
Abstraction for Falsification

Thomas Ball1, Orna Kupferman2, and Greta Yorsh3

1 Microsoft Research, Redmond, WA, USA.
Email: tball@microsoft.com, URL: research.microsoft.com/∼tball

2 Hebrew University, School of Eng. and Comp. Sci., Jerusalem 91904, Israel.
Email: orna@cs.huji.ac.il, URL: www.cs.huji.ac.il/∼orna

3 Tel-Aviv University, School of Comp. Sci., Tel-Aviv 69978, Israel.
Email:gretay@post.tau.ac.il, URL: www.math.tau.ac.il/∼gretay

Microsoft Research Technical Report
MSR-TR-2005-50

Abstract. Abstraction is traditionally used in the process ofverification. There, an abstrac-
tion of a concrete system is sound if properties of the abstract system also hold in the con-
crete system. Specifically, if an abstract statea satisfies a propertyψ thenall the concrete
states that correspond toa satisfyψ too. Since the ideal goal of proving a system correct in-
volves many obstacles, the primary use of formal methods nowadays isfalsification. There,
as intesting, the goal is to detect errors, rather than to prove correctness. In the falsification
setting, we can say that an abstraction is sound if errors of the abstract system exist also
in the concrete system. Specifically, if an abstract statea violates a propertyψ, thenthere
existsa concrete state that corresponds toa and violatesψ too.
An abstraction that is sound for falsification need not be sound for verification. This suggests
that existing frameworks for abstraction for verification may be too restrictive when used for
falsification, and that a new framework is needed in order to take advantage of the weaker
definition of soundness in the falsification setting.
We present such a framework, show that it is indeed stronger (than other abstraction frame-
works designed for verification), demonstrate that it can be made even stronger by param-
eterizing its transitions by predicates, and describe how it can be used for falsification of
branching-time and linear-time temporal properties, as well as for generating testing goals
for a concrete system by reasoning about its abstraction.

1 Introduction
Automated abstraction is a powerful technique for reasoning about systems. An abstrac-
tion framework [CC77] consists of a concrete system with (large, possibly infinite) state
spaceC, an abstract system with (smaller, often finite) state spaceA, and an abstraction
functionρ: C → A that relates concrete and abstract states. An abstraction framework
is sound with respect to a logicL if all properties specified inL that hold in an abstract
statea also hold in all the concrete states that correspond toa. Formally, for alla ∈ A
andϕ ∈ L, if a satisfiesϕ then for allc ∈ C with ρ(c, a), we have thatc satisfiesϕ.
The soundness of the abstraction framework enables the user to verify properties of the
abstract system using techniques such as model checking [CE81,QS81] and conclude
their validity in the concrete system.

While the ultimate goal of formal verification is to prove that a system satisfies
some specification, there are many obstacles to achieving this ideal in practice. Thus,
the primary use of formal methods nowadays isfalsification, where the goal is to detect
errors rather than to provide a proof of correctness. This is reflected in the extensive
research done on bounded model checking (c.f., [FKZ+00]), runtime verification (c.f.,

[Sip99]), property testing (c.f., [CK02]), etc. In the falsification setting, we can say that
an abstraction is sound with respect to a logicL if all errors specified inL that hold in
an abstract statea also hold in some concrete state that corresponds toa. Formally, for
all a ∈ A andϕ ∈ L, if a satisfiesϕ then there isc ∈ C such thatρ(c, a) andc satisfies
ϕ. 4

Since every abstract state corresponds to at least one concrete state, the soundness
condition in the falsification setting is weaker than the soundness condition in the veri-
fication setting. To see that this weaker definition is sufficiently strong for falsification,
note that the concrete statec that satisfiesϕ witnesses that the concrete system is erro-
neous (we note that in the falsification settingϕ is a “bad” property that we don’t wish
the system to have, while in the verifications settingϕ is a “good” property that we wish
the system to have).

We develop a new abstraction framework to take advantage of the weaker defini-
tion of soundness in the falsification setting. Our framework is based onmodal tran-
sition systems(MTS) [LT88]. Traditional MTS have two types of transitions:may
(over-approximating transitions) andmust (under-approximating transitions). The use
of must transitions in the falsification setting was explored in [PDV01,GLST05], with
different motivations. Our framework contains, in addition, a new type of transition,
which can be viewed as the reverse version ofmust transitions [Bal04]. Accordingly,
we refer to transitions of this type asmust− transitions and refer to the traditionalmust
transitions asmust+ transitions. While amust+ transition from an abstract statea to
an abstract statea′ implies that for all concrete statesc with ρ(c, a) there is a succes-
sor concrete statec′ with ρ(c′, a′), amust− transition froma to a′ implies that for all
concrete statesc′ with ρ(c′, a′) there is a concrete predecessor statec with ρ(c, a). The
must− transitions correspond to the weaker soundness requirement in the falsification
setting and are incomparable tomust+ transitions.

Consider, for example, a simple concrete system consisting of the assignment state-
ment x:=x-3 . Suppose that the abstract system is formed via predicate abstraction
using the predicatex > 6. Consider the abstract transition{x > 6} x:=x-3 {x > 6}.
This transition is not amust transition, as there are pre-states satisfyingx > 6 (namely
x = 7, x = 8, andx = 9) for which the assignment statement results in a post-state that
does not satisfyx > 6. In a traditional MTS, this transition is amay transition. How-
ever, in an MTS withmust− transitions, the above transition is amust− transition, as
for every post-statec′ satisfyingx > 6 there is a pre-statec satisfyingx > 6 such that
the execution ofx:=x-3 from c yieldsc′. It is impossible to make this inference in a
traditional MTS, even those augmented with hyper-must transitions [LX90,SG04]. As
we shall see below, the observation that the abstract transition is amust− transition
rather than amay transition enables better reasoning about the concrete system.

We study MTS with these three types of transitions, which we refer to asternary
modal transition systems(TMTS)5. We first show that the TMTS model is indeed

4 Note that the falsification setting is different than the problem ofgeneralized model check-
ing [GJ02]. There, the existential quantifier ranges over all possible concrete systems and the
problem is one of satisfiability (does there exist a concrete system with the same property as
the abstract system?). Here, the concrete system is given and we only replace the universal
quantification on concrete states that correspond toa by an existential quantification on them.

5 Not to be confused with the three-valued logic sometimes used in these systems.

2

stronger than the MTS model: while MTS with onlymay andmust+ transitions are
logically characterized by a 3-valued modal logic with theAX andEX (for all suc-
cessors/exists a successor) operators, TMTS are logically characterized by a strictly
more expressive modal logic which has, in addition, theAY andEY (for all prede-
cessors/exists a predecessor) past operators. We then show that by replacingmust+

transitions bymust− transitions, existing work on abstraction/refinement for verifica-
tion [GHJ01,SG03,BG04,SG04,DN05] can be lifted to abstraction/refinement for falsi-
fication.

In particular, this immediately provides a framework for falsification of CTL andµ-
calculus specifications. Going back to our example, by letting existential quantification
range overmust− transitions, we can conclude from the fact that the abstract system
satisfies the propertyEXx > 6 (there is a successor in whichx > 6 is valid) that
some concrete state also satisfiesEXx > 6. Note that such reasoning cannot be done
in a traditional MTS, as there themust− transition is overapproximated by amay
transition, which is not helpful for reasoning about existential properties. Thus, there
are cases where evaluation of a formula on a traditional MTS returns⊥ (nothing can
be concluded for the concrete system, and refinement is needed) and its evaluation on a
TMTS returns anexistentialtrue or existentialfalse.

Formally, we describe a6-valued semanticsfor TMTS. In addition to theT (all
corresponding concrete states satisfy the formula),F (all corresponding concrete states
violate the formula), and⊥ truth values that the 3-valued semantics for MTS has, the
6-valued semantics also has theT∃ (there is a corresponding concrete state that satisfies
the formula),F∃ (there is a corresponding concrete state that violates the formula), and
M (mixed – bothT∃ andF∃ hold) truth values.

The combination ofmust+ andmust− transitions turn out to be especially power-
ful when reasoning aboutweak reachability, which is useful for abstraction-guided test
generation [Bal04] and falsification of linear-time properties. As discussed in [Bal04],
if there is a sequence ofmust− transitions froma0 to aj followed by a sequence of
must+ transitions fromaj to ak, then there are guaranteed to be concrete statesc0

andck (corresponding toa0 andak) such thatck is reachable fromc0 in the concrete
system (in which case we say thatak is weakly reachable froma0). In this case, we
can conclude that it is possible to cover the abstract stateak via testing. When the ab-
straction is the product of an abstract system with a nondeterministic Büchi automaton
accepting all the faults of the system, weak reachability can be used in order to de-
tect faults in the concrete system. We focus on abstractions obtained from programs by
predicate abstraction, and study the problem of composing transitions in an TMTS in a
way that guarantees weak reachability. We suggest a method wheremust+ andmust−

transitions are parameterized with predicates, automatically induced by the weakest
preconditions and the strongest postconditions of the statements in the program6.

We distinguish between the case of composing the lastmust− transition in the se-
quence with the firstmust+ transition (there, we show that the most effective predicates
to work with are the strongest postcondition and the weakest precondition of themust−

and themust+ transitions, respectively, and these can be generated automatically), and

6 We note (see the remark at the end of Section 3 for a detailed discussion) that our approach is
different than refining the TMTS as the predicates we use are local to the transitions.

3

the case of composing twomust− or must+ transitions, where each transition is pa-
rameterized by two predicates, and reasoning is done in an assume-guarantee fashion.
We show that our method is sound and complete for reasoning about weak reachabil-
ity. We show how the new framework can be used for falsification of LTL properties,
as well as for generating testing goals for the concrete system by reasoning about its
abstraction.

