signal is simply a sequence of events. Thus, a signal type consists of two parts: its
tag type and its value type.
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Figure 1: Task management in SERUN.

Value types: In STS, we treat the values of an event as a record, and its typeis a
tuple:

v = (name,{(n1, t1),(n2, t2), ...,(nk, tk)}) (1)

where,

– namerepresents the name of the signal;
– (ni , ti) is called afield type, whereni is the name of the field andti is a primitive

data type3.

A name in STS serves as an identifier for data. It can encode theID, location,
or object identity information, among others. For example,the outputs of a relative
humidity(RH)/temperature sensor in room 102 may have valuetype:

("room102", {("RH", float), ("temp", float)}) (2)

We use the setV to represent all value types. The compatibility relation between
value types is a simple extension of record types in programming languages (see e.g.

3Here, we use the term primitive types loosely. It represents both primitive data types, likeint anddouble,
and objected-oriented classes as well.
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[16]). Letv=(name,{(n1, t1), (n2, t2), ...,(nk, tk)}) andv′ =(name′,{(n′1, t
′
1),(n

′
2, t

′
2), ...,(n

′
m, t ′m)})∈

V, we sayv is compatiblewith v′, written asv≤ v′ if the following holds:

– name= name′;

– for each(n′, t ′) of v′, there exists(n, t) of v, such thatn′ = n′ andt ≤ t ′. By t ≤ t ′

we meant is a subclass oft ′, or for primitive types convertingt into t ′ will not
lose data precision.

That is, the fields inv′ need to be a subset of that inv subject to primitive type com-
patibility. For example, if a service requests a temperature reading in room 102 as
("room102", {("temp", double)}), then the type in (2) is compatible with it.

Tag types: Tags represent timing and ordering relations among the events in a
signal. To deal with real world signals, especially sensor outputs, we assume tags take
values fromR , the set of reals. In particular, we focus on the following subsets ofR

• R is the whole connected set.

• N ⊂ R is the set of natural numbers.

• D ⊂ R is discreteif it can be order-preserving and bijectively mapped to a subset
of integers [12]. We denote this mapM D , which is unique for everyD .

• P (t0,Ts) = {t|t = t0 + i ·Ts, i ∈ N , andt0,Ts ∈ R } is the set of integer multiple
of Ts starting fromt0. This is a periodic discrete set. We also writeP (Ts) if the
start time is understood, sayt0 = 0.

The tag sets form the basis of tag types. However, they alone are not sufficient to
differentiate sampled continuous signals from periodic discrete event signals such as a
clock. For this reason, we extend the tag type system to capture the notion of continuity
of underlying signals. We introduce a class of signals called discrete representation of
continuous signals(DRCSs). A DRCS has a discrete set as its tags, but representsa
continuous signal. One implication of the underlying continuity is that we can approx-
imate data values (e.g. through interpolation) even thoughthey are not present in the
signal. DRCS is different from timed discrete event signals(DES) even though they
may have the same tag set, because DES cannot be interpolated.

We further introduce a base type calledcontinuous-time signal(CTS), which can
never be instantiated in a digital computer, but serve as thebottom of our type lattice.
The CTS is the only signal that has tag typeR . We call the untimed signalssequences,
and their tags (in terms of timing) areN . With these notions, we define the following
coarse-grainedsignal types lattice, as shown in Figure 2. Intuitively, a CTS can be
sampled to get a DRCS and can generate DESs through event detections. A DRCS can
be treated as discrete events by losing the notion of underlying signal continuity. A
DES can be converted to a sequence by applyingM D , i.e. losing its timing properties.

The coarse-grained type lattice can be further refined by thecontainment relations
among tag sets, for example,P (Ts) ⊂ P (2Ts) ⊂ P (6Ts).... In general, we useC for
DRCS tags andD for DES tags. LetC(p) represent a DRCS whose tag set isP (p),
andD(p) be a discrete event signal with the same periodic tags. The fine-grained tag
type lattice, denoted asT is shown in Figure 3, whereC1,D1,D2 are aperiodic andC1

andD1 have the same tag set.T is an infinite lattice.
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Figure 2: A coarse-grained signal type system based on signal continuity.

Using this lattice, we define compatibility on tag types: letτ1,τ2 ∈ T , τ1 ≤ τ2 if τ1

is lower in the lattice thanτ2. For example, according to this type lattice, a continuous-
time temperature waveform is compatible with its 1Hz sampling, which is compatible
with its 10Hz sampling, which is compatible with a discrete set of temperature events
defined on the same time instances, which in turn is compatible with untimed temper-
ature sequences.

