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1 Introduction

Technology advances have greatly changed the landscapwefieled systems. Today,
an embedded system may no longer be limited to a single apipliic Embedded
software is no longer developed once for the entire lifetoiha product. The ubiquity
of (wireless) networking has opened the gate for embedds@ s to participate in
the larger digital world. They can be re-tasked, re-conduand reprogrammed on
the fly. They can execute user defined tasks on demand.

In this paper, we consider a particular class of networkelesided devices called
microserverswhich can gather physical information through sensorscamdrespond
to queries sent over the network. Like application serversriterprise computing,
microservers dynamically accept and host user tasks tliaedde application logic.
But, unlike business applications, tasks on microserwersypically long-running and
their inputs are physical events and sensor data in real time

Microservers can take various forms. For example, in a heate scenario, the
cellphone an elderly person carries can be a microservecantaccept tasks from
family members and healthcare providers sent through théaredata link, and run
them over real-time data gathered from wearable sensarsl¢eation sensing, activ-
ity sensing, and vital sign monitoring). The results can gokao the family members
and caregivers wirelessly. A telematics computer in a cabesa microserver. The car
manufactures, the dealer, and the car maintenance shopsjeetydifferent monitor-
ing tasks into the microserver to gather specific eventsrtdl to their interests. The
results of those tasks are sent via a cellphone or a safaikteln a retail warehouse,
portable RFID readers with WiFi links, possibly equippedhaocation, temperature,
and humidity sensors, can be microservers that track ptedund their storage envi-
ronments on demand. bBd hocsensor networks, a mesh network of microservers can
serve as gateway nodes to connect resource constrainedl@atbsensors to larger
network/data infrastructures.

A common challenge for these microservers is that they mosttuncoordinated
tasks such as user queries, simultaneously. By uncoordinatdd, tave mean that
the tasks are injected by different users at unpredictaflest These tasks may have
different life time depending on users’ interests. Sinceroservers are not general-
purpose computers, the information they collect and pdepends highly on their
surroundings. It is very likely that there are partial oapd among simultaneous user
tasks. For example, in the healthcare scenario, the caragiay want to detect certain
walking patterns as an early sign of Alzheimer disease. Thaliter of the elderly
person, seeing that the weather today is nice, wants to satraminder that if her
parent has not gone out for a walk until 10AM, she will be netlfso that she can give
her parent a call. The two tasks are independent and haveliffagent time scales —
one is long running and the other expires by 10AM. Howevertspaf the two tasks,
namely detecting the behavior of “walking” from various raensor data (e.g. from
accelerometers or cameras), can be shared.

Many microservers are battery powered mobile devices, @neyconstrained by
the CPU speed, memory size, communication bandwidth, aedygrstorage. Thus,
it is crutial for microservers to find the maximum amount oédapping sensing and
computation in uncoordinated tasks and reduce runtimenchcy. This is arnn-



termediate information reusgroblem, that is, whether a task can reuse intermediate
computation results from other tasks. In order to achieig thmicroserver runtime
system must:

I. identify overlapping sensing and computation from npléitasks;
Il. suppress parts of a task but keep the rest active;
lll. share intermediate results from one task to another.

In this paper, we describe the architecture and task maregetasign of SERUN
with an emphasis on enabling intermediate informationee8&RUN has a component-
based architecture. Each task is built using a set of ev&rgrdcomponents, called
services The communication between services has a publish/sbigssemantics. A
user task is sent to a microserver as a service compositaphdSCG). For each in-
coming user request, the runtime system examines therexistsks and tries to find
out whether parts of the new request can be fulfilled by exgstomputations. If so, the
redundant services are not instantiated, and their doeanstiservices are subscribed
to corresponding existing publishers.