The paper is organized as follows. Section 2 formally presents ternary modal tran-
sition systems (TMTS), how they abstract concrete systems (as well as each other) and
characterizes their abstraction pre-order via the full propositional modal logic (full-
PML). Section 2.3 presents the6-valued semantics for TMTS and demonstrates that
TMTS are more precise for falsification than traditional MTS. We also show that fal-
sification can be lifted to theµ-calculus as well as linear-time logics. Section 3 shows
that weak reachability can be made more precise by parameterizing bothmust+ and
must− transitions via predicates. Section 4 describes how to use TMTS to falsify LTL
properties in model checking and to generate testing goals. Section 5 concludes the
paper.

2 The Abstraction Framework

In this section we describe our abstraction framework. We define TMTS — ternary
modal transition systems, which extend modal transition systems by a third type of
transition, and study their theoretical aspects.

2.1 Ternary modal transition systems

A concrete transition systemis a tupleC = 〈AP, SC , IC ,−→C , LC〉, whereAP is a
finite set of atomic propositions,SC is a (possibly infinite) set of states,IC ⊆ SC is a
set of initial states,−→C⊆ SC×SC is a transition relation andLC : SC×AP 7→ {T, F}
is a labeling function that maps each state and atomic proposition to the truth value of
the proposition in the state.7

An abstraction ofC is a partially defined system. Incompleteness involves both the
value of the atomic propositions, which can now take the value⊥ (unknown), and the
transition relation, which is approximated by over- and/or under-approximating transi-
tions. Several frameworks are defined in the literature (c.f. [LT88,BG99,HJS01]). We
define here a new framework, which consists ofternary transition systems(TMTS, for
short). Unlike the traditional MTS, our TMTS has two types of under-approximating
transitions. Formally, we have the following.

A TMTS is a tupleA = 〈AP, SA, IA,
may−→A,

must+−→A ,
must−−→A , LA〉, whereAP is a

finite set of atomic propositions,SA is a finite set of abstract states,IA ⊆ SA is a set of

initial states, the transition relations
may−→A,

must+−→A , and
must−−→A are subsets ofSA×SA sat-

isfying
must+−→A⊆ may−→A and

must−−→A⊆ may−→A, andLA:SA × AP → {T, F,⊥} is a labeling
function that maps each state and atomic proposition to the truth value (possibly un-
known) of the proposition in the state. WhenA is clear from the context we sometimes

7 We useT andF to denote the truth valuestrue andfalseof the standard (verification) seman-
tics, and introduce additional truth values in Section 2.3.

4

usemay(a, a′), must+(a, a′), andmust−(a, a′) instead ofa
may−→A a, a

must+−→A a′, and

a
must−−→A a′, respectively.

The elements of{T, F,⊥} can be arranged in an “information lattice” [Kle87] in
which⊥ v T and⊥ v F. We say that a concrete statec satisfiesan abstract statea
if for all p ∈ AP , we haveLA(a, p) v LC(c, p) (equivalently, ifLA(a, p) 6= ⊥ then
LC(c, p) = LA(a, p)).

Let C = 〈AP, SC , IC ,−→C , LC〉 be a concrete transition system. A TMTSA =

〈AP, SA, IA,
may−→A,

must+−→A ,
must−−→A , LA〉 is anabstractionof C if there exists a total and

onto functionρ: SC → SA such that (i) for allc ∈ SC , we have thatc satisfiesρ(c),

and (ii) the transition relations
may−→A,

must+−→A , and
must−−→A satisfy the following:

– a
may−→A a′ if there is a concrete statec with ρ(c) = a, there is a concrete statec′

with ρ(c′) = a′, andc −→C c′.

– a
must+−→A a′ only if for every concrete statec with ρ(c) = a, there is a concrete state

c′ with ρ(c′) = a′ andc −→C c′.

– a
must−−→A a′ only if for every concrete statec′ with ρ(c′) = a′, there is a concrete

statec with ρ(c) = a andc −→C c′.
Note thatmay transitions over-approximate the concrete transitions. In particular,

the abstract system can containmay transitions for which there is no corresponding
concrete transition. Dually,must− andmust+ transitions under-approximate the con-
crete transitions. Thus, the concrete transition relation can contain transitions for which
there are no correspondingmust transitions. Sinceρ is onto, each abstract state cor-

responds to at least one concrete state, and so
must+−→A⊆ may−→A and

must−−→A⊆ may−→A. On

the other hand,
must+−→A and

must−−→A are incomparable. Finally, note that by lettingmust-
transitions becomemay-transitions, and by adding superfluousmay-transitions, we
can have several abstractions of the same concrete system.

A precision preorderon TMTS defines when one TMTS is more abstract than an-

other. For two TMTSA = 〈AP, SA, IA,
may−→A,

must+−→A ,
must−−→A , LA〉 andB = 〈AP, SB , IB ,

may−→B ,
must+−→B ,

must−−→B , LB〉, the precision preorder is the greatest relationH ⊆ SA × SB

such that ifH(a, b) then
C0. for all p ∈ AP , we haveLA(a, p) v LB(b, p),
C1. if b

may−→B b′, then there isa′ ∈ SA such thatH(a′, b′) anda
may−→A a′,

C2. if b′
may−→B b, then there isa′ ∈ SA such thatH(a′, b′) anda′

may−→A a,

C3. if a
must+−→A a′, then there isb′ ∈ SB such thatH(a′, b′) andb

must+−→B b′, and

C4. if a′ must−−→A a, then there isb′ ∈ SB such thatH(a′, b′) andb′ must−−→B b.
WhenH(a, b), we write(A, a) ¹ (B, b), which indicates thatA is more abstract (less
defined) thanB.

By viewing a concrete system as an abstract system whosemay, must+, and
must− transition relations are equivalent to the transition relation of the concrete sys-
tem, we can use the precision preorder to relate a concrete system and its abstraction.
Formally, the precision preorderH ⊆ SC × SA (also known asmixed simulation
[DGG97,GJ02]) is such thatH(c, a) iff ρ(c) = a.

5

2.2 A logical characterization

The logicfull-PML is a propositional logic extended with the modal operatorsAX (“for
all immediate successors”) andAY (“for all immediate predecessors”). Thus, full-PML
extends PML [Ben91] by the past-time operatorAY . The syntax of full-PML is given
by the rulesθ ::= p | ¬θ | θ ∧ θ | AXθ | AY θ, for p ∈ AP .

We define a3-valued semanticsof full-PML formulas with respect to TMTS. The

value of a formulaθ in a statea of a TMTSA = 〈SA, IA,
may−→A,

must+−→A ,
must−−→A , LA〉,

denoted[(A, a) |= θ], is defined as follows:

[(A, a) |= p] = LA(a, p).

[(A, a) |= ¬θ] =





T if [(A, a) |= θ] = F.
F if [(A, a) |= θ] = T.
⊥ otherwise.

[(A, a) |= θ1 ∧ θ2] =





T if [(A, a) |= θ1] = T and[(A, a) |= θ2] = T.
F if [(A, a) |= θ1] = F or [(A, a) |= θ2] = F.
⊥ otherwise.

[(A, a) |= AXθ] =





T if for all a′, if may(a, a′) then[(A, a′) |= θ] = T.
F if existsa′ s.t.must+(a, a′) and[(A, a′) |= θ] = F.
⊥ otherwise.

[(A, a) |= AY θ] =





T if for all a′, if may(a′, a) then[(A, a′) |= θ] = T.
F if existsa′ s.t.must−(a′, a) and[(A, a′) |= θ] = F.
⊥ otherwise.

While PML logically characterizes the precision preorder on MTS [GJ02], full-
PML characterizes the precision preorder on TMTS. It follows that the TMTS model
is indeed stronger than the MTS model, because TMTS are logically characterized by
a strictly more expressive modal logic which has the past operatorsAY andEY , in
addition toAX andEX operators. Formally, we have the following.

Theorem 1. Let A = 〈AP, SA, IA,
may−→A,

must+−→A ,
must−−→A , LA〉 andB = 〈AP, SB , IB ,

may−→B ,
must+−→B ,

must−−→B , LB〉 be two TMTS. For every two statesa ∈ SA andb ∈ SB , we
have that(A, a) ¹ (B, b) iff [(A, a) |= θ] v [(B, b) |= θ] for all full-PML formulasθ.

Proof. Assume first that(A, a) ¹ (B, b). We prove that[(A, a) |= θ] v [(B, b) |= θ]
for all full-PML formulasθ. The proof proceeds by induction on the structure ofθ. Let
H ⊆ SA × SB be the precision preorder such thatH(a, b).

– For the induction base, consider the caseθ = p for p ∈ AP . Since(A, a) ¹ (B, b),
then, by the definition of¹, we have thatLA(a, p) v LB(b, p), so, by the semantics
of full-PML, [(A, a) |= p] v [(B, b) |= p].

– The casesθ = ¬θ1 or θ = θ1 ∧ θ2 follows immediately from the semantics of
full-PML and the induction hypothesis.

– Let θ = AXθ1. We prove that if[(A, a) |= AXθ1] = T, then[(B, b) |= AXθ1] =
T too, and if[(A, a) |= AXθ1] = F then[(B, b) |= AXθ1] = F too. Assume first
that [(A, a) |= AXθ1] = T. By the semantics of full-PML, for alla′ with a

may−→A

a′, we have[(A, a′) |= θ1] = T. Since(A, a) ¹ (B, b), then, by the definition of
¹, if b

may−→B b′, then there isa′ ∈ SA such thatH(a′, b′) anda
may−→A a′. By the

6

induction hypothesis,[(B, b′) |= θ1] = T, thus [(B, b) |= AXθ1] = T and we
are done. Assume now that[(A, a) |= AXθ1] = F. By the semantics of full-PML,

there existsa′ such thata
must+−→A a′ and[(A, a′) |= θ1] = F. Since(A, a) ¹ (B, b),

then, by the definition of¹, there isb′ ∈ SB such thatH(a′, b′) andb
must+−→B b′. By

the induction hypothesis,[(B, b′) |= θ1] = F, thus[(B, b) |= AXθ1] = F and we
are done.