We call the overall type system that captures both tag types and value types the
signal type system(STS). In STS,s= (τ,v) is compatible withs′ = (τ′,v′) (i.e. s≤ s′)
if τ ≤ τ′ andv≤ v′.

3.2 Using STS in SERUN

STS is used in SERUN for checking information reusability. Intuitively, if an input port
I of serviceA requests events of type(τ′,v′), and an (existing) output portO produces
events of compatible type(τ,v), then by connectingI andO, each eventA receives will
contain all the informationA needs for a correct reaction, andA will be triggeredat
leastas often as it is expected. ForA to be triggered exactly as often as it expects, we
must haveτ = τ′.

3.2.1 Signal Types Specification

Task SCGs are sent to microservers in an XML format, called Microserver Tasking
Markup Language (MSTML), which is an extension of MoML [4]. AMSTML file has
four sections: Sockets, Services, Relations, and Connections. Sockets are interfaces to
other microservers or wireless sensors; the services section specifies the services used
in this task, including a list of all ports and parameters foreach service; the relations
section specifies the mediators to connect the ports, and theconnections section lists
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Figure 3: A lattice for tag types. Without loss of generality, we assumeq > p; q is not
a integer multiple ofp; C1, D1, andD2 are aperiodic.

which port connects to which relation. The semantics annotation is part of the port
declaration in the services section.

Figure 4 shows a segment of the services section in MSTML. Signal types are anno-
tated as properties of ports. For example, the figure shows aninstance ofMagVehicleDetection
service that detects the presence of vehicles using magnetometer readings. The service
has two ports: “in” and “out.” The input port needs a sampled magnetometer signal
at 0.1Hz. Each data sample is an integer. The service produces outputs whenever a
vehicle is detected. The vehicle detection events are timeddiscrete events with a field
timeStamp.

A task can also specify that certain signals should not be substituted by omitting its
signal type properties, so that parts of the SCG must be followed verbatim. This feature
is important since not all tasks are aimed at getting the finaloutput. For example,
one can use theMagVehicleDetection service to check whether the magnetometer is
working correctly. Replacing it with other vehicle detection mechanisms defeats the
purpose.

3.2.2 Type Checking

The goal of reusing services from existing tasks is achievedby type checking the newly
injected MSTML specification against existing signals. We assume that each applica-
tion, when given to SERUN, is already type checked for correctness, and it is self-
contained. When an MSTML file is injected, the STS checks for each input porti in
the new task and for the collection of output portsO, whether there existso∈ O such
that type(o) ≤ type(i). This boils down to matching the names of the signals, check-
ing the subset relations among the fields, checking the primary types compatibilities in
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<service name="Detector" type="MagVehicleDetection">
<port name="in">

<property name="input"/>
<property name="signalType"

signalName="magnetometer"
tagType="C(0.1)"
magneticField="int" />

</port>
<port name="out">

<property name="output"/>
<property name="signalType"

signalName="vehicle"
tagType="D"
timeStamp="long" />

</port>
</entity>

Figure 4: Markup of a Detector service in MSTML. Signal types are annotated as
properties of ports.

each field, and most importantly checking the tag type compatibility.
For aperiodic signals, the tag type checking can simply use the coarse-grained type

lattice in Figure 2:C ≤ D ≤ N . For periodic signals, it is possible to perform finer
grained checking such as checking the sampling rate. For example,C(p) ≤ C(k× p)
for any natural numberk, similarly for discrete events.

3.2.3 Type Conversion

Notice that type compatibility does not imply that an input port in one task can connect
to an output port in another task. To ensure correct triggering, the tag types must be
equal. This is achieved by type conversion of compatible types, based on type checking
results. To simplify discussion, we assume that when a service accesses data values
from its input events, it always uses the name of the field and cast it to its local type,
e.g.

int magValue = (int)event.getValue("magneticField");

In this section, we focus on the conversion of tag types.
The purpose of type conversion is to provide an input port with exactly what it

expects, for both the data values and the triggering times. Analogous to conversions in
data type systems, we have developed similar notions of lossless and lossy conversions
in STS. When the output port type and the input port type are compatible but not
exactly the same, i.e. the input events are a subset of the output events, it is possible for
a losslessconversion in STS to provide precise events, in terms of bothtag and value,
to the input port. Here, we only consider conversions of periodic signals.
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Figure 5: Lossless type conversion in SERUN. Down samplers are automatically in-
serted to convert tag types.

Let output porto and input porti be type compatible, e.g.τ(o) = C(p), andτ(i) =
C(k× p), then the type converter inserts a
k-DownSampler service, which for everyk input events, produces one output event, as
shown in Figure 5. Similar conversion can be performed for periodic DESs.