There are several approaches to promote the sharing ofatiate results across
tasks. For example, some commonly used services can be lyastagted and their
outputs published in alocal tuple space. New tasks can titestsbe to these interme-
diate results, so that they are computed only once. Howghisrintroduces run-time
overhead if those services are not used by any tasks. Itashalgl to draw the line
between what services should be system provided vs. useedef\nother approach
is to compare syntactically the composition of servicesis & the most conserva-
tive and rigid approach. Two subtasks are considered redhiricthey are exactly the
same, including service composition topology, serviceapeters, and their internal
states. For example, if tagkuses a serviceehi ¢l eSpeedDet ect i on to compute both
the presence and the speed of a vehicle, andBgslians to usevehi cl eDet ecti on
to obtain only the vehicle presence information, tfionannot use the outputs from
vehi cl eSpeedDet ect i on even though its outputs contain all the informati®needs.

SERUN takes a different and more flexible approach by allgwisers to annotate
semantics of the data transmitted between services. Wenetyruntime signal type
system (STS) to check and automatically convert betweea slxhantics whenever
possible. In fact, the input task may not be followed verbaif the runtime system
can find existing alternative services that provides inestiate results with compatible
semantics. This is more sophisticated than simply givinghgdece of data a name
and matching names at runtime . Since services are evemndiive events passing
between services not only carry their value informatiort,dso serve as triggers for
service execution. For example, a service that expectsamnpe sampled at 10Hz
cannot be triggered by a 100Hz event source. A big advanfa§€®is that it handles
this sequencing property naturally within the type systerd performs trigger rate
conversions as well as data type conversions.

The rest of the paper is organized as following. In Sectioreovesent the archi-
tecture of SERUN focusing on the features that enablesnmdton reuse. We then
focus on the signal type system in Section 3, defining sigyyaés and show how

1SERUN stands for SErvice-oriented RUNtime.



type checking and type conversion mechanisms can helpifigemd reduce redun-
dant computation. Section 4 presents a testbed deployrhémg cuntime system in a
parking garage microserver. Section 5 discusses relateéd Bection 6 concludes the
paper and points out future directions.

2 SERUN Architecture

2.1 Service and Composition

In order to facilitate the reuse of intermediate computatiesults, we must introduce
some granularities in build user tasks. In SERUN, an unlaigiakpiece of computation
is called aservice A service is an asynchronous piece of computation. Ses\ege
input and outpuiports Input ports accept events, and output ports produce events
for other services. A service may have internal state, andbehavior depends on
both input events and its internal state. To this extenjises are similar to actors
in Ptolemy 11 [4], element classes in Click [17], actions iMUs action semantics
extension [19], among many component-based frameworks.

There is no global state in a task other than the data comaienidetween ser-
vices. The communication has a publish/subscribe sensai@mnceptually, all outputs
from services go into an event mediator that is visible too#ler services. If one of
the services is interested in processing an event in theatwedit reactsto a copy of
that event. Events are not cached. After it is delivered &resubsciber’s input port,
it is garbage collected. Since the mediator separates thiespers and subscribers, a
service does not care where its inputs come from nor whemuisuts go to. Thus
intermediate computation results can be easily sharedatasks.

Since all services are local to the microserver, the pulsligiscribe semantics is
efficiently implemented using an event/delegate mechafil&hin SERUN. Objects
called Relationsare introduced to serve as mediators for publishers and:ghbes.
However, instead of having a single mediator for all puldistand subscribers, there is
one relation per event type. The relation connects to oneooe iwutput ports (publish-
ers) and zero or more input ports (subscribers). It maistailist of all connected input
ports, and registers itself to every connected output @&tEn event handler. Once an
event is sent by an output port, the relation sends a copyeatant to every connected
input port. The connections between ports and relationsestablished only once
when a user task is first injected to the microserver and remachanged through-
out the lifetime of the task. Since tasks on microserversiavally long-running, this
implementation greatly reduces the overhead of data pattetching in typical pub-
lish/subscribe architectures [6].

In SERUN, service executions are event-driven. Some eveats carry time
stamps, but service executions are triggered by the presérewents in the input ports.
This kind of reactive execution is usually more resourceigffit when the inputs are
sparse, which is the case for many embedded applicatiohsasuwireless sensor net-
works. In SERUN, each service has its own thread. It reactyéoy input event on a
first-come-first-serve basis. Once triggered, it perforrfisite piece of computation,

2The name is influenced by Ptolemy II.



which may change its internal state and may produce outpotsthen go to an inac-
tive mode waiting for the next input event. An input port had=8FO queue that keeps
triggering the inactive service if the queue is not empty.

