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Abstract. Abstraction is traditionally used in the proceswefification There, an abstrac-

tion of a concrete system is sound if properties of the abstract system also hold in the con-
crete system. Specifically, if an abstract staatisfies a property thenall the concrete
states that correspond dcsatisfy) too. Since the ideal goal of proving a system correct in-
volves many obstacles, the primary use of formal methods nowad#aisification There,

as intesting the goal is to detect errors, rather than to prove correctness. In the falsification
setting, we can say that an abstraction is sound if errors of the abstract system exist also
in the concrete system. Specifically, if an abstract siatmlates a property), thenthere
existsa concrete state that corresponds &nd violates) too.

An abstraction that is sound for falsification need not be sound for verification. This suggests
that existing frameworks for abstraction for verification may be too restrictive when used for
falsification, and that a new framework is needed in order to take advantage of the weaker
definition of soundness in the falsification setting.

We present such a framework, show that it is indeed stronger (than other abstraction frame-
works designed for verification), demonstrate that it can be made even stronger by param-
eterizing its transitions by predicates, and describe how it can be used for falsification of
branching-time and linear-time temporal properties, as well as for generating testing goals
for a concrete system by reasoning about its abstraction.

1 Introduction

Automated abstraction is a powerful technique for reasoning about systems. An abstrac-
tion framework [CC77] consists of a concrete system with (large, possibly infinite) state
space’, an abstract system with (smaller, often finite) state spa@and an abstraction
functionp: C' — A that relates concrete and abstract states. An abstraction framework
is sound with respect to a logicif all properties specified il that hold in an abstract
statea also hold in all the concrete states that correspond tormally, for alla € A

andy € L, if a satisfiesp then for allc € C with p(c, a), we have that satisfiesp.

The soundness of the abstraction framework enables the user to verify properties of the
abstract system using techniques such as model checking [CE81,QS81] and conclude
their validity in the concrete system.

While the ultimate goal of formal verification is to prove that a system satisfies
some specification, there are many obstacles to achieving this ideal in practice. Thus,
the primary use of formal methods nowadayfaisification where the goal is to detect
errors rather than to provide a proof of correctness. This is reflected in the extensive
research done on bounded model checking (c.f., [FB@), runtime verification (c.f.,



[Sip99]), property testing (c.f., [CK02]), etc. In the falsification setting, we can say that
an abstraction is sound with respect to a lafii all errors specified in_ that hold in
an abstract state also hold in some concrete state that corresponds Formally, for

alla € Aandy € L, if a satisfiesp then there is € C such thap(c, a) andc satisfies

@. 4

Since every abstract state corresponds to at least one concrete state, the soundness
condition in the falsification setting is weaker than the soundness condition in the veri-
fication setting. To see that this weaker definition is sufficiently strong for falsification,
note that the concrete stat¢hat satisfiesp withesses that the concrete system is erro-
neous (we note that in the falsification settings a “bad” property that we don’t wish
the system to have, while in the verifications setting a “good” property that we wish
the system to have).

We develop a new abstraction framework to take advantage of the weaker defini-
tion of soundness in the falsification setting. Our framework is basetanfal tran-
sition systemgMTS) [LT88]. Traditional MTS have two types of transitionsiay
(over-approximating transitions) amaust (under-approximating transitions). The use
of must transitions in the falsification setting was explored in [PDV01,GLSTO05], with
different motivations. Our framework contains, in addition, a new type of transition,
which can be viewed as the reverse versiomafst transitions [Bal04]. Accordingly,
we refer to transitions of this type asust ™~ transitions and refer to the traditionah:st
transitions asnust™ transitions. While anust™ transition from an abstract stateo
an abstract state’ implies that for all concrete stateswith p(c, a) there is a succes-
sor concrete stat€ with p(c/,a’), amust~ transition froma to o’ implies that for all
concrete states with p(c, o’) there is a concrete predecessor statéth p(c, a). The
must~ transitions correspond to the weaker soundness requirement in the falsification
setting and are incomparablesteust™ transitions.

Consider, for example, a simple concrete system consisting of the assignment state-
mentx:=x-3 . Suppose that the abstract system is formed via predicate abstraction
using the predicate > 6. Consider the abstract transitigm > 6} x:=x-3 {x > 6}.