Lossy conversions change event values in order to match tag types. It applies only
to DRCSs, taking advantage of underlying continuity of the signal it represents. By
using a lossy conversion, the input port will be triggered exactly as requested, but
the values of the input events are only approximations to thereal values. The accu-
racy of this approximation depends on the continuity of the underlying signal and the
sampling rate at both the output port and the input port. AnInterpolator service
performs lossy conversion. There can be many interpolator services based on different
interpolation algorithms. In SERUN, we use the simplest linear interpolator. In order to
reduce approximation errors, we perform lossy conversion only when the output signal
has a higher sampling rate than the input requirement. Letτ(o) = C(p), τ(i) = C(q),
and p < q. A LinearInterpolator starts with an internal counterm set to 0. It is
activated by every output event fromo. It produces itsm-th output when receiving the
k-th input, wherek satisfies(k−1)p < mq≤ kp. The value of them-th output event is

y′m = yk−1 +(yk−yk−1)
mq− (k−1)p

p
.

wherey are the input values andy′ are the output values.
Conceptually, an interpolator first converts the DSRC to itsunderlying continuous-

time signal, and then re-samples it according to the frequency required by the down-
stream input port. Note that the lossy conversion only applies to DRCS but not discrete
event signals, even though they may have the same tag set.

3.3 More on signal names

Notice that the compatibility of event values defined so far means that when the ser-
vice reacts to its input event, it can cast all the expected data fields without runtime
exceptions. This does not necessarily mean that the data values are exactly what the
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receiver expects when we connect its input to the output of a service in a different task.
The only element in STS that ensures the correctness of eventvalues is the name of the
signal. But, is this reliable?

For example, a servicecounter in taskAproduces a signal with namevehicleCount,
and another service in taskB also expects a signal calledvehicleCount. Is it correct
to connect them together? Although the presence of a vehicleis a physical fact, it
is possible thatA is counting vehicles from 9AM, whileB expects the counting from
10AM. The encoding “vehicleCount” is not a unique identifier for the semantics. On
the other hand, names likevehicleCountFromUTC1-1-2005:09:00:00 and
vehicleCountFromUTC1-1-2005:10:00:00 are able to differentiate them.

In general, in order to uniquely identify events, the names of the signals must be
universal and rich. That is, uncoordinated users must first agree on how to name phys-
ical and virtual events in the particular application domain, and secondly, the name
should reflect runtime information such as time duration, space, units, and accuracy.
Very likely, it is a structure rather than a simple string.

Recent movements in semantic web services proposes ontologies for various ap-
plication domains [3, 2]. In the sensor communities, IEEE 1451.2 [1] and OGC Sen-
sorML [20] are both attempts to standardize semantic descriptions of sensor outputs.
Currently, these standards do not include high-level information interpretations, but
further extensions can be in the scope.

Another approach to prevent users from specifying arbitrary data semantics is to
have an automatic service composition engine as the front end for microservers. Instead
of having users directly composing services, which would bedifficult for nontechni-
cal users, one can provide users with a high-level query interface. Users can specify
something like “give me a histogram of vehicle arrival timesstarting from 9AM today”
through a query language; and a query processor generates a SCG with unified signal
types annotated. A query language and its processing engine, based on constraint logic
programming, has been prototyped for SERUN [24].

4 Example

We built an experimental testbed in a parking garage to prototype our service-oriented
networked embedded computing architecture and SERUN. The testbed allows users to
run multiple simultaneous queries on real-time parking garage sensor data.

The testbed is located near the entrance of the second floor ina parking garage with
one-way traffic, as shown in Figure 6. The focus of the networkwas a 4x5 meter area
directly in front of an elevator. All vehicles entering thisfloor of the parking deck pass
through this area, as do most pedestrians using the elevator.

There are three types of sensors in the system: a web camera, amagnetometer and
infrared breakbeam sensors. A breakbeam sensor bounces an infrared beam against a
distant reflector. When an object comes between the sensor andthe reflector, it detects
that the beam has been broken; when the object moves away it detects that the beam
has been re-detected. This is the same type of sensor that might be found at a store
entrance to detect customers entering and leaving.

11



Elevator Well

infrared 
reflector

PARKING   SPACES

PARKING   SPACES

corpnet

Ethernet

mote with
magnetometer

mote with
infrared breakbeam

microserver

camera

Figure 6: A garage sensor network deployment.The breakbeam sensors were laid
out in a row on the wall in the focus area. The digital camera was focused on the same
area. The magnetometer was placed several meters downstream near the microserver.