2.2 Task Management

A user task consists of a set of services and the connectinas@their ports, called
a service composition graph (SCG). It is given to SERUN as kih document. For
most of the paper we use a graphical representation as shdwigure 1. Services are
shown as blocks with their names annotated. Service patsrglicit. Connections
between ports are indicated by arrows. A relation is impifdt connects exactly one
output port and one input port, otherwise, it is shown as endiad.

Once given to the runtime system, the SCG may not be follovegdatim. It can
be merged with existing tasks. Figure 1 illustrates therddsoptimization result. If
Task1l is already running on a microserver, afabk?2 is later injected, we would like
the run time image to be the bottom part of the Figure 1. Wresk1 has finished,
not all its elements are garbage collected. Part of it, aljhanay have been started by
Task1, can be used by other active tasks, as show in Figure 1(b).

Service lifetime management is achieveddgymand analysisEach service is indi-
vidually started and stopped. A service maintains a lisasks$ that demand it. When
a service subscribes to a relation, the subscriber’s tapkojgagated to all services
backward-reachable from the relation. That is, all sesvitet are used to generate
the data that the subscriber needs is part of the task. Whesk aetaminates, its cor-
responding entry is removed from all services it demands. Whe list is empty, the
service wraps up and hands itself to the garbage collecturs,Trequirements [II] and
[11] introduced in Section 1 can be relatively easy to agkién our service-oriented
architecture. The rest of the paper focuses on achievingirmgent [I] — how to
maximally identify redundant sensing and computation iefficient way.

3 A Signal Type System for Information Reuse

The approach we take to reducing runtime redundancies edbas event semantics.
As stated before, the semantics of events in event-drivetesys has two parts: the
value it carries and the triggering role it plays for sergic&/hen reusing events, we
must consider both properties. The mechanism we capturgesmsbn about event
semantics is a signal type system (STS). The goal of the SiBScepture the property
that events produced from an output port “contain all therimiation needed” by an
input port. This section first defines the singal types and thescribes how the STS is
used to help information reuse.

3.1 Signal types

Inspired by the tagged signal model [14], we define an eveapadr: a tag and a value.
A signal is simply a sequence of events. Thus, a signal typsists of two parts: its
tag type and its value type.
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Figure 1: Task management in SERUN.

Value types: In STS, we treat the values of an event as a record, and it9sygpe
tuple:
v=(name{(ny,t1), (N2,t2), .., (N, i) }) 1)

where,

— namerepresents the name of the signal,;

— (n;,t) is called dfield type wheren; is the name of the field artdis a primitive
data typé.

A name in STS serves as an identifier for data. It can encodéDthkcation,
or object identity information, among others. For exampihe outputs of a relative
humidity(RH)/temperature sensor in room 102 may have vigipe:

("roonl02", {("RH', float), ("tenp", float)}) (2)

We use the séf to represent all value types. The compatibility relatiohamzn
value types is a simple extension of record types in progragtanguages (see e.g.

SHere, we use the term primitive types loosely. It represeatts primitive data types, likint anddouble
and objected-oriented classes as well.



[16]). Letv=(name{(ny,t1), (N2,t2), .., (N, t) }) andv’ = (namé, {(ny, ty), (M5, 15), ... (i, thn) }) €
V, we sayv is compatiblewith V', written asv < V' if the following holds:

— hame= name;

— for each(r',t’) of V, there existgn,t) of v, such thatY =n" andt <t’. Byt <t’
we meart is a subclass df, or for primitive types converting into t’ will not
lose data precision.

That is, the fields iV need to be a subset of thatirsubject to primitive type com-
patibility. For example, if a service requests a tempeeateading in room 102 as
("roont02", {("tenp", double)}),then the type in (2) is compatible with it.

Tag types Tags represent timing and ordering relations among thateva a
signal. To deal with real world signals, especially sensdpuots, we assume tags take
values fromg_, the set of reals. In particular, we focus on the followingsets ofg.

®_is the whole connected set.

A C R is the set of natural numbers.