– Let θ = AY θ1. We prove that if[(A, a) |= AY θ1] = T, then[(B, b) |= AY θ1] = T
too, and if[(A, a) |= AY θ1] = F then[(B, b) |= AY θ1] = F too. Assume first that
[(A, a) |= AY θ1] = T. By the semantics of full-PML, for alla′ with a′

may−→A a,
we have[(A, a′) |= θ1] = T. Since(A, a) ¹ (B, b), then, by the definition of¹,
if b′

may−→B b, then there isa′ ∈ SA such thatH(a′, b′) anda′
may−→A a. By the

induction hypothesis,[(B, b′) |= θ1] = T, thus [(B, b) |= AY θ1] = T and we
are done. Assume now that[(A, a) |= AY θ1] = F. By the semantics of full-PML,

there existsa′ such thata′ must−−→A a and[(A, a′) |= θ1] = F. Since(A, a) ¹ (B, b),

then, by the definition of¹, there isb′ ∈ SB such thatH(a′, b′) andb′ must−−→B b. By
the induction hypothesis,[(B, b′) |= θ1] = F, thus[(B, b) |= AY θ1] = F and we
are done.

For the other direction we prove that if(A, a) 6¹ (B, b), then there is a full-PML formula
θ such that[(A, a) |= θ] 6v [(B, b) |= θ]. The precision preorder is the greatest fixed-
point of the following sequence of relationsHi ⊆ SA × SB :

– H0 = {〈a, b〉 : for all p ∈ AP , we haveLA(a, p) v LB(b, p)},
– Hi+1 = Hi ∩ {〈a, b〉 : 〈a, b〉 is good with respect toHi}, where a pair〈a, b〉 is

goodwith respect to a relationHi ⊆ SA × SB iff the four conditionsC1-C4 of a
precision relation hold with respect toHi.

Assume that(A, a) 6¹ (B, b). Then, there is an indexi ≥ 0 such that〈a, b〉 6∈ Hi. We
define the full-PML formulaθ by induction oni.

– If i = 0, thus〈a, b〉 6∈ H0, then there isp ∈ AP for which LA(a, p) 6v LB(b, p),
and we defineθ to bep.

– Assume that〈a, b〉 ∈ Hi and〈a, b〉 6∈ Hi+1. Then,〈a, b〉 is not good with respect
to Hi. Therefore, at least one of the four conditionsC1 - C4 does not hold. We
consider each of these cases and show that in all of them, we can point to a full-
PML formulaθ such that[(A, a) |= θ] 6v [(B, b) |= θ].
Assume thatC1 does not hold. Thus, there is a stateb′ ∈ SB such thatb

may−→B b′

and there is noa′ ∈ SA such thatH(a′, b′) anda
may−→A a′. Thus, for alla′ ∈ SA,

if a
may−→A a′, then〈a′, b′〉 6∈ Hi. By the induction hypothesis, there is a full-PML

formulaϕi(a′, b′) such that[(A, a′) |= ϕi(a′, b′)] 6v [(B, b′) |= ϕi(a′, b′)]. By the
definition of thev order,[(A, a′) |= ϕi(a′, b′)] is eitherT or F. Let ϕ′i(a

′, b′) be
ϕi(a′, b′) in case[(A, a′) |= ϕi(a′, b′)] = T and be¬ϕi(a′, b′) in case[(A, a′) |=
ϕi(a′, b′)] = F. We defineθ = AX

∨
a′:a

may−→Aa′ ϕ
′
i(a

′, b′). It is not hard to see that
[(A, a) |= θ] = T. Indeed, by the semantics of theAX operator,[(A, a) |= θ] = T
if for all a′ with may(a, a′), we have that[(A, a′) |= ϕ′i(a

′, b′)] = T, which we
have established by construction. Also, by the definition ofϕ′i(a

′, b′), we have that

7

[(B, b′) |= ϕ′i(a
′, b′)] 6= T for all a′ with a

may−→A a′. Hence,[(A, a) |= θ] 6v
[(B, b) |= θ].
Assume thatC2 does not hold. Thus, there is a stateb′ ∈ SB such thatb′

may−→B b
and there is noa′ ∈ SA such thatH(a′, b′) anda′

may−→A a. Thus, for alla′ ∈ SA,
if a′

may−→A a, then〈a′, b′〉 6∈ Hi. Let ϕ′i(a
′, b′) be as in theC1 case. We define

θ = AY
∨

a′:a′
may−→Aa

ϕ′i(a
′, b′). It is not hard to see that[(A, a) |= θ] = T. Indeed,

by the semantics of theAY operator,[(A, a) |= θ] = T if for all a′ with may(a′, a),
we have that[(A, a′) |= ϕ′i(a

′, b′)] = T, which we have established by construc-
tion. Also, by the definition ofϕ′i(a

′, b′), we have that[(B, b′) |= ϕ′i(a
′, b′)] 6= T

for all a′ with a′
may−→A a. Hence,[(A, a) |= θ] 6v [(B, b) |= θ].

Assume thatC3 does not hold. Thus, there is a statea′ ∈ SA such thata
must+−→A a′

and there is nob′ ∈ SB such thatH(a′, b′) andb
must+−→B b′. Thus, for allb′ ∈ SB ,

if b
must+−→B b′, then〈a′, b′〉 6∈ Hi. Let ϕ′i(a

′, b′) be as in theC1 case. We define
θ = EX

∧
b′:bmust+−→B b′

ϕ′i(a
′, b′). By the semantics of theEX operator,[(A, a) |=

θ] = T, asa′ satisfiesmust+(a, a′) and [(A, a′) |= ϕ′i(a
′, b′)] = T for all b′

with b
must+−→B b′. Also, by the definition ofϕ′i(a

′, b′), we have that[(B, b′) |=
ϕ′i(a

′, b′)] 6= T for all b′ with b
must+−→B b′. Hence,[(A, a) |= θ] 6v [(B, b) |= θ].

Assume thatC4 does not hold. Thus, there is a statea′ ∈ SA such thata′ must−−→A a

and there is nob′ ∈ SB such thatH(a′, b′) andb′ must−−→B b. Thus, for allb′ ∈ SB ,

if b′ must−−→B b, then〈a′, b′〉 6∈ Hi. Let ϕ′i(a
′, b′) be as in theC1 case. We defineθ =

EY
∧

b′:b′must−−→B b
ϕ′i(a

′, b′). By the semantics of theEY operator,[(A, a) |= θ] = T

asa′ satisfiesmust−(a′, a) and[(A, a′) |= ϕ′i(a
′, b′)] = T for all b′ with b′ must−−→B

b. Also, by the definition ofϕ′i(a
′, b′), we have that[(B, b′) |= ϕ′i(a

′, b′)] 6= T for

all b′ with b′ must−−→B b. Hence,[(A, a) |= θ] 6v [(B, b) |= θ].

2.3 Falsification Using TMTS

As shown in Section 2.2, the backwards nature ofmust− transitions makes them suit-
able for reasoning about the past. Thus, TMTS can be helpful in the verification setting
for reasoning about specifications in fullµ-calculus and other specification formalisms
that contain past operators. We view this as a minor advantage of TMTS. In this section,
we study their significant advantage: reasoning about specifications in a falsification
setting8.

Recall that the truth valueT for a formulaϕ in an abstract statea indicates that all
concrete states corresponding toa satisfyϕ, and dually forF. A more informative truth
value could have counted the number of corresponding concrete states that satisfy or
violateϕ. We could have had, for example,[(A, a) |= ϕ] = 〈count T , count F 〉, for

8 The specifications may contain both future and past operators. For simplicity, we describe the
framework here for theµ-calculus, which does not contain past modalities. By letting theAY
modality range overmust+ transitions, the framework can be used for falsification of full
µ-calculus specifications.

8

T BB M
zz CC F

}}
T∃ DD

F∃
{{

⊥

T

T∃
{{ DD

⊥ CC M
zz

F∃

F
information lattice truth lattice

Fig. 1. The information and truth lattices forL6.

count T , count F ∈ {0, . . . , |ρ−1(a)|}, which indicates in how many corresponding
concrete states we know thatϕ is satisfied and in how many we know it is violated. Such
an informative reasoning, however, would lose much of the saving that the transition to
an abstract system achieves. We suggest, instead, to approximatecount T andcount F
by 0, at least1, or |ρ−1(a)|.

In addition to the truth valuesT, F, and⊥, we now allow formulas to have the
valuesT∃ (existentialtrue), F∃ (existentialfalse), andM (“mixed” – bothT∃ andF∃).
Intuitively, the valuesT∃, F∃, andM refine the value⊥, and are helpful for falsification
and testing, as they indicate that the abstract state corresponds to at least one concrete
state that satisfies the property (T∃), at least one concrete state that violates the property
(F∃), and at least one pair of concrete states in which one state satisfies the property and
one violates it (M).

As described in Figure 1, the six valuesL6 = {T, F, M , T∃, F∃,⊥} can be ordered
in the information lattice depicted on the left. The values can also be ordered in the
“truth lattice” depicted on the right:

We allow the truth values of the (abstract) labeling functionLA to range over the
six truth values.

A TMTS A = 〈AP, SA, IA,
may−→A,

must+−→A ,
must−−→A , LA〉 is an abstraction of a con-

crete transition systemC = 〈AP, SC , IC ,−→C , LC〉 if there exists a total and onto
functionρ: SC → SA such that for alla ∈ SA andp ∈ AP :

– LA(a, p) = T only if for all c ∈ SC such thatρ(c) = a, we haveLC(c, p) = T;

– LA(a, p) = F only if for all c ∈ SC such thatρ(c) = a, we haveLC(c, p) = F;

– LA(a, p) = T∃ only if there existsc ∈ SC such thatρ(c) = a andLC(c, p) = T;

– LA(a, p) = F∃ only if there existsc ∈ SC such thatρ(c) = a andLC(c, p) = F;

– LA(a, p) = M only if there existc, c′ ∈ SC such thatρ(c) = ρ(c′) = a,
LC(c, p) = T, andLC(c′, p) = F.