This transition is not anust transition, as there are pre-states satisfying 6 (namely

x =7,z = 8, andz = 9) for which the assignment statement results in a post-state that
does not satisfy: > 6. In a traditional MTS, this transition is@ay transition. How-
ever, in an MTS withnust ™~ transitions, the above transition israust ™~ transition, as

for every post-state’ satisfyingz > 6 there is a pre-statesatisfyingz > 6 such that

the execution ok:=x-3 from c yields¢'. It is impossible to make this inference in a
traditional MTS, even those augmented with hyper-must transitions [LX90,SG04]. As
we shall see below, the observation that the abstract transitiomnigsa~ transition
rather than anay transition enables better reasoning about the concrete system.

We study MTS with these three types of transitions, which we refer terasiry
modal transition system&TMTS)°. We first show that the TMTS model is indeed

4 Note that the falsification setting is different than the problenyerfieralized model check-
ing [GJ02]. There, the existential quantifier ranges over all possible concrete systems and the
problem is one of satisfiability (does there exist a concrete system with the same property as
the abstract system?). Here, the concrete system is given and we only replace the universal
guantification on concrete states that correspondlig an existential quantification on them.

5 Not to be confused with the three-valued logic sometimes used in these systems.



stronger than the MTS model: while MTS with onlyay andmust™ transitions are
logically characterized by a 3-valued modal logic with th& and EX (for all suc-
cessors/exists a successor) operators, TMTS are logically characterized by a strictly
more expressive modal logic which has, in addition, #¥ and EY (for all prede-
cessors/exists a predecessor) past operators. We then show that by replasirg
transitions bymust™ transitions, existing work on abstraction/refinement for verifica-
tion [GHJ01,SG03,BG04,SG04,DNO5] can be lifted to abstraction/refinement for falsi-
fication.

In particular, this immediately provides a framework for falsification of CTL and
calculus specifications. Going back to our example, by letting existential quantification
range overnust— transitions, we can conclude from the fact that the abstract system
satisfies the property Xz > 6 (there is a successor in which > 6 is valid) that
some concrete state also satisfle¥ z > 6. Note that such reasoning cannot be done
in a traditional MTS, as there thewust™ transition is overapproximated byraay
transition, which is not helpful for reasoning about existential properties. Thus, there
are cases where evaluation of a formula on a traditional MTS retur(rothing can
be concluded for the concrete system, and refinement is needed) and its evaluation on a
TMTS returns arexistentialtrue or existentiaffalse

Formally, we describe &-valued semantickr TMTS. In addition to theT (all
corresponding concrete states satisfy the form&&all corresponding concrete states
violate the formula), and_ truth values that the 3-valued semantics for MTS has, the
6-valued semantics also has the(there is a corresponding concrete state that satisfies
the formula) F3 (there is a corresponding concrete state that violates the formula), and
M (mixed — bothT 5 andF3 hold) truth values.

The combination ofnust™ andmust™ transitions turn out to be especially power-
ful when reasoning abowuteak reachabilitywhich is useful for abstraction-guided test
generation [Bal04] and falsification of linear-time properties. As discussed in [Bal04],
if there is a sequence ofust™ transitions froma, to a; followed by a sequence of
must™ transitions froma; to ay, then there are guaranteed to be concrete stgtes
andc;, (corresponding tag andayg) such that is reachable from, in the concrete
system (in which case we say that is weakly reachable fromg). In this case, we
can conclude that it is possible to cover the abstract sjatga testing. When the ab-
straction is the product of an abstract system with a nondeterminigthiBiuutomaton
accepting all the faults of the system, weak reachability can be used in order to de-
tect faults in the concrete system. We focus on abstractions obtained from programs by
predicate abstraction, and study the problem of composing transitions in an TMTS in a
way that guarantees weak reachability. We suggest a method whette” andmust ™~
transitions are parameterized with predicates, automatically induced by the weakest
preconditions and the strongest postconditions of the statements in the pgtogram