D C R isdiscretef it can be order-preserving and bijectively mapped to asstib
of integers [12]. We denote this map,,, which is unique for every.

P (to, Ts) = {tit =to+1i-Ts,i € AL, andtp, Ts € R } is the set of integer multiple
of Ts starting fromtg. This is a periodic discrete set. We also writéTs) if the
start time is understood, s&y= 0.

The tag sets form the basis of tag types. However, they alenaat sufficient to
differentiate sampled continuous signals from periodscidite event signals such as a
clock. For this reason, we extend the tag type system to eafiia notion of continuity
of underlying signals. We introduce a class of signals daliscrete representation of
continuous signal§DRCSs). A DRCS has a discrete set as its tags, but represents
continuous signal. One implication of the underlying coutiy is that we can approx-
imate data values (e.g. through interpolation) even thdbgk are not present in the
signal. DRCS is different from timed discrete event sigfBIES) even though they
may have the same tag set, because DES cannot be interpolated

We further introduce a base type calleghtinuous-time signdlCTS), which can
never be instantiated in a digital computer, but serve abdtt®m of our type lattice.
The CTS is the only signal that has tag type We call the untimed signatequences
and their tags (in terms of timing) arg¢. With these notions, we define the following
coarse-grainedsignal types lattice, as shown in Figure 2. Intuitively, aSCdan be
sampled to get a DRCS and can generate DESs through evectiatete A DRCS can
be treated as discrete events by losing the notion of undgrkignal continuity. A
DES can be converted to a sequence by applging i.e. losing its timing properties.

The coarse-grained type lattice can be further refined bgdhéinment relations
among tag sets, for example(Ts) C 2 (2Ts) C 2 (6Ts).... In general, we us€ for
DRCS tags an® for DES tags. LeC(p) represent a DRCS whose tag serig),
andD(p) be a discrete event signal with the same periodic tags. Thegfiained tag
type lattice, denoted as is shown in Figure 3, wher€;, D1, D, are aperiodic an@;
andD1 have the same tag set. is an infinite lattice.
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Figure 2: A coarse-grained signal type system based onlsigntinuity.

Using this lattice, we define compatibility on tag types:tgti, € 7,11 <12 if 71
is lower in the lattice thamy. For example, according to this type lattice, a continuous-
time temperature waveform is compatible with its 1Hz sanmplivhich is compatible
with its 10Hz sampling, which is compatible with a discret¢ of temperature events
defined on the same time instances, which in turn is comjeatiith untimed temper-
ature sequences.

We call the overall type system that captures both tag typesvalue types the
signal type syster8TS). In STSs= (1,V) is compatible withs' = (T,V) (i.e. s< )
if T<t andv<V.

3.2 Using STS in SERUN

STSis used in SERUN for checking information reusabilibyultively, if an input port

| of serviceA requests events of tyde’,V'), and an (existing) output po@ produces
events of compatible typ@, v), then by connectingandO, each eveni receives will
contain all the informatiom\ needs for a correct reaction, aAdwill be triggeredat
leastas often as it is expected. FAro be triggered exactly as often as it expects, we
must hava = 1'.

3.2.1 Signal Types Specification

Task SCGs are sent to microservers in an XML format, calledrddierver Tasking
Markup Language (MSTML), which is an extension of MoML [4].MSTML file has
four sections: Sockets, Services, Relations, and ComrectSockets are interfaces to
other microservers or wireless sensors; the serviceosegpiecifies the services used
in this task, including a list of all ports and parametersdach service; the relations
section specifies the mediators to connect the ports, andotieections section lists
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which port connects to which relation. The semantics ariootas part of the port
declaration in the services section.

Figure 4 shows a segment of the services section in MSTMIngbiypes are anno-
tated as properties of ports. For example, the figure shovstance ofiagVehi cl eDet ecti on
service that detects the presence of vehicles using magettoreadings. The service
has two ports: “in” and “out.” The input port needs a samplezjmetometer signal
at 0.1Hz. Each data sample is an integer. The service predugputs whenever a
vehicle is detected. The vehicle detection events are tihisxatete events with a field
ti meSt anp.