In addition,ρ satisfies requirement (ii) relating the transitions ofA andC, as defined in
Section 2.1.

The complementation (¬:L6 → L6) and the conjunction (∧:L6 ×L6 → L6) oper-
ations are defined as follows:

9

¬
F T
F∃ T∃
M M
T∃ F∃
T F
⊥ ⊥

∧ F F∃ M T ∃ T ⊥
F F F F F F F
F∃ F F∃ F∃ F∃ F∃ F∃
M F F∃ F∃ F∃ M F∃
T∃ F F∃ F∃ ⊥ T∃ ⊥
T F F∃ M T ∃ T ⊥
⊥ F F∃ F∃ ⊥ ⊥ ⊥

We define a6-valued semanticsof PML formulas with respect to TMTS. The value

of a formulaθ in a statea of a TMTS A = 〈AP, SA, IA,
may−→A,

must+−→A ,
must−−→A , LA〉,

denoted[(A, a) |= θ], is a value inL6, and is defined, by induction on the structure of
θ, as follows:

[(A, a) |= p] = LA(a, p).
[(A, a) |= ¬θ] = ¬([(A, a) |= θ]).
[(A, a) |= θ1 ∧ θ2] = ∧([(A, a′) |= θ1], [(A, a′) |= θ2]).

[(A, a) |= AXθ] =





T if for all a′, if may(a, a′) then[(A, a′) |= θ] = T,
F if there existsa′ s.t.must+(a, a′) and[(A, a′) |= θ] = F,
F∃ if there existsa′ s.t.must−(a, a′) and[(A, a′) |= θ] w F∃,
⊥ otherwise.

The ordering relation (w) used in the definition ofAXθ refers to the information
lattice. Note that the conditions for theF and theF∃ conditions are not mutually exclu-
sive. If both conditions hold, we take the value to be the strongerF value.

For clarity, we give the semantics for the existential operatorEX explicitly (an
equivalent definition follows from the semantics ofAX and¬):

[(A, a) |= EXθ] =





F if for all a′, if may(a, a′) then[(A, a′) |= θ] = F,
T if there existsa′ s.t.must+(a, a′) and[(A, a′) |= θ] = T,
T∃ if there existsa′ s.t.must−(a, a′) and[(A, a′) |= θ] w T∃,
⊥ otherwise.

Thus, the semantics of the next-time operators follows bothmust− andmust+ tran-
sitions (that is,a′ is such thatmust−(a, a′) or must+(a, a′), where the first is used
for obtaining aT∃ value and the second for obtaining aT value). To understand why
must− transitions are suitable for falsification, let us explain the semantics for theEX
modality. The other cases are similar (and are detailed in the proof of Theorem 2). Con-
sider a concrete transition systemC = 〈AP, SC , IC ,−→C , LC〉, and an abstraction

for it A = 〈AP, SA, IA,
may−→A,

must+−→A ,
must−−→A , LA〉. Let ρ: SC → SA be the witness

function for the abstraction.
We argue that if[(A, a) |= EXp] = T∃, then there is a concrete statec such that

ρ(c) = a andc |= EXp. By the semantics of theEX operator,[(A, a) |= EXp] = T∃
implies that there isa′ ∈ SA such thatmust−(a, a′) andLA(a′, p) w T∃. Let ĉ be a
concrete state withρ(ĉ) = a′ andLC(ĉ, p) = T (by the definition of abstraction, at
least one sucĥc exists). Sincemust−(a, a′), then for every concrete statec′ such that
ρ(c′) = a′ there is a concrete statec such thatρ(c) = a andc −→C c′. In particular,
there is a concrete statec such thatρ(c) = a andc −→C ĉ. Thus,c |= EXp and we are
done.

10

Let a and a′ be abstract states. The (reflexive) transitive closure ofmust−, de-
noted[must−]∗ is defined in the expected manner as follows:[must−]∗(a, a′′) if either
a = a′′ or there is an abstract statea′ such that[must−]∗(a, a′) andmust−(a′, a′′).
We say that an abstract statea′ is onto reachablefrom an abstract statea if for ev-
ery concrete statec′ that satisfiesa′, there is a concrete statec that satisfiesa andc′

is reachable fromc. Dually, we can define the transitive closure ofmust+ transitions,
denoted[must+]∗. Thus,[must+]∗(a, a′′) if eithera = a′′ or there is an abstract state
a′ such thatmust+(a, a′) and [must+]∗(a′, a′′). We say that an abstract statea′ is
total reachablefrom an abstract statea if for every concrete statec that satisfiesa,
there is a concrete statec′ that satisfiesa′ andc′ is reachable fromc. The onto nature
of must− transitions is retained by their transitive closure, and similarly for the total
nature ofmust+ transitions:[must−]∗(a, a′) only if a′ is onto reachable froma, and
[must+]∗(a, a′) only if a′ is total reachable froma [Bal04].

Adding transitive closure (fixed-point) operators increases the expressive power of
PML and, by the above discussion, retains the intuitive meaning of the values inL6. By
extending PML by fixed-point operators, one gets the logicµ-calculus [Koz83], which
subsumes the branching temporal logics CTL and CTL?. The 3-valued semantics of
PML can be extended to theµ-calculus [BG04]. Note that in the special case of CTL
and CTL? formulas, this amounts to letting path formulas range overmay andmust+

paths [SG03]. The fact that the “onto” nature ofmust− transitions is retained under
transition closure enables us to extend the soundness argument for the6-valued seman-
tics described above for a singleEX or AX modality to nesting of such modalities and
thus, to PML and theµ-calculus.

Let us explain the extension of the 6-valued semantics toµ-calculus in more detail.
A formulaψ can be viewed as a functionψ : SA → L6. Each operator of PML can be
viewed as a mapping from such a function (or two such functions, in case the operator
is binary) to a new function. For example, theEX operator maps the function that
corresponds to some formulaθ to a function that corresponds to the formulaEXθ. As
detailed in [BG04], every operatorf : (SA → L6) → (SA → L6) has a least fixed-
point, which is equal to the meet (with respect to the truth lattice) of its fixed points.
Moreover, since PML operators are monotonic, the least fixed-point can be calculated
by repeated iterations off . Let fF be the valuation in which all states have valueF. Let
ψ∗1(fF) denote the successive application ofψ1 from fF until a fixed point is reached.
To obtain a 6-valued semantics ofµ-calculus, we extend the PML semantics above with
the following definition:

[(A, a) |= µZ.ψ1(Z)] = [(A, a) |= ψ∗1(fF)]

We now state that the intuitive meaning of the six values inL6 corresponds to the
formal semantics we have described:

Theorem 2. Let C be a concrete system and letA be its abstraction according to an
abstraction functionρ. For everyµ-calculus formulaψ and abstract statea of A, the
following holds.

– If [(A, a) |= ψ] = T, then for all concrete statesc such thatρ(c) = a, we have that
c |= ψ.

11

– If [(A, a) |= ψ] = F, then for all concrete statesc such thatρ(c) = a, we have that
c 6|= ψ.

– If [(A, a) |= ψ] = T∃, then there is a concrete statec such thatρ(c) = a and
c |= ψ.

– If [(A, a) |= ψ] = F∃, then there is a concrete statec such thatρ(c) = a and
c 6|= ψ.

– If [(A, a) |= ψ] = M , then there is a pair of concrete statesc and c′ such that
ρ(c) = ρ(c′) = a, c |= ψ, andc′ 6|= ψ.

Proof. The proof proceeds by induction on the nesting depth of fixed-point operators in
ψ. The proofs of both the induction base and step proceed by induction on the structure
of ψ.

We start with the induction base, that is, whenψ has no fixed-point operators. For
the (internal) induction base, consider the case whereψ = p for somep ∈ AP . Then,
[(A, a) |= p] = LA(a, p), and the claim follows from the definition ofLA(a, p).

Let ψ = ¬ψ1. Then, the proof follows immediately from the semantics of the¬
operation, and the inductive hypothesis. Letψ = ψ1∧ψ2. We have to show that the truth
table for the∧ operator follows the intuitive meaning of the six values. We distinguish
between the various possible values for[(A, a) |= ψ].

– If [(A, a) |= ψ] = F, then, according to the truth table of∧, one of{ψ1, ψ2} eval-
uates toF. Without loss of generality, assume it isψ1. By the inductive hypothesis
for ψ1, for all concrete statesc such thatρ(c) = a we have thatc 6|= ψ1. Thus, for
all suchc, we have thatc 6|= ψ1 ∧ ψ2, regardless of the value ofψ2 on c.

– If [(A, a) |= ψ] = F∃, then one of{ψ1, ψ2} evaluates toF∃ or M . Without loss of
generality, assume it isψ1. By the inductive hypothesis forψ1, in either case (F∃ or
M) there exists a concrete statec such thatρ(c) = a andc 6|= ψ1. Thus, whatever
the value ofψ2 on c is, c 6|= ψ1 ∧ ψ2.

– If [(A, a) |= ψ] = M , then by definition of∧, either [(A, a) |= ψ1] = M and
[(A, a) |= ψ2] = T, or [(A, a) |= ψ2] = M and [(A, a) |= ψ1] = T. Assume,
without loss of generality, that the first case holds. By the inductive hypothesis
for ψ1, there exist two concrete states,c′ andc′′, such thatρ(c′) = ρ(c′′) = a,
c′ |= ψ1, andc′′ 6|= ψ1. From the latter, it follows thatc′′ 6|= ψ1 ∧ ψ2. By the
inductive hypothesis forψ2, for all concrete statesc such thatρ(c) = a, c |= ψ2. In
particular,c′ |= ψ2, and therefore,c′ |= ψ1 ∧ ψ2.