We distinguish between the case of composing thertastt— transition in the se-
guence with the firstvust transition (there, we show that the most effective predicates
to work with are the strongest postcondition and the weakest preconditiomefihie
and themust™ transitions, respectively, and these can be generated automatically), and

5 We note (see the remark at the end of Section 3 for a detailed discussion) that our approach is
different than refining the TMTS as the predicates we use are local to the transitions.



the case of composing twaust~ or must™ transitions, where each transition is pa-
rameterized by two predicates, and reasoning is done in an assume-guarantee fashion.
We show that our method is sound and complete for reasoning about weak reachabil-
ity. We show how the new framework can be used for falsification of LTL properties,

as well as for generating testing goals for the concrete system by reasoning about its
abstraction.

The paper is organized as follows. Section 2 formally presents ternary modal tran-
sition systems (TMTS), how they abstract concrete systems (as well as each other) and
characterizes their abstraction pre-order via the full propositional modal logic (full-
PML). Section 2.3 presents ttievalued semantics for TMTS and demonstrates that
TMTS are more precise for falsification than traditional MTS. We also show that fal-
sification can be lifted to thg-calculus as well as linear-time logics. Section 3 shows
that weak reachability can be made more precise by parameterizingrhottt and
must ™~ transitions via predicates. Section 4 describes how to use TMTS to falsify LTL
properties in model checking and to generate testing goals. Section 5 concludes the

paper.
2 The Abstraction Framework

In this section we describe our abstraction framework. We define TMTS — ternary
modal transition systems, which extend modal transition systems by a third type of
transition, and study their theoretical aspects.

2.1 Ternary modal transition systems

A concrete transition system a tupleC' = (AP, S¢, Ic,— ¢, L¢), whereAP is a

finite set of atomic propositions- is a (possibly infinite) set of statek; C S¢ is a

set of initial states;— ¢ C S¢ x S¢ is atransition relation anfl: S¢ x AP — {T,F}

is a labeling function that maps each state and atomic proposition to the truth value of
the proposition in the state.

An abstraction of” is a partially defined system. Incompleteness involves both the
value of the atomic propositions, which can now take the valyenknown), and the
transition relation, which is approximated by over- and/or under-approximating transi-
tions. Several frameworks are defined in the literature (c.f. [LT88,BG99,HJS01]). We
define here a new framework, which consist$eshary transition system@MTS, for
short). Unlike the traditional MTS, our TMTS has two types of under-approximating
transitions. Formally, we have the following.

may mustT must™

ATMTS is atupleA = (AP,Sa,1a,— 4, —a, —a,La), WhereAP is a
finite set of atomic propositions, 4 is a finite set of abstract statds, C S, is a set of

must™

initial states, the transition relations=", %34 , and™", are subsets & 4 x S 4 sat-

mustt may must™ may

isfying ™%, ¢ %% and™3, ¢ %), andL4: Sy x AP — {T,F, L} is a labeling
function that maps each state and atomic proposition to the truth value (possibly un-
known) of the proposition in the state. Whdris clear from the context we sometimes

" We useT andF to denote the truth valugsue andfalseof the standard (verification) seman-
tics, and introduce additional truth values in Section 2.3.



usemay(a,a’), mustt(a,a’), andmust ™~ (a,a’') instead ofs —4 a, a wf; a/, and
a ™', o, respectively.

The elements of T, F, L} can be arranged in an “information lattice” [KIe87] in
which L C T and L C F. We say that a concrete statesatisfiesan abstract state
if for all p € AP, we haveL s(a,p) C Lc(c,p) (equivalently, if L a(a,p) # L then
LC(C7 p) = LA(aap))-

LetC = (AP, Sc, Ic,—¢, Lc) be a concrete transition system. A TMHS=

e e
(AP, Sq, T4, 8%, 08, ™30 1 4) is anabstractionof C if there exists a total and
onto functionp: Sc — S4 such that (i) for allc € S¢, we have that: satisfiesp(c),

ay must™ must™

and (i) the transition relations—~%, ™34, and™3, satisfy the following:
— a ™% o if there is a concrete statewith p(c) = a, there is a concrete staté
with p(¢’) = a’, andec —¢ .
S + . . .
— o™ only if for every concrete statewith p(c) = a, there is a concrete state
 with p(d) = @’ andc —¢ .

must™

— a — 4 d only if for every concrete stat€ with p(¢’) = «’, there is a concrete
statec with p(¢) = a andc —¢ (.