A task can also specify that certain signals should not bstguted by omitting its
signal type properties, so that parts of the SCG must bedeliioverbatim. This feature
is important since not all tasks are aimed at getting the findgput. For example,
one can use theagVehi cl eDet ect i on service to check whether the magnetometer is
working correctly. Replacing it with other vehicle detectimechanisms defeats the
purpose.

3.2.2 Type Checking

The goal of reusing services from existing tasks is achiéyegtpe checking the newly
injected MSTML specification against existing signals. \Weuane that each applica-
tion, when given to SERUN, is already type checked for caness, and it is self-
contained. When an MSTML file is injected, the STS checks feheéaput porti in

the new task and for the collection of output pdZtswhether there exists € O such
thattype(o) < type(i). This boils down to matching the names of the signals, check-
ing the subset relations among the fields, checking the pyitgpes compatibilities in



<servi ce nane="Detector" type="MgVehi cl eDetection">
<port nane="in">
<property name="input"/>
<property name="signal Type"
si gnal Nane="nagnet onet er"
tagType="C(0.1)"
magneticField="int" />
</ port>
<port nane="out">
<property nanme="output"/>
<property name="si gnal Type"
si gnal Nane="vehi cl e"
tagType="D"
timeStanp="1ong" />
</ port>
</entity>

Figure 4: Markup of a Detector service in MSTML. Signal types are annotated as
properties of ports.

each field, and most importantly checking the tag type coibifiat

For aperiodic signals, the tag type checking can simply lisedarse-grained type
lattice in Figure 2:C < D < a(. For periodic signals, it is possible to perform finer
grained checking such as checking the sampling rate. FongheaC(p) < C(k x p)
for any natural numbek, similarly for discrete events.

3.2.3 Type Conversion

Notice that type compatibility does not imply that an inpattan one task can connect
to an output port in another task. To ensure correct triggeithe tag types must be
equal. This is achieved by type conversion of compatiblesypased on type checking
results. To simplify discussion, we assume that when a cemtcesses data values
from its input events, it always uses the name of the field @ it to its local type,
e.g.

int magVal ue = (int)event.getVal ue("nagneticField");

In this section, we focus on the conversion of tag types.

The purpose of type conversion is to provide an input porhweitactly what it
expects, for both the data values and the triggering timesldgous to conversions in
data type systems, we have developed similar notions delesand lossy conversions
in STS. When the output port type and the input port type arepetitnie but not
exactly the same, i.e. the input events are a subset of thetoaitents, it is possible for
alosslessconversion in STS to provide precise events, in terms of tagtand value,
to the input port. Here, we only consider conversions ofqzici signals.
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Let output porto and input pori be type compatible, e.g(0) = C(p), andt(i) =
C(k x p), then the type converter inserts a
k- DownSanpl er service, which for everiinput events, produces one output event, as
shown in Figure 5. Similar conversion can be performed foiooéc DESSs.

Lossy conversions change event values in order to matclypag .t It applies only
to DRCSs, taking advantage of underlying continuity of tlgmal it represents. By
using a lossy conversion, the input port will be triggeredatly as requested, but
the values of the input events are only approximations ta¢aévalues. The accu-
racy of this approximation depends on the continuity of thdarlying signal and the
sampling rate at both the output port and the input port. | Arer pol at or service
performs lossy conversion. There can be many interpolatvices based on different
interpolation algorithms. In SERUN, we use the simplesaininterpolator. In order to
reduce approximation errors, we perform lossy conversidywhen the output signal
has a higher sampling rate than the input requirementt(®t= C(p), 1(i) = C(q),
andp < g. A Linearlnterpolator starts with an internal counten set to 0. It is
activated by every output event froon It produces itsn-th output when receiving the
k-th input, wherek satisfiesk— 1)p < mq< kp. The value of then-th output event is

Y= Yk-1+ (Yk— Yk-1) w
wherey are the input values and are the output values.

Conceptually, an interpolator first converts the DSRC taiitderlying continuous-
time signal, and then re-samples it according to the frequesquired by the down-
stream input port. Note that the lossy conversion only &spth DRCS but not discrete
event signals, even though they may have the same tag set.