– If [(A, a) |= ψ] = T∃, then either[(A, a) |= ψ1] = T and[(A, a) |= ψ2] = T∃, or
[(A, a) |= ψ2] = T and[(A, a) |= ψ1] = T∃. Assume, without loss of generality,
that the first case holds. Since[(A, a) |= ψ2] = T∃, then, by the induction hypoth-
esis, there exists a concrete statec such thatρ(c) = a andc |= ψ2. Also, since
[(A, a) |= ψ1] = T, then, by the induction hypothesis,c |= ψ1 as well. Therefore,
c |= ψ1 ∧ ψ2.

– If [(A, a) |= ψ] = T, then both[(A, a) |= ψ1] = T and[(A, a) |= ψ2] = T, and the
claim follows immediately from the induction hypothesis.

Let ψ = AXψ1. In the cases when[(A, a) |= ψ] = T and [(A, a) |= ψ] = F,
the arguments are similar to those of the three-valued semantics of theAX operator. If
[(A, a) |= ψ] = F∃, we argue that there is a concrete statec such thatρ(c) = a and
c |= AXθ. By the definition of the semantics, there is an abstract statea′ such that

12

must−(a, a′), and[(A, a′) |= θ] w F∃, i.e., it can be any of the valuesF∃, M or F. By
the inductive hypothesis forθ, in all of these three cases, there exists a concrete state
c′ such thatρ(c′) = a′ andc 6|= θ. Sincemust−(a, a′), we know that there exists a
concrete statec with ρ(c) = a such thatc → c′. Thus,c 6|= AXθ. Note that theAX
case is reflected in the fact that the transitive closure ofmust− transitions preserve the
“onto” nature ofmust− transitions.

We now move to the induction step. That is, assume that the claim holds for formulas
of nesting depthl and prove it for a formulaψ of nesting depthl + 1. The cases where
ψ is p, ¬ψ1, ψ1 ∧ψ2, orAXψ1 are as in the induction base. Letψ = µZ.ψ1(Z). Again
theT andF cases are as in the three-valued case. If[(A, a) |= ψ] = T∃, we argue that
there exists a concrete statec such thatρ(c) = a andc |= ψ. According to the semantics
for ψ, we have[(A, a) |= ψ∗1(fF)] = T∃. Let k be such thatψ∗(fF) = ψk

1 (fF), where
ψk

1 (fF) denotes the operator defined byk successive applications of the operatorψ1,
starting fromfF. Thus,[(A, a) |= ψk

1 (fF)] = T∃. The nesting depth of fixed-point
operators in the formulaψk

1 (fF) is l, so the induction hypothesis applies to it. Hence,
there exists a concrete statec such thatρ(c) = a andc |= ψk

1 (fF). Thus,c |= ψ. The
proof for the other truth values is similar.

We note that when[(A, a) |= ψ] = ⊥, it is possible to use the same techniques as
in the verification setting [SG03], withmust− transitions replacingmust+ transitions
in order to refine the TMTS.

3 Weak Reachability

When reasoning about paths in the abstract system, one can often manage with an even
weaker type of reachability (than transitive closure overmust− transitions): we say that
an abstract statea′ is weakly reachablefrom an abstract statea if there is a concrete
statec′ that satisfiesa′, there is a concrete statec that satisfiesa, andc′ is reachable
from c. The combination ofmust+ andmust− transitions turn out to be especially
powerful when reasoning about weak reachability.

If there are three abstract statesa1, a2, anda3 such thata2 is onto reachable from
a1 anda3 is total reachable froma2, thena3 is weakly reachable froma1. Hence, weak
reachability can be concluded from the existence of a sequence ofmust− transitions
followed immediately by a sequence ofmust+ transitions:

Theorem 3. [Bal04] If [must−]∗(a1, a2) and [must+]∗(a2, a3), then a3 is weakly
reachable froma1.

In this section, we show how reasoning about weak reachability can be made tighter
in the context of predicate abstraction. In Section 4, we show applications of weak
reachability for falsification of LTL properties and for generating testing goals for a
concrete system by reasoning about its abstraction.

Remark 1.The argument that a sequence ofmust− transitions followed by a sequence
of must+ transitions is a sufficient condition for weak reachability can be generalized
in order to obtain a more precise 6-valued semantics for theµ-calculus (more precise
in the sense that formulas may be evaluated to greater values in the information lattice).
For this purpose, one can attribute the truth values to a formula in whichEX and

13

AX modalities are nested by a mode flag from the set{−,+}. A − flag indicates that
only must− transitions have been taken in the evaluation of the formula, and a+ flag
indicates that the sequence ofmust− transitions is followed by a sequence ofmust+

transitions. As long as the truth value is attributed by−, evaluation of theEX andAX
modalities can proceed along eithermust− transitions (leaving the flag unchanged) or
must+ transitions (updating the flag to+). Once the attribution is+, evaluation should
proceed only alongmust+ transitions. This guarantees that the path generated in the
abstract system corresponds to a real path in the concrete system.

3.1 Weak Reachability in Predicate Abstraction

We now focus on the case where the concrete system is a program, and its abstraction
is obtained by predicate abstraction. We then show that weak reachability can be made
tighter by parameterizing the abstract transitions by predicates. The predicates used
in these transitions may be (and usually are) different from the predicates used for
predicate abstraction.

Consider a programP . Let X be the set of variables appearing in the program and
variables that encode the program location, and letD be the domain of all variables (for
technical simplicity, we assume that all variables are over the same domain). We model
P by a concrete transition system in which each state is labeled by a valuation inDX .
Let Φ = {φ1, φ2, . . . , φn} be a set of predicates (quantifier-free formulas of first-order
logic) on X. For a seta ⊆ Φ and an assignmentc ∈ DX , we say thatc satisfiesa
iff c satisfies all the predicates ina. The satisfaction relation induces a total and onto
functionρ : DX → 2Φ, whereρ(c) = a for the uniquea for which c satisfiesa. An
abstraction of the programP that is based onΦ is a TMTS with state space2Φ, thus
each state is associated (and is labeled by) the set of predicates that hold in it. For a
detailed description of predicate abstraction see [GS97,BMMR01].

Note that all the transitions of the concrete system in which only the variables that
encode the program location are changed (all transitions associated with statements that
are not assignments, c.f., conditional branches, skip, etc.) are bothmust+ andmust−

transitions, assuming thatΦ includes all conditional expressions in the program. We
call such transitionssilent transitions. The identification of silent transitions makes our
reasoning tighter: ifa

silent−→A a′ we can replace the transition froma toa′ with transitions
from a’s predecessors toa′. The type of a new transition is the same as the type of the
transitions leading toa. 9 Such elimination of silent transitions result in an abstract
system in which each transition is associated with an assignment statement.

For simplicity of exposition, we first present a toy example. (We later present a more
realistic example.) Consider the programP appearing in Figure 2.

When describing an abstract system, it is convenient to describe an abstract state in
SA as a pair of program location and a Boolean vector describing which of the program
predicates inΦ hold. Letφ1 = (x < 6) andφ2 = (x > 7). The abstraction ofP that
corresponds to the two predicates is described in the left-hand side of Figure 3. In the
right-hand side, we eliminate the silent transitions.

9 A transition froma′ may also be silent, in which case we continue until the chain of silent
transitions either reaches an end state or reaches an assignment statement. If the chain reaches
an end state, we can makea an end state.

14

L0 if x < 6 then
L1 x := x + 3;
L2 if x > 7 then
L3 x := x− 3;
L4 end

Fig. 2. The programP .

Fig. 3. The abstract transition system of the programP from Figure 2.

We now turn to study weak reachability in the abstract system. By Theorem 3, if
[must−]∗(a1, a2) and[must+]∗(a2, a3), thena3 is weakly reachable froma1. While
Theorem 3 is sound, it is not complete, in the sense that it is possible to have two
abstract statesa anda′ such thata′ is weakly reachable froma and still no sequence
of transitions as specified in Theorem 3 exists in the abstract system. As an example,
consider the abstract statesa = (L1 : TF) anda′ = (L4 : TF). While a′ is weakly
reachable froma; c.f., c′ =(L4:x = 5) is reachable fromc =(L0:x = 5), the only path
from a to a′ in the abstraction contains twomay transitions, so Theorem 3 cannot be
applied. In fact, the status of the abstract states (L4:FT) and (L4:FF) also is not clear,
as the paths froma to these states do not follow the sequence specified in Theorem 3.
Accordingly, Theorem 3 does not help us determining whether there is an inputx < 6
to P such that the execution ofP on x would reach location L4 withx that is strictly
bigger than7 or with x that is equal to6 or 7. Our goal is to tighten Theorem 3, so that
we end up with fewer such undetermined cases.

3.2 Parameterized Must Transitions

Recall that each abstract state is associated with a location of the program, and thus
it is also associated with a statement. For a statements and a predicatee overX, the
weakest preconditionWP(s, e) and thestrongest postconditionSP(s, e) are defined as
follows [Dij76]:

15

– The execution ofs from every state that satisfiesWP(s, e) results in a state that
satisfiese, andWP(s, e) is the weakest predicate for which the above holds. For
an assignment statementx := v, we have thatWP(x := v, e) = e[x/v] (that is,e
with all occurrences ofx replaced byv).

– The execution ofs from a state that satisfiese results in a state that satisfiesSP(s, e),
andSP(s, e) is the strongest predicate for which the above holds. For an assignment
statementx := v, we have thatSP(x := v, e) = ∃x′.(e[x/x′] ∧ x = v).