Note thatmay transitions over-approximate the concrete transitions. In particular,
the abstract system can contaituy transitions for which there is no corresponding
concrete transition. Duallypust~ andmust™ transitions under-approximate the con-
crete transitions. Thus, the concrete transition relation can contain transitions for which
there are no correspondingust transitions. Since is onto, each abstract state cor-

MUS may must™ may

.
responds to at least one concrete state, an C—"4 and — 4 C—4. On

. _
the other hand2“¥’, and™“%', are incomparable. Finally, note that by letting:st-

transitions becomenay-transitions, and by adding superfluoug:y-transitions, we
can have several abstractions of the same concrete system.
A precision preordeion TMTS defines when one TMTS is more abstract than an-

ma mustt must™
other. For two TMTSA = (AP, S, I4, %%, ™%, ™3 L) andB = (AP, Sz, I,

may mustt must™

—p, —np, —n, Lp), the precision preorder is the greatest relafitb S4 x Sp
such that ifH(a, b) then

CO. forallp € AP, we haveL 4(a,p) C Lp(b,p),

Cl. if b ™% ¥/, then there is/ € S4 such thati(a’,b') anda %% o,

C2. if o' %% b, then there is/ € S, such thatH(a’, V') anda’ =) a,

mustt mustt

C3. if a —4 d/, then there i’ € Sg such that(a’,b’) andb — 5 ', and
C4. ifa %tA a, then there i$’ € Sp such that{(a’, ) andd’ %’B b.
WhenH(a, b), we write (A4, a) < (B, b), which indicates tha#l is more abstract (less
defined) tharB.

By viewing a concrete system as an abstract system whasg must™, and
must— transition relations are equivalent to the transition relation of the concrete sys-
tem, we can use the precision preorder to relate a concrete system and its abstraction.
Formally, the precision preordé C Sc x S4 (also known agmixed simulation
[DGG97,GJ02]) is such th&i(c, a) iff p(c) = a.



2.2 Alogical characterization

The logicfull-PML is a propositional logic extended with the modal operathks (“for
all immediate successors”) and” (“for allimmediate predecessors”). Thus, full-PML
extends PML [Ben91] by the past-time operatty’. The syntax of full-PML is given
bytheruled ::=p | -0 |OAO| AXE| AY 9, forp € AP.

We define a3-valued semanticef full-PML formulas with respect to TMTS. The

may mustT must™ >

value of a formul& in a statex of a TMTS A = (Sa,la,— 4, — 4, —a,La
denoted(A4, a) = 6], is defined as follows:

[(A7(l) |: p] = LA(CL,p)~
T if [(4,a) EO =F.
[(A,a) 2 ~0] = F if [(4,0) = 6] =T.
1 otherwise.

T if [(A,a) 0] =T and[(A,a) = 02] =T
[(A,a) E 01 NG =< F if [(A4,a) E 6] =For|[(A, a) E 6] =F.
1 otherwise.
T ifforall ¢, if may(a,a’) then[(A,a’) = 0] =T.
[(A,a) = AX0] = { F ifexistsa’ s.t.must™(a,a’) and[(A4,d") = 0] =F.
1 otherwise.

T ifforall ¢, if may(a’, a) then[(A4, a) EO=T.
[(A,a) E AY 0] = < F if existsa’ St must™ (a’,a) and[(A, o’ =
1 otherwise.

While PML logically characterizes the precision preorder on MTS [GJ02], full-
PML characterizes the precision preorder on TMTS. It follows that the TMTS model
is indeed stronger than the MTS model, because TMTS are logically characterized by
a strictly more expressive modal logic which has the past operatbrand E£Y, in
addition toAX and £ X operators. Formally, we have the following.