3.3 More on signal names

Notice that the compatibility of event values defined so faamns that when the ser-
vice reacts to its input event, it can cast all the expected fields without runtime
exceptions. This does not necessarily mean that the datasvare exactly what the
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receiver expects when we connect its input to the output eféce in a different task.
The only element in STS that ensures the correctness of eaks is the name of the
signal. But, is this reliable?

For example, a serviaount er in taskA produces a signal with narmehi cl eCount ,
and another service in tagkalso expects a signal calleghi cl eCount . Is it correct
to connect them together? Although the presence of a velsidephysical fact, it
is possible thaf is counting vehicles from 9AM, whil® expects the counting from
10AM. The encodingVehi ¢l eCount " is not a unique identifier for the semantics. On
the other hand, names likehi cl eCount Fr onUTCL- 1- 2005: 09: 00: 00 and
vehi cl eCount Fr onUTCL- 1- 2005: 10: 00: 00 are able to differentiate them.

In general, in order to uniquely identify events, the namiethe signals must be
universal and rich. That is, uncoordinated users must fifgeaon how to name phys-
ical and virtual events in the particular application domand secondly, the name
should reflect runtime information such as time duratiomcsp units, and accuracy.
Very likely, it is a structure rather than a simple string.

Recent movements in semantic web services proposes oie®lfoy various ap-
plication domains [3, 2]. In the sensor communities, IEEB1.2 [1] and OGC Sen-
sorML [20] are both attempts to standardize semantic detsmnis of sensor outputs.
Currently, these standards do not include high-level mttion interpretations, but
further extensions can be in the scope.

Another approach to prevent users from specifying arhyjitd@ata semantics is to
have an automatic service composition engine as the fraifoemicroservers. Instead
of having users directly composing services, which wouldifiicult for nontechni-
cal users, one can provide users with a high-level queryfate. Users can specify
something like “give me a histogram of vehicle arrival tins¢arting from 9AM today”
through a query language; and a query processor generate6 avih unified signal
types annotated. A query language and its processing erised on constraint logic
programming, has been prototyped for SERUN [24].

4 Example

We built an experimental testbed in a parking garage to prp&oour service-oriented
networked embedded computing architecture and SERUN.éRtledd allows users to
run multiple simultaneous queries on real-time parkinggarsensor data.

The testbed is located near the entrance of the second flagrdrking garage with
one-way traffic, as shown in Figure 6. The focus of the netweaak a 4x5 meter area
directly in front of an elevator. All vehicles entering ttiigsor of the parking deck pass
through this area, as do most pedestrians using the elevator

There are three types of sensors in the system: a web canmaeggreetometer and
infrared breakbeam sensors. A breakbeam sensor bouncesaed beam against a
distant reflector. When an object comes between the sensdhaneflector, it detects
that the beam has been broken; when the object moves awatgdtsi¢hat the beam
has been re-detected. This is the same type of sensor that b@gound at a store
entrance to detect customers entering and leaving.

11
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Figure 6: A garage sensor network deployment.The breakbeam sensors were laid
out in a row on the wall in the focus area. The digital camerai@used on the same
area. The magnetometer was placed several meters dowmstrear the microserver.

Both breakbeam sensors and the magnetometer are conneatddaiZz mote$.
Each of these motes is equipped with a 2.4GHz IEEE 802.15gB&2&) compliant
radio. Five infrared breakbeam sensors are placed in a nmgsathe area, 1m apart and
about .5m from the ground, such that the beams are brokerdession by any passing
human or vehicle. Each blocking or unblocking event gersrain interrupt to the
mote. Slightly down traffic from the breakbeam sensors, wtlted a magnetometer-
equipped mote that can detect the changing magnetic fieldnod\ang vehicle. A
headless Upont Cappuccino TX-3 Mini PC is used as a micresémat communicates
with the micaZ motes via 802.15.4 radio, while connectediéodompany intranet via
wired Ethernet. The web camera, with an embedded web sé\ago connected to
the Ethernet.

Pretending three corporate users, we run the followingethreeries in the system:

Task T. Traffic engineer Todd wants photographs of all velsiohoving faster than 25mph.