For example, in the programP , we haveWP(x := x + 3, x > 7) = x > 4, SP(x :=
x + 3, x < 6) = x < 9, WP(x := x − 3, x < 6) = x < 9, andSP(x := x − 3, x >
7) = x > 4.

Let θ be a predicate overX. We parameterizemust+ andmust− transitions byθ
as follows:

– must+(θ)(a, a′) only if for every concrete statec that satisfiesa ∧ θ, there is a
concrete statec′ that satisfiesa′ andc −→C c′.

– must−(θ)(a, a′) only if for every concrete statec′ that satisfiesa′ ∧ θ, there is a
concrete statec that satisfiesa andc −→C c′.
Thus, amust+(θ) transition is total from all states that satisfyθ, and amust−(θ)

transition is onto all states that satisfyθ. Note that whenθ = T, we get usualmust+

andmust− transitions. Parameterized transitions can be generated automatically (us-
ing WP andSP) while building the TMTS without changing the complexity of the
abstraction algorithm.

Theorem 4. Let a and a′ be two abstract states, ands the statement executed ina.
Then,must+(WP(s, a′))(a, a′) andmust−(SP(s, a))(a, a′).

Proof. Consider a concrete statec that satisfiesa∧WP(s, a′). Sincec satisfiesWP(s, a′),
the execution ofs fromc results in a state that satisfiesa′. Thus, every suchc has a con-
crete successor statec′ that satisfiesa′; thusmust+(WP(s, a′))(a, a′).

Consider a concrete statec′ that satisfiesa′ ∧ SP(s, a). Sincec′ satisfiesSP(s, a),
it is obtained by executings in a state that satisfiesa. Thus, every suchc′ has a concrete
predecessor statec that satisfiesa; thusmust−(SP(s, a))(a, a′).

The good news about Theorem 4 is that it is complete in the sense that for all
predicatesθ, if there is amust+(θ) transition froma to a′, thena ⇒ (θ ⇒ WP(s, a′)),
and similarly formust− transitions, as formalized below.

Lemma 1. Leta anda′ be two abstract states, ands the statement executed ina.
– If there is amust+(θ) transition froma to a′, thena ⇒ (θ ⇒ WP(s, a′)).
– If there is amust−(θ) transition froma to a′, thena′ ⇒ (θ ⇒ SP(s, a)).

Proof. Letθ be such that there is amust+(θ) transition froma to a′. Then, for everyc
that satisfiesθ ∧ a, the execution ofs from c results inc′ that satisfiesa′. By definition,
WP(s, a′) contains exactly all states from which the execution ofs results in a state
that satisfiesa′. Hence,(θ ∧ a) ⇒ WP(s, a′), or equivalently,a ⇒ (θ ⇒ WP(s, a′)).

Let θ be such that there is amust−(θ) transition froma to a′. Then, everyc′ that
satisfiesθ∧a′ is obtained by executings in a state that satisfiesa. By definitionSP(s, a)
contains exactly all states obtained by executings is a state that satisfiesa. Hence,
(θ ∧ a) ⇒ SP(s, a), or equivalently,a ⇒ (θ ⇒ SP(s, a)).

16

Thus, the pre and post conditions, which can be generated automatically, are the
strongest predicates that can be used. Note that using Theorem 4, it is possible to replace
all may transitions by parameterizedmust− andmust+ transitions.

It is easy to see how parameterized transitions can help when we consider weak
reachability. Indeed, ifmust−(θ1)(a, a′), must+(θ2)(a′, a′′), andθ1 ∧ θ2 ∧ a′ is satis-
fiable, thena′′ is weakly reachable froma, as formalized by the following lemma.

Lemma 2. If must−(θ1)(a, a′), must+(θ2)(a′, a′′), andθ1∧θ2∧a′ is safistiable, then
there are concrete statesc andc′′ such thata(c), a′′(c′′), andc′′ is reachable fromc.

Proof. We show that there are concrete statesc and c′′ for which there is a concrete
statec′ such thatc −→C c′ andc′ −→C c′′. We choosec′ as a satisfying assignment
for θ1∧θ2∧a′. Sincemust−(θ1)(a, a′) andc′ satisfiesθ1∧a′, there is a concrete state
c such thatc −→C c′. Simlarly, sincemust+(θ2)(a′, a′′) andc′ satisfiesθ2 ∧ a′, there
is a concrete statec′′ such thatc′ −→C c′′.

The completeness of Theorem 4 implies that whena′ is weakly reachable froma
via two transitions, this always can be detected by takingθ1 = SP(s, a) and θ2 =
WP(s′, a′), wheres ands′ are the statements executed in the two transitions.

In our example, we have seen that the transitions from (L1:TF) to (L3:FT) and from
(L3:FT) to (L4:TF) are bothmay transitions, and thus Theorem 3 cannot be applied.
However, the fact that the first transition also is amust−(x < 9) transition and the
second also is amust+(x < 9), together with the fact thatx > 7∧ x < 9 is satisfiable,
guarantee that there is a concrete state that corresponds to (L1:TF) and from which
a concrete state that corresponds to (L4:TF) is reachable. Indeed, as we noted earlier,
(L4:x = 5) is reachable from (L0:x = 5).

Whena anda′ are of distance greater than two transitions, parameterization is use-
ful for composing the sequence ofmust− transitions with the sequence ofmust+

transitions:

Theorem 5. If [must−]∗(a1, a2), must−(θ1)(a2, a3), must+(θ2)(a3, a4), [must+]∗(a4, a5),
anda3 ∧ θ1 ∧ θ2 is satisfiable, thena5 is weakly reachable froma1.

Proof. Immediate from Theorem 3 and Lemma 2.

Again, the predicatesθ1 andθ2 are induced by the pre and postconditions of the
statement leading to the abstract state in which the two sequences are composed.

The transitive closure of the parameterizedmust transitions does not retain the
reachability properties of a single transition and requires reasoning in an assume-guarantee
fashion, where two predicates are associated with each transition.

3.3 Assume-guarantee Must Transitions

Let a anda′ be abstract states, and letθ andθ′ be predicates overX.

– 〈θ〉must+〈θ′〉(a, a′) only if for every concrete statec that satisfiesa ∧ θ, there is a
concrete state that satisfiesa′ ∧ θ′ andc −→C c′.

– 〈θ〉must−〈θ′〉(a, a′) only if for every concrete statec′ that satisfiesa′ ∧ θ′, there is
a concrete state that satisfiesa ∧ θ′ andc −→C c′.

17

So, a〈θ〉must+〈θ′〉 transition is total from all states that satisfyθ, and it is guar-
anteed that the transition from such states result in states that satisfyθ′. Similarly, a
〈θ〉must−〈θ′〉 transition is onto all states that satisfyθ′, and is from states that satisfy
θ. We can now define the transitive closure of the relations. Leta anda′′ be abstract
states, and letθ1 andθ3 be predicates.

– [〈θ1〉must+〈θ3〉]∗(a, a′′) if either a = a′′ or there is an abstract statea′ and a
predicateθ2 such that[〈θ1〉must+〈θ2〉]∗(a, a′) and〈θ2〉must+〈θ3〉(a′, a′′).

– [〈θ1〉must−〈θ3〉]∗(a, a′′) if either a = a′′ or there is an abstract statea′ and a
predicateθ2 such that〈θ1〉must−〈θ2〉(a, a′) and[〈θ2〉must−〈θ3〉]∗(a′, a′′).

The transitive closure retains the reachability properties of a single transition:

Theorem 6.

– [〈θ〉must+〈θ′〉]∗(a, a′) only if for every concrete statec that satisfiesa ∧ θ, there
is a concrete statec′ that satisfiesa′ ∧ θ′ andc′ is reachable fromc.

– [〈θ〉must−〈θ′〉]∗(a, a′) only if for every concrete statec′ that satisfiesa′∧ θ′, there
is a concrete statec that satisfiesa ∧ θ andc′ is reachable fromc.

We can now use Theorem 6 for automatic reasoning about weak reachability:

Theorem 7. Consider a pathπ = a1, a2, . . . , an in the TMTS. Letsi be the statement
executed along the transition fromai to ai+1. Let θ1 = a1, ξn = an, and for all
1 ≤ i ≤ n− 1, let θi+1 = ai+1 ∧ SP(si, θi), andξi = ai ∧WP(si, ξi+1). Then, for all
1 ≤ i ≤ n − 1, we have〈θi〉must−〈θi+1〉(ai, ai+1) and 〈ξi〉must+〈ξi+1〉(ai, ai+1).
Also, the following are equivalent:

1. an is weakly reachable froma1 via π.
2. For all 1 ≤ i ≤ n, we have thatθi ∧ ξi is satisfiable.
3. There is1 ≤ i ≤ n for whichθi ∧ ξi is satisfiable.

Proof. First, we show that (1) implies (3). Weak reachability viaπ means that there
exist concrete statesc1, . . . , cn that satisfya1, . . . , an, respectively, such thatci+1 is
obtained by executing the statementsi on ci, for 1 ≤ i ≤ n − 1. Sincec1 satisfies
a1 = θ1, ci satisfiesθi for 1 ≤ i ≤ n − 1, in particular cn satisfiesθn. From the fact
that cn satisfiesan = ξn, we conclude thatcn satisfiesθn ∧ ξn.

Second, we show that (3) implies (2). For the sake of contradiction, assume that
there existi such thatθi ∧ ξi is satisfiable, and (without loss of generality) assume that
θi+1 is unsatisfiable. Letc be a concrete state that satisfiesθi ∧ ξi. By definition of
ξi, c satisfiesWP (si, ξi+1), that is, there exists a concrete storec′ that satisfiesai+1

(becauseξi+1 is implied byai+1) and that is reachable fromc usingsi. Sincec satisfies
θi, c′ satisfiesSP (si, θi), thusc′ satisfiesθi+1 = ai+1∧SP (si, θi), and a contradiction
is obtained.