Theorem 1. Let A = (AP, Sa, La, "%, ™55 ™58 1) and B = (AP, Sg, I,

ﬂ%,%tB,’Mf&Lm be two TMTS. For every two statess S4 andb € Sg, we
have that(A, a) < (B, b) iff [(A,a) = 6] C [(B,b) |= 6] for all full-PML formulasé.
Proof. Assume first that4, a) =<

=< (B,b). We prove thaf(A,a) = 0] C [(B,b) E 6]
for all full-PML formulasé. The proof proceeds by induction on the structuré.dfet
H C S4 x Sp be the precision preorder such théta, b).

— For the induction base, consider the cése p for p € AP. Since(4,a) < (B, b),
then, by the definition oK, we have thal 4 (a, p) E Lp(b, p), so, by the semantics
of full-PML, [(A,a) = p] C [(B,b) = p.

— The case9 = —0; or 0 = 0; A 0, follows immediately from the semantics of
full-PML and the induction hypothesis.

— Letd = AX0,. We prove that if(A4,a) = AX6:] =T, then[(B,b) E AX60,] =
T too, and if[(A,a) E AX6;] = F then[(B,b) = AX6;] = F too. Assume first
that[(A,a) = AX6,] = T. By the semantics of full-PML, for ali’ with a —="
a’, we have[(A,d) E 61] = T. Since(A4,a) < (B,b), then, by the definition of
=<, if b 2% ¥, then there is/ € S, such thaIH(a V) anda —%% o. By the



induction hypothesis|(B, V') = 6,] = T, thus[(B,b) E AX6;] = T and we
are done. Assume now thgtd, a) = AX6;] = F. By the semantics of full-PML,

must™

there exists’ such tha —4 o’ and[(A,d) = 0;] = F. Since(4,a) = (B, b),

ust™

then, by the definition oK, there ish’ € Sg such that(a’, b') andb s . By
the induction hypothesi$(B, V') = 61] = F, thus[(B,b) = AX#6,] = F and we
are done.

— Letd = AY6,. We prove thatif(A,a) E AY 6] = T, then[(B,b) = AY6,] =T
too, and if[(4, a) = AY 6,] = Fthen[(B,b) E AY 6] = F too. Assume first that
[(A,a) = AY 6] = T. By the semantics of full-PML, for ali’ with a’ =% a,
we have[(A,d') = 61] = T. Since(4,a) < (B,b), then, by the definition o,
if ¥ 5% b, then there is)’ € S, such thatH(a', ') anda’ —=’4 a. By the
induction hypothesis|(B,V) | 6,] = T, thus[(B,b) E AY#6;] = T and we
are done. Assume now th@t4, a) = AY6,] = F. By the semantics of full-PML,

must™

there exists’ such that’ —4 a and[(A,d') = 01] = F. Since(4,a) = (B, b),

then, by the definition ok, there isy’ € S such that(a’,t') andy’ ™3’ b. By
the induction hypothesi$(B, V') = 0,] = F, thus[(B,b) E AY#6;] = F and we
are done.

For the other direction we prove thatifl, a) £ (B, b), then there is a full-PML formula
6 such thaf(4,a) E 6] Z [(B,b) = 6]. The precision preorder is the greatest fixed-
point of the following sequence of relatiofis C S4 x Sp:

— Ho = {(a,b) : forallp € AP, we haveL s(a,p) C Lg(b,p)},

- Hiy1 = H; N {{a,b) : (a,b) is good with respect td{; }, where a paira,b) is
goodwith respect to a relatiot; C S4 x Sp iff the four conditionsC1-C4 of a
precision relation hold with respect 149;.

Assume that A, a) A (B,b). Then, there is an index> 0 such thata, b) ¢ H;. We
define the full-PML formul& by induction or.