4Available from Crossbow Tech. (www.xbow.com).
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Task E. Employee Emma wants to know at what time she shouigkat work in order
to get a parking space on the first floor of the parking deck.

Tash C. Corp security officer Cory wants to collect magneétdfsignatures whenever
there is a moving object (human or vehicles) passing thraloglisection.

There are two ways to detect a vehicle in our system: by ugdiegbteakbeam
sensor array or by using the magnetometer. The breakbeasuorseran estimate the
speed of the vehicle, while the magnetometer cannot. Tactateehicle, Task E
only needs to sample the magnetometer at 16Hz, while toatdte magnetic field
signature, the magnetometer needs to be sampled at 256Hz.

As a prototype, we use Ptolemy Il as a graphical interfaceai$ars to build their
tasks and annotate data semantics. Each user builds thiaaskis/her own stand-
point, without considering possible resource sharing.@xample, Todd’s must detect
the vehicles using the breakbeam array since he wants spiechation. His appli-
cation is shown in Figure 7(a). Emma may find that using mamgneters to detect
vehicles more straightforward, so she builds an applinaéi® shown in Figure 7(b).
She sets the magnetometer to sample at 16Hz. Cory turns amabaetometer at
256Hz and logs the data in a running buffer. The buffer ouiptitiggered by object
detections from the breakbeams. It uses the speed estinedéctilate which section
of the buffer is sent back to Cory. Cory’s application is shawFigure 7(c).

The semantics of the data are also annotated in the modelex@anple, using a
short notation, in Task T:

typgT3) :=(D, "sortedEdges", {("timeStanps", long[])});
typegT4) :=(D, "vehicle",
{("timeStanp", long),("speed", double)});

in Task E:
type([E2) :=(C(1/16), "magnetoneter"”,
{("magneticField", int)});
typeE4) :=(D, "vehicle", {("tinmeStanp", long)});
in Task C:

type(Cl) :=(D, "sortedEdges", {("tineStanps", long[])});
typeC2) :=(D, "novi nghj ect ",
{("timeStanp", 1ong),("speed", double)});
typeg(C4) :=(C( 1/ 256), "nagnetoneter"”,
{("magneticField", int)});

STS derives the following type relations, among others:

typgT3) = typgCl) 3)
typgT4) < typgE4) (4)
typgC4) < typegE2) (5)
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Note that using a syntax-based approach, only (3) can betddteOur semantics-
based approach gives better information reusa-bility.@xample, when Task T is al-
ready running and Task E is injected, neithegnet omet er norMagVehi cl e Det ecti on
services are instantiated. The infiitis subscribed to the outp@it. If Task C is al-
ready running when Task E is injected,1& DownSanpl er service is automatically
inserted betwee@4 andE2. If the magnetometer in Task C were set to a sampling
frequency that is not a multiple of/256, aLi near | nt er pol at or service would be
inserted to perform a lossy conversion. When Task C, TaskdTask T are injected
in that order, the runtime image looks like the one shown guFé 8.

5 Related Work

Componentizing computation is a trend in networked systeltnsas the benefits of
software reuse, information hiding, and some degree of faldrance [22]. In Inter-
net and enterprise computing, web services [5] are pre-$nfifware components that
can be assembled across organizations and over the netwiarkt new applications.
Component-based and service-oriented approaches toizirgaembedded software
is also emerging [23, 13, 9, 17]. Publish/subscribe modktsthose in LINDA [8],
CORBA event service [21], and JavaSpaces [6], are populamoaphes to mediate
uncoordinated tasks. Although caching and replicationvarg common in these ar-
chitectures, little work has been done on removing redunplailishers.

The IrisNet project [9] studies service composition in @se rich sensor net-
works. It shares many commonalities with our vision, wheneetwork of sensor
enabled embedded devices provide services to end userthaf@mework tries to
remove redundant sensing and computation at run time. dtisiSes a caching-based
approach for data sharing [18]. In fact, it has a trace-baseding scheme such that
the name of the data encodes the sequence of functions thbeba applies to get the
data. Itis essentially an effective way to achieve syntaseld redundancy removal.