Both breakbeam sensors and the magnetometer are connected to micaZ motes4.
Each of these motes is equipped with a 2.4GHz IEEE 802.15.4 (ZigBee) compliant
radio. Five infrared breakbeam sensors are placed in a row across the area, 1m apart and
about .5m from the ground, such that the beams are broken in succession by any passing
human or vehicle. Each blocking or unblocking event generates an interrupt to the
mote. Slightly down traffic from the breakbeam sensors, we installed a magnetometer-
equipped mote that can detect the changing magnetic field of amoving vehicle. A
headless Upont Cappuccino TX-3 Mini PC is used as a microserver that communicates
with the micaZ motes via 802.15.4 radio, while connected to the company intranet via
wired Ethernet. The web camera, with an embedded web server,is also connected to
the Ethernet.

Pretending three corporate users, we run the following three queries in the system:

Task T. Traffic engineer Todd wants photographs of all vehicles moving faster than 25mph.

4Available from Crossbow Tech. (www.xbow.com).
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Task E. Employee Emma wants to know at what time she should arrive at work in order
to get a parking space on the first floor of the parking deck.

Tash C. Corp security officer Cory wants to collect magnetic field signatures whenever
there is a moving object (human or vehicles) passing throughthe section.

There are two ways to detect a vehicle in our system: by using the breakbeam
sensor array or by using the magnetometer. The breakbeam sensors can estimate the
speed of the vehicle, while the magnetometer cannot. To detect a vehicle, Task E
only needs to sample the magnetometer at 16Hz, while to collect the magnetic field
signature, the magnetometer needs to be sampled at 256Hz.

As a prototype, we use Ptolemy II as a graphical interface forusers to build their
tasks and annotate data semantics. Each user builds the taskfrom his/her own stand-
point, without considering possible resource sharing. Forexample, Todd’s must detect
the vehicles using the breakbeam array since he wants speed information. His appli-
cation is shown in Figure 7(a). Emma may find that using magnetometers to detect
vehicles more straightforward, so she builds an application as shown in Figure 7(b).
She sets the magnetometer to sample at 16Hz. Cory turns on themagnetometer at
256Hz and logs the data in a running buffer. The buffer outputis triggered by object
detections from the breakbeams. It uses the speed estimate to calculate which section
of the buffer is sent back to Cory. Cory’s application is shown in Figure 7(c).

The semantics of the data are also annotated in the model. Forexample, using a
short notation, in Task T:

type(T3) :=(D, "sortedEdges",{("timeStamps", long[])});

type(T4) :=(D, "vehicle",

{("timeStamp", long),("speed", double)});

in Task E:

type(E2) :=(C(1/16), "magnetometer",

{("magneticField", int)});

type(E4) :=(D, "vehicle",{("timeStamp", long)});

in Task C:

type(C1) :=(D, "sortedEdges",{("timeStamps", long[])});

type(C2) :=(D,"movingObject",

{("timeStamp", long),("speed", double)});

type(C4) :=(C(1/256), "magnetometer",

{("magneticField", int)});

STS derives the following type relations, among others:

type(T3) = type(C1) (3)

type(T4) < type(E4) (4)

type(C4) < type(E2) (5)
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Note that using a syntax-based approach, only (3) can be detected. Our semantics-
based approach gives better information reusa-bility. Forexample, when Task T is al-
ready running and Task E is injected, neitherMagnetometer norMagVehicle Detection
services are instantiated. The inputE4 is subscribed to the outputT4. If Task C is al-
ready running when Task E is injected, a16-DownSampler service is automatically
inserted betweenC4 andE2. If the magnetometer in Task C were set to a sampling
frequency that is not a multiple of 1/256, aLinearInterpolator service would be
inserted to perform a lossy conversion. When Task C, Task E, and Task T are injected
in that order, the runtime image looks like the one shown in Figure 8.

5 Related Work

Componentizing computation is a trend in networked systems. It has the benefits of
software reuse, information hiding, and some degree of fault tolerance [22]. In Inter-
net and enterprise computing, web services [5] are pre-built software components that
can be assembled across organizations and over the network to form new applications.
Component-based and service-oriented approaches to organizing embedded software
is also emerging [23, 13, 9, 17]. Publish/subscribe models like those in LINDA [8],
CORBA event service [21], and JavaSpaces [6], are popular approaches to mediate
uncoordinated tasks. Although caching and replication arevery common in these ar-
chitectures, little work has been done on removing redundant publishers.