— If i = 0, thus{(a, b) & Ho, then there ip € AP for which L4(a,p) Z Lg(b,p),
and we defind to bep.
— Assume thata,b) € H; and{a,b) & H;+1. Then,{a,b) is not good with respect
to H,. Therefore, at least one of the four conditicb$ - C4 does not hold. We
consider each of these cases and show that in all of them, we can point to a full-
PML formula# such tha{(A, a) = 0] IZ [(B,b) = 6.
may

Assume thaC1 does not hold. Thus, there is a stéte= S such thab —5 V'
and there is na’ € S, such thatH(a’, ') anda —"4 a'. Thus, for alla’ € Sy,

if a = o, then(a’,b') ¢ H;. By the induction hypothesis, there is a full-PML
formulap;(a’,b’") such thaf(A,a’) = ¢i(a’, V)] Z [(B,V) E ¢;i(a’,V')]. By the
definition of theC order,[(4,a’) E ¢i(a’,b")] is eitherT or F. Let ¢} (a’,’) be
wi(a,b') in case[(A,d’) | pi(a’,b)] = T and be-y;(a’,b") in case[(A4,d’) =
wi(a', b)) = F. We defined = AX va’:amyAa/ i(a’,b"). Itis not hard to see that
[(A,a) = 6] = T. Indeed, by the semantics of theX operator[(4,a) =0] =T

if for all o’ with may(a,a’), we have thaf(4,d’) = ¢i(a’,V)] = T, which we
have established by construction. Also, by the definitiop/dt.’, b'), we have that



[(B,V) = @i(a’,b)] # T forall o with a —%% o. Hence,[(A,a) = 6] Z
(B, b) |= 0]

Assume thaC2 does not hold. Thus, there is a sta’tee Sp such that! 5% b
and there is n@a’ € S, such that®(a/, ') anda’ % a. Thus, for alla’ € SA,

if o 2% a, then(a',b') & H,. Let ©)(a’,b') be as in theC1 case. We define
0 =AYV, may  i(a,b). Itis not hard to see thdtA, a) |= 6] = T. Indeed,
by the semantics of thaéY operator[(A, a) = 6] = T iffor all o’ with may(a’, a),
we have thaf(A,a’) = ¢l(a’,V)] = T, which we have established by construc-
tion. Also, by the definition ofp}(a’,b’), we have thaf(B, V') = ¢i(a’,b")] # T

for all o’ with o’ %%y a. Hence[(A, a) = 6] IZ [(B,b) = 6].

Assume thaC3 does not hold. Thus, there is a state= S4 such thaw —

must™

and there is nd’ € S such thatH(a’,b") andb —>p b'. Thus, for allt’ € SB,

it b ™% ¥, then (d, b/> ¢ H,. Let ©l(a’,1') be as in theCl case. We define

0 =EX /\b/ yrsscty, Pi t(a’,b). By the semantics of th& X operator|(4,a) E

0] = T, asd’ satisfiesmust™(a,a’) and[(A,a’) E ¢i(a’,b")] = T for all &/

with b ™52 /. Also, by the definition ofpl(a’,v'), we have thaf(B,b') =

©i(a’, V)] # T for all b’ with b’ﬂfg b'.Hence|[(A,a) E 0] £ [(B,b) = 9]

Assume thaC4 does not hold. Thus, there is a statec S, such that’ ™% a
must™

and there is nd@’ € S such thatH(a’,b’) andd’ — 5 b. Thus, for allt’ € Sg,

if o' "5 b, then(a/, ') & H,. Lety)(a/,b') be as in theC1 case. We defing =
EY A\ ©l(a’,b"). By the semantics of thEY operator[(A,a) = 0] =T

musf ’

b b/must_

asa’ satisfiesnust~(a’,a) and[(A,a’) = ¢}(a’, V)] = T for all &’ with b’ ™55
b. Also, by the definition ofp}(a’, '), we have thaf(B, V') = ¢(a’,0")] # T for

all b’ with b ™%'; b. Hence (A, a) = 6] Z [(B,b) = 6).

2.3 Falsification Using TMTS

As shown in Section 2.2, the backwards naturesafst— transitions makes them suit-
able for reasoning about the past. Thus, TMTS can be helpful in the verification setting
for reasoning about specifications in fullcalculus and other specification formalisms
that contain past operators. We view this as a minor advantage of TMTS. In this section,
we study their significant advantage: reasoning about specifications in a falsification
setting.