Semantics-based type checking and conversion has beemsggntype systems,
where the type system automatically converts measurenmétst fior example from
inches to centimeters, given its understanding of theitesgits (i.e. units) [11]. Treat-
ing time and sampling rates as part of system semantics slyvsgen in engineering
design framework. Clock calculus in synchronous languages as Signal [7] and
trigger analysis in time-triggered languages such as &{dd] are both capable of
reasoning about sampling rates. However, these analysqsediormed statically at
compile time. We formulate timing properties as part of tla¢adsemantics, which
allow us to reuse information dynamically at runtime.

6 Conclusion and Future Work

Microservers need to respond to uncoordinated user tagkesource efficient way. In
this paper, we have presented a service-oriented aralnéegesigned in SERUN, and
the effectiveness of using semantics information to hedpice redundant computation.
We have defined a signal type system that makes data semanetitse in terms of both
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data values and tag types. Using the type system, we can siggekl compatibility
and perform runtime adaptation using down sampling andpotation.

A type system is a powerful concept that puts semanticsebagmization into a
formal framework. Next we discuss some of the limitationS&RUN and our plans
for future work.

Task injection order dependenciesAs seen in Section 4, the optimization results
depend on the order in which the tasks are injected to theoseever. This is because
we only prune the new tasks but keep the existing tasks ugeltarThe advantage is
that it preserves the continuity of existing tasks. But tleadvantage is that the final
computation graphs may be sub-optimal. For example, in atkipg garage system,
using five breakbeam sensors to detect a car costs more caoatiom energy than
using a single magnetometer. It is a good idea to prune Taski&sk T is already
running. However, when Task T finishes, it is no longer resewptimal to continue
using the breakbeam sensors. We plan to further extend taadaotation to include
the resources needed to generate each signal in a SCG. TR&/MNSKill have the in-
formation needed to dynamically optimize resources basemiorently running tasks.

Runtime type resolution. Currently, in SERUN all port types are fixed at the time
at which tasks are injected. This constrains our capaldifyrther reduce redundancy.
For example, two tasks may both need samples from sénsore with 5Hz sampling
frequency and the other with 2Hz sampling frequency. If thet fask is started before
the second one, the sampling rate will be fixed at 5Hz, andabersl task will receive
interpolated input. Ideally, when the second task is igectve should changd’s
sampling frequency to 10Hz and automatically down samp@entliputs for each task,
such that no lossy conversion is necessary. This informasioeadily captured in our
STS. However, to effectively use it, we need runtime typ@lgon capabilities. A
service may only specify constraints between its input ypgs and output tag types,
(e.g. equality), rather than fixing it to a specific set. Thetime system then solves
the set of constraints, so that new constraints can propagatugh the SCG.

Data fidelity. We described in Section 3.3 the need for enhance naming sshem
to embrace richer semantics information. This is partitulanportant when dealing
with real world signals and information processing. Vehidketections are not crisp
values. Different detection schemes may have their owe falErm and miss detection
rates. We call this thdata fidelity We are interested in extending our type system to
capture data fidelity concerns. For example, the breakbegay may have a higher
false alarm rate than the magnetometer in terms of detecting (e.g. it may treat
two people walking side-by-side as a vehicle.) So the figelitthe vehicle detection
output using breakbeams is lower than that of using the magreter. If the required
detection fidelity in Task E is higher than what the breakbeamprovide, then Task
E cannot be pruned.

These future directions will make the semantics-baseddjpsiization more pow-
erful and practical.
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Figure 7: Three tasks are injected to the parking garage microserverSome port
names are labeled in circles.Todd uses the breakbeam array to detect speeding ve-
hicles. Emma intends to use magnetometer at a low samplileg(i®Hz) to detect
entering vehicles. In Cory’s application, high samplingeaagnetometer signals are
sent to a circular buffer. Object detections trigger thefbrdd data be sent to Cory.
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Figure 8: A conceptual run-time image when all tasks are running.The tasks are
injected in particular order: Task C, Task E, and Task T. dethat if they are injected
in a different order, the run-time image may be different.
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