Finally, we can show that (2) implies (1) using Theorem 6 and the fact that there is
a [〈θ1 ∧ ξ1〉must+〈θn ∧ ξn〉]∗ transition froma1 to an.

The reasoning in Theorem 7 is similar to known methods where the iterative appli-
cation of pre- and post-conditions are applied in order to test reachability [HJMM04].
The new feature of our approach is the fact we allow reasoning in both forward and
backwards directions, and we intersect the intermediate predicates with the current

18

abstract state ofπ. That way, we can reason not only aboutan being weakly reach-
able froma1, but aboutan being weakly reachable froma1 alongπ. As we discuss
in Section 4, this is useful when studying path coverage in the abstract system or in
counterexample-guided abstraction refinement, when the feasibility of a path needs to
be checked. Note that, being intersected with the intermediate abstract states, the pred-
icates we get are tighter than these obtained by only iterating pre and post conditions.
Thus, they can also be used for a finer partition of states in case one wishes to eliminate
infeasible paths from the abstraction [CGJ+03,HJMM04].

Remark 2.Several refinement techniques are based on partitioning an abstract statea
to two abstract statesa ∧ θ anda ∧ ¬θ [CGJ+03]. Our parameterization method, on
the other hand, aims at answering weak reachability queries, and parameterization of a
must+ transition froma (or amust− transition toa) with θ essentially replacesa by
a ∧ θ and ignoresa ∧ ¬θ. Also, θ is local, depends on the transition to/froma and is
induced by the pre- and post-condition of the statement executed along this transition.
Reachinga with several different transitions leads to different parameters, which are
independent of each other. Most importantly, our parameterization method provides a
way to refine the abstraction without increasing the number of state, thus preventing
state-space explosion as a result of refinement.

4 Applications

This section describes application of weak reachability for linear-time falsification and
for abstraction-guided test generation.

4.1 Linear-time Falsification

In linear-time model checking, we check whether all the computations of a given pro-
gramP satisfy a specificationψ, say an LTL formula. In the automata-theoretic ap-
proach to model checking [Kur94,VW94], one constructs an automatonA¬ψ for the
negation ofψ. The automatonA¬ψ is usually a nondeterministic B̈uchi automaton,
where a run is accepting iff it visits a set of designated states infinitely often. The pro-
gramP is faulty with respect toψ if the product ofA¬ψ with the program contains a fair
path – one that visits the set of designated states infinitely often. The product ofA¬ψ

with an abstraction ofP may contain fair paths that do not correspond to computations
of P , thus again there is a need to check for weak reachability.

Let Φspec be the set of predicates induced by the LTL formula. For example, if
ψ = G((x ≥ 4) ⇒ F (x = 0)), thenΦspec = {x ≥ 4, x = 0}, and letA¬ψ =

〈2Φspec , Q, Qin , δ, α〉. Also, letPA = 〈Φprog∪Φspec , SA, IA,
may−→A,

must+−→A ,
must−−→A , LA〉,

be the abstraction ofP according to the union ofΦprog with Φspec . We define the prod-

uct of PA with A¬ψ as a TMTSP = 〈∅, SA × Q, IA × Qin ,
may−→,

must+−→ ,
must−−→ , L〉,

where for allγ ∈ {may, must+,must−}, we have that〈a, q〉 γ−→ 〈a′, q′〉 iff a
γ−→A

a′ andq′ ∈ δ(q, LA(a) ∩ Φspec). Thus, the product TMTS contains behaviors that are
joined toPA andA¬ψ. When reasoning about concrete systems, emptiness of the prod-
uct automaton can be reduced to a search for an accepting state that is reachable from
both an initial state and itself. In the context of abstraction, we should make sure that

19

the path from the accepting state to itself can be repeated, thus weak reachability is too
weak here10, and instead we need the following.

Theorem 8. If there are abstract statesainit ∈ IA×Qin andaacc ∈ SA×α such that
aacc is onto reachable fromainit and from itself, oraacc is weakly reachable fromainit

and total reachable from itself, thenP violatesψ.

4.2 Testing

Falsification methods are related totesting, where the system is actually executed. The
infeasible task of executing the system with respect to all inputs is replaced by checking
a test suite consisting of a finite subset of inputs. It is very important to measure the
exhaustiveness of the test suite, and indeed, there has been an extensive research in the
testing community oncoverage metrics, which provide such a measure [CKKV01].

Some coverage metrics are defined with respect to an abstraction of the system. For
example, inpredicate-complete testing[Bal04], the goal is to cover all the reachable
observable states (evaluation of the system’s predicates under all reachable states), and
reachability is studied in an abstract system whose state space consists of an overap-
proximation of the reachable observable states. The observable states we want our test
suite to cover are abstract states that are weakly reachable.

The fundamental question in this setting is how to determine which abstract states
are weakly reachable. As we have seen, TMTS provide a sufficient condition for deter-
mining weak reachability (via a sequence ofmust− transitions followed by a sequence
of must+ transitions). The parameterization method makes this condition tighter, and
its combination with an assume-guarantee reasoning makes it complete. In Section 4.3
we demonstrate the usefulness of our approach: we manage to identify all the weakly
reachable states in a non-trivial example.

4.3 Example

In this section we demonstrate the usefulness of our parameterization method with re-
spect to a more interesting function. The function we consider is from [Bal04], where it
is used to demonstrate howmust− transitions improve reasoning about weak reachabil-
ity. Still, some of the weakly reachable abstract states in the example cannot be detected
using the techniques in [Bal04], where the problem of making the technique tighter is
left open. We show that our parameterization method can identify all the weakly reach-
able states in this example. Also, it can show that certain paths are infeasible in the
concrete system, thus one need not worry about the fact they are not covered by the test
suite.

Figure 4(a) presents a (buggy) example of the QuickSort’spartition function, a
classic example that has been used to study test generation. The goal of the function is
to permute the elements of the input array so that the resulting array has two parts: the
values in the first part are less than or equal to the chosen pivot valuea[0] ; the values
in the second part are greater than the pivot value.

10 Whenψ is a safety property,A¬ψ is an automaton accepting finite bad prefixes [KV01], and
weak reachability is sufficient.

20

void partition(int a[], int n) {
assume(n>2);
int p := a[0];
int lo := 1;
int hi := n-1;

L0: while (lo <= hi) {
L2: while (a[lo] <= p) {
L3: lo:=lo+1;

}
L5: while (a[hi] > p) {
L6: hi:=hi-1;

}
if (lo < hi) {

L9: swap(a,lo,hi);
}

}
LC: ;
}

(a)

L6:TTFT

L6:FFFT

LC:FFFF

L3:TTTFL3:TTTT

L3:FTTF

L9:TTFF

L3:FFTFL6:FTFT

(b)

Fig. 4. (a) Thepartition function and (b) its TMTS after removing silent transitions.
There is an array bound check missing in the code that can lead to an array bounds

error: the check at thewhile loop at labelL2 should be(lo<=hi && a[lo]<=p) .11

This error only can be uncovered by executing the statement “lo:=lo+1; ” at label
L3 at least twice.

We consider the TMTS generated by predicate abstraction with respect to the four
predicates that appear in the conditional guards of the function:(lo<hi) , (lo<=hi) ,
(a[lo]<=p) , and(a[hi]>p) . An observed state thus is a bit vector of length four
(lt, le,al,ah), wherelt corresponds to(lo<hi) , le corresponds to(lo<=hi) , al
corresponds to(a[lo]<=p) , andah corresponds to(a[hi]>p) . There only are ten

11 The loop atL5 cannot decrementhi to take a value less than zero because the value of variable
p is fixed to be the value ofa[0] . One could argue that one would want to put a bounds check
in anyway.

21

feasible valuations for this vector, as six are infeasible because of correlations between
the predicates.

Figure 4(b) shows the TMTS of thepartition function with respect to the four
observed predicates. We have removed silent transitions, thus only states associated
with locations in assignment statements appear in the TMTS. The initial states are de-
noted by double-lined ovals. The sole final state is denoted with underlined text. All
the transitions in the TMTS aremay transitions (solid lines), except for the one from
(L9:TTFF) to (L3:TTTT), which is bothmust− andmust+ (as such, we could have
regarded it as a silent transition and removed it as well; we kept it as L9 is associated
with an assignment). This transition is denoted by a bold line in the figure.

Due to the preponderance ofmay transitions in the TMTS, no weak reachabil-
ity information follows from Theorem 3, except for the initial states. However, pa-
rameterized transitions can be used in order to conclude that all the states are weakly
reachable. Let us consider themay-transition (L3:TTTF)

may−→A (L3:FTTF). By The-
orem 4, this transition can also be viewed as a parameterizedmust−(θ1) transition
with the predicateθ1 defined bySP(lo:=lo+1, TTTF), where TTTF denotes the for-
mula (lo < hi) ∧ (lo ≤ hi) ∧ (a[lo] ≤ p) ∧ ¬(a[hi] > P). Thus,θ1 is (lo − 1 <
hi) ∧ (a[lo− 1] < p) ∧ ¬(a[hi] > p).

Consider now themay transition (L3:FTTF)
may−→A (L3:FFTF). By Theorem 4, this

transition can also be viewed as a parameterizedmust+(θ2) transition with the predi-
cateθ2 defined byWP(lo:=lo+1, FFTF). That is,θ2 is (lo + 1 > hi) ∧ (a[lo + 1] <
p) ∧ (a[hi] ≤ p).

By Theorem 5, the state (L3: FFTF) is weakly reachable from (L3:TTTF) through
the state (L3:FTTF) ifθ1 ∧ θ2 ∧ FTTF is satisfiable. This condition can be simplified
into the equivalent formula(lo = hi)∧ (a[lo] ≤ p)∧ (a[lo− 1] < p)∧ (a[lo + 1] < p)
which is indeed satisfiable. A test that observes this state will cause an array bounds
violation (by incrementing the variablelo until lo > hi without decrementinghi and
then accessinga[lo]).