The IrisNet project [9] studies service composition in resource rich sensor net-
works. It shares many commonalities with our vision, where anetwork of sensor
enabled embedded devices provide services to end users, andthe framework tries to
remove redundant sensing and computation at run time. IrisNet uses a caching-based
approach for data sharing [18]. In fact, it has a trace-basednaming scheme such that
the name of the data encodes the sequence of functions that has been applies to get the
data. It is essentially an effective way to achieve syntax-based redundancy removal.

Semantics-based type checking and conversion has been seenin unit type systems,
where the type system automatically converts measurement units, for example from
inches to centimeters, given its understanding of their semantics (i.e. units) [11]. Treat-
ing time and sampling rates as part of system semantics is widely seen in engineering
design framework. Clock calculus in synchronous languagessuch as Signal [7] and
trigger analysis in time-triggered languages such as Giotto [10] are both capable of
reasoning about sampling rates. However, these analyses are performed statically at
compile time. We formulate timing properties as part of the data semantics, which
allow us to reuse information dynamically at runtime.

6 Conclusion and Future Work

Microservers need to respond to uncoordinated user tasks ina resource efficient way. In
this paper, we have presented a service-oriented architecture designed in SERUN, and
the effectiveness of using semantics information to help reduce redundant computation.
We have defined a signal type system that makes data semanticsprecise in terms of both
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data values and tag types. Using the type system, we can checksignal compatibility
and perform runtime adaptation using down sampling and interpolation.

A type system is a powerful concept that puts semantics-based optimization into a
formal framework. Next we discuss some of the limitations ofSERUN and our plans
for future work.

Task injection order dependencies.As seen in Section 4, the optimization results
depend on the order in which the tasks are injected to the microserver. This is because
we only prune the new tasks but keep the existing tasks unchanged. The advantage is
that it preserves the continuity of existing tasks. But the disadvantage is that the final
computation graphs may be sub-optimal. For example, in our parking garage system,
using five breakbeam sensors to detect a car costs more communication energy than
using a single magnetometer. It is a good idea to prune Task E if Task T is already
running. However, when Task T finishes, it is no longer resource optimal to continue
using the breakbeam sensors. We plan to further extend our data annotation to include
the resources needed to generate each signal in a SCG. Then SERUN will have the in-
formation needed to dynamically optimize resources based on currently running tasks.

Runtime type resolution. Currently, in SERUN all port types are fixed at the time
at which tasks are injected. This constrains our capabilityto further reduce redundancy.
For example, two tasks may both need samples from sensorA, one with 5Hz sampling
frequency and the other with 2Hz sampling frequency. If the first task is started before
the second one, the sampling rate will be fixed at 5Hz, and the second task will receive
interpolated input. Ideally, when the second task is injected, we should changeA’s
sampling frequency to 10Hz and automatically down sample the outputs for each task,
such that no lossy conversion is necessary. This information is readily captured in our
STS. However, to effectively use it, we need runtime type resolution capabilities. A
service may only specify constraints between its input tag types and output tag types,
(e.g. equality), rather than fixing it to a specific set. The runtime system then solves
the set of constraints, so that new constraints can propagate through the SCG.

Data fidelity. We described in Section 3.3 the need for enhance naming schemes
to embrace richer semantics information. This is particularly important when dealing
with real world signals and information processing. Vehicle detections are not crisp
values. Different detection schemes may have their own false alarm and miss detection
rates. We call this thedata fidelity. We are interested in extending our type system to
capture data fidelity concerns. For example, the breakbeam array may have a higher
false alarm rate than the magnetometer in terms of detectingcars (e.g. it may treat
two people walking side-by-side as a vehicle.) So the fidelity of the vehicle detection
output using breakbeams is lower than that of using the magnetometer. If the required
detection fidelity in Task E is higher than what the breakbeamcan provide, then Task
E cannot be pruned.

These future directions will make the semantics-based taskoptimization more pow-
erful and practical.
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T1
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(a) Todd’s application (Task T)

E1 E2 E3 E5E4

(b) Emma’s application (Task E)

C1 C2

C3

C4

C5 C6

(c) Cory’s application (Task C)

Figure 7:Three tasks are injected to the parking garage microserver.Some port
names are labeled in circles.Todd uses the breakbeam array to detect speeding ve-
hicles. Emma intends to use magnetometer at a low sampling rate (16Hz) to detect
entering vehicles. In Cory’s application, high sampling rate magnetometer signals are
sent to a circular buffer. Object detections trigger the buffered data be sent to Cory.
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Figure 8:A conceptual run-time image when all tasks are running.The tasks are
injected in particular order: Task C, Task E, and Task T. Notice that if they are injected
in a different order, the run-time image may be different.
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