Similarly, it can be shown that the state (LC:FFFF) is weakly reachable from (L3:TTTF)
through (L3:FTTF). First, there is a parameterizedmust+(θ3) transition from (L3:FTTF)
to (LC:FFFF), whereθ3 is WP(lo:=lo+1, FFFF), that is(lo + 1 > hi) ∧ (a[lo + 1] >
p) ∧ (a[hi] ≤ p). Then, it can be shown thatθ1 ∧ θ3 ∧ FTTF is equivalent to(lo =
hi) ∧ (a[lo] ≤ p) ∧ (a[lo + 1] > p) ∧ (a[lo− 1] < p), which is satisfiable.

It remains to be shown that the state (L6:FFFT) is weakly reachable from one of
the initial states. Consider the path from (L3:TTTT) to (L6:FFFT) through (L6:FTFT).
By Theorem 4, there is amust−(SP(lo := lo + 1, TTTT)) transition from (L3:TTTT)
to (L6:FTFT) and amust+(WP(hi := hi − 1, FFFT)) transition from (L6:FTFT)
to (L6:FFFT). However, we cannot apply Theorem 5, asSP(lo := lo + 1, TTTT) ∧
WP(hi := hi− 1, FFFT) ∧ FTFT implies thata[lo− 1] > p ∧ a[lo− 1] ≤ p, which is
unsatisfiable. In fact, since everymust−(θ)(a, a′) transition is also a〈a〉must−〈θ∧a′〉
transition, and everymust+(θ)(a′, a′′) transition is also a〈θ∧a′〉must+〈a′′〉 transition,
Theorem 7 it can be used to show that this path is infeasible. Weak reachability of the
state (L6:FFFT) can then be proved via another path, and indeed it can be shown using
Theorem 5 that (L6:FFFT) is weakly reachable from another initial state (L6:TTFT)
through the state (L6:FTFT).

22

5 Conclusion

The notions ofmust− transitions and weak reachability, which were introduced in
[Bal04], where elaborated and extended in the present paper. We described an abstrac-
tion framework that containsmust− transitions, the backwards version ofmust tran-
sitions, and showed howmust− transitions enable reasoning about past-time modal-
ities as well as future-time modalities in a six-valued semantics, which is suitable for
both verification and falsification. We showed that the falsification setting allows for
a stronger type of abstraction and described applications in falsification of temporal
properties and testing.

A general idea in our work is that by replacingmust+ by must− transitions, ab-
straction frameworks that are sound for verification become abstraction frameworks
that are sound (and more precise) for falsification. We demonstrated it with model
checking and refinement, and we believe that several other ideas in verification can
be lifted to falsification in the same way. This includes generalized model checking
[GJ02], making the framework complete [DN05], and its augmentation with hyper-
transitions [LX90,SG04]. Another interesting direction is to usemust− transitions in
order to strengthen abstractions in the verification setting: the ability to move both for-
ward and backwards across the transition relation has proven helpful in the concrete
setting (c.f. , [INH96,BGS00]). Usingmust− transitions, this also can be done in the
abstraction setting. Finally, the sequential TMTS model can be extended to a concurrent
one. Beyond the usual compositionality questions in the concurrent setting, there is a
need to define and reason about the compositions of models that have different types of
under-approximating transitions.

References
[Bal04] T. Ball. A theory of predicate-complete test coverage and generation. In3rd Inter-

national Symposium on Formal Methods for Components and Objects, 2004.
[Ben91] J. Benthem. Languages in actions: categories, lambdas and dynamic logic.Studies

in Logic, 130, 1991.
[BG99] G. Bruns and P. Godefroid. Model checking partial state spaces with 3-valued tem-

poral logics. InComputer Aided Verification, pages 274–287, 1999.
[BG04] G. Bruns and P. Godefroid. Model checking with 3-valued temporal logics. In31st

International Colloquium on Automata, Languages and Programming, volume 3142
of Lecture Notes in Computer Science, pages 281–293, 2004.

[BGS00] R. Bloem, H.N. Gabow, and F. Somenzi. An algorithm for strongly connected com-
ponent analysis inn log n symbolic steps. InFormal Methods in Computer Aided
Design, volume 1954 ofLecture Notes in Computer Science, pages 37–54. Springer-
Verlag, 2000.

[BMMR01] T. Ball, R. Majumdar, T. D. Millstein, and S. K. Rajamani. Automatic predicate
abstraction of c programs. InPLDI, pages 203–213, 2001.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for the static
analysis of programs by construction or approximation of fixpoints. InPOPL 77:
Principles of Programming Languages, pages 238–252. ACM, 1977.

[CE81] E.M. Clarke and E.A. Emerson. Design and synthesis of synchronization skeletons
using branching time temporal logic. InProc. Workshop on Logic of Programs,
volume 131 ofLecture Notes in Computer Science, pages 52–71. Springer-Verlag,
1981.

23

[CGJ+03] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided ab-
straction refinement for symbolic model checking.Journal of the ACM, 50(5):752–
794, 2003.

[CK02] H. Chockler and O. Kupferman.ω-regular languages are testable with a constant
number of queries. In J.P. Rolim and S. Vadhan, editors,Proceedings of 6th Inter-
national Workshop on Randomization and Approximation Techniques, volume 2483
of Lecture Notes in Computer Science, pages 26–38, Cambridge, MA, USA, 2002.
Springer-Verlag.

[CKKV01] H. Chockler, O. Kupferman, R.P. Kurshan, and M.Y. Vardi. A practical approach to
coverage in model checking. InProc. 13th International Conference on Computer
Aided Verification, volume 2102 ofLecture Notes in Computer Science, pages 66–78.
Springer-Verlag, 2001.

[DGG97] D. Dams, R. Gerth, and O. Grumberg. Abstract interpretation of reactive systems.
ACM Trans. Program. Lang. Syst., 19(2):253–291, 1997.

[Dij76] E.W. Dijksta. A Discipline of Programming. Prentice-Hall, 1976.
[DN05] D. Dams and K. S. Namjoshi. Automata as abstractions. InVMCAI 2005, Paris,

2005. to appear, LNCS, Springer-Verlag.
[FKZ+00] R. Fraer, G. Kamhi, B. Ziv, M. Vardi, and L. Fix. Prioritized traversal: efficient

reachability analysis for verication and falsification. InProc. 12th Conference on
Computer Aided Verication, volume 1855 ofLecture Notes in Computer Science,
pages 389–402, Chicago, IL, USA, July 2000. Springer-Verlag.

[GHJ01] P. Godefroid, M. Huth, and R. Jagadeesan. Abstraction-based model checking using
modal transition systems. InProceedings of CONCUR’2001 (12th International
Conference on Concurrency Theory), volume 2154 ofLecture Notes in Computer
Science, pages 426–440. Springer-Verlag, 2001.

[GJ02] P. Godefroid and R. Jagadeesan. Automatic abstraction using generalized model
checking. InComputer Aided Verification, pages 137–150, 2002.

[GLST05] O. Grumberg, F. Lerda, O. Strichman, and M. Theobald. Proof-guided
underapproximation-widening for multi-process systems. InPOPL, pages 122–131,
2005.

[GS97] S. Graf and H. Saidi. Construction of abstract state graphs with PVS. InCAV 97:
Computer-aided Verification, LNCS 1254, pages 72–83. Springer-Verlag, 1997.

[HJMM04] T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan. Abstractions from
proofs. InPOPL, pages 232–244, 2004.

[HJS01] M. Huth, R. Jagadeesan, and D. Schmidt. Model checking partial state spaces with
3-valued temporal logics. InESOP, pages 155–169, 2001.

[INH96] H. Iwashita, T. Nakata, and F. Hirose. CTL model checking based on forward state
traversal. InProc. IEEE/ACM International Conference on Computer Aided Design,
pages 82–87, 1996.

[Kle87] S. C. Kleene.Introduction to Metamathematics. North Holland, 1987.
[Koz83] D. Kozen. Results on the propositionalµ-calculus.Theoretical Computer Science,

27:333–354, 1983.
[Kur94] R.P. Kurshan.Computer Aided Verification of Coordinating Processes. Princeton

Univ. Press, 1994.
[KV01] O. Kupferman and M.Y. Vardi. Model checking of safety properties.Formal methods

in System Design, 19(3):291–314, November 2001.
[LT88] K.G. Larsen and G.B. Thomsen. A modal process logic. InProc. 3th Symp. on Logic

in Computer Science, Edinburgh, 1988.
[LX90] K. G. Larsen and L. Xinxin. Equation solving using modal transition systems. In

LICS, pages 108–117, 1990.

24

[PDV01] C. S. Pasareanu, M. B. Dwyer, and W. Visser. Finding feasible counter-examples
when model checking abstracted java programs. InTACAS, pages 284–298, 2001.

[QS81] J.P. Queille and J. Sifakis. Specification and verification of concurrent systems in
Cesar. InProc. 5th International Symp. on Programming, volume 137 ofLecture
Notes in Computer Science, pages 337–351. Springer-Verlag, 1981.

[SG03] S. Shoham and O. Grumberg. A game-based framework for CTL counterexamples
and 3-valued abstraction-refinement. InComputer Aided Verification, pages 275–
287, 2003.

[SG04] S. Shoham and O. Grumberg. Monotonic abstraction-refinement for CTL. InTools
and Algorithms for Construction and Analysis of Systems (TACAS), volume 2988 of
Lecture Notes in Computer Science, pages 546–560. Springer-Verlag, 2004.

[Sip99] H.B. Sipma.Diagram-based Verification of Discrete, Real-time and Hybrid Systems.
PhD thesis, Stanford University, Stanford, California, 1999.

[VW94] M.Y. Vardi and P. Wolper. Reasoning about infinite computations.Information and
Computation, 115(1):1–37, November 1994.

25