Recall that the truth valug for a formulay in an abstract state indicates that all
concrete states correspondingiteatisfyy, and dually for-. A more informative truth
value could have counted the number of corresponding concrete states that satisfy or
violate . We could have had, for examplgA, a) = ¢] = (count_T, count_F), for

8 The specifications may contain both future and past operators. For simplicity, we describe the
framework here for th@-calculus, which does not contain past modalities. By lettingAlie
modality range overnust™ transitions, the framework can be used for falsification of full
p-calculus specifications.
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Fig. 1. The information and truth lattices fdks.

count_T, count_F € {0,...,|p~'(a)|}, which indicates in how many corresponding
concrete states we know thats satisfied and in how many we know it is violated. Such
an informative reasoning, however, would lose much of the saving that the transition to
an abstract system achieves. We suggest, instead, to approxiraateT andcount_F'

by 0, at leastl, or [p~1(a)|.

In addition to the truth value$, F, and L, we now allow formulas to have the
valuesT 3 (existentialtrue), F5 (existentialfalse), andM (“mixed” — both T3 andF3).
Intuitively, the valued 5, F5, andM refine the valuel, and are helpful for falsification
and testing, as they indicate that the abstract state corresponds to at least one concrete
state that satisfies the properfys), at least one concrete state that violates the property
(F3), and at least one pair of concrete states in which one state satisfies the property and
one violates iti).

As described in Figure 1, the six valués = {T,F,M, T3, F3, L} can be ordered
in the information lattice depicted on the left. The values can also be ordered in the
“truth lattice” depicted on the right:

We allow the truth values of the (abstract) labeling function to range over the
six truth values.

maa mustT must™ . .
ATMTS A = (AP, Sa, 14, e, —fA, —>fA7LA> is an abstraction of a con-
crete transition syster@ = (AP, S¢, Ic,— ¢, L¢) if there exists a total and onto
functionp: S¢ — S4 such that for alb € S, andp € AP:

— La(a,p) =T onlyifforall ¢c € S¢ such thap(c) = a, we haveLo(c,p) =T;

— La(a,p) = Fonlyifforall ¢ € Sz such thap(c) = a, we haveLs(c, p) = F;

— La(a,p) = T3 only if there exists: € S¢ such thap(c) = e andLc(c,p) = T;

— La(a,p) = F3 only if there exists: € S such thaip(c) = a andL¢(c,p) = F;

— La(a,p) = M only if there existc,¢’ € Sc such thatp(c) = p(d) = a,
Lo(e,p) =T, andLo(¢, p) = F.

In addition,p satisfies requirement (ii) relating the transitionsfodndC, as defined in
Section 2.1.

The complementation £ — Lg) and the conjunction: Lg x Lg — Lg) oper-
ations are defined as follows:



= ANFFMT3 T L
FIT FIFF FFFF
Fa|T3 Fa|F F3 F3 F3 F3 F3
MM MIFFsF3F3 M F3
T3|F3 TglFFsF3 L T3 L
TIF TIFFsMTs T L
L|L L|FF3F3 L L 1

We define &-valued semanticsf PML formulas with respect to TMTS. The value

must™

of a formulag in a statea of a TMTS A = (AP, 54, Ly, ™%, ™5, ™5t L),
denoted(A, a) = 6], is a value inlg, and is defined, by induction on the structure of
0, as follows:

[(4,a) |= p] = La(a, p)-
[(4,a) |= —0] = =([(A, a) = 0]).
[(A,a) |= 01 A O] = A([(A, d) = 01], [(A, ') |= 6s)).

T |if for all o, if may(a,d’)then[(4,a") E0] =T,
_J F ifthere exists) s.t.must™ (a,a’) and[(A, a) =0 =
[(4,0) | AX6] = F3 if there exists’ s.t.must™(a,a’) and[(4, a’) | 6] g

1 otherwise.

The ordering relationd)) used in the definition ofA X 0 refers to the information
lattice. Note that the conditions for tikeand thel5 conditions are not mutually exclu-
sive. If both conditions hold, we take the value to be the stroRgerlue.

For clarity, we give the semantics for the existential operdtdf explicitly (an
equivalent definition follows from the semanticsAK and-):

F ifforall o, if may(a,a’) then[(4,d") E 6]
T if there exists' s.t.must™(a,a’) and[(
T3 ifthere exists:’ s.t.must™(a,a’) and|(
1 otherwise.

b

A a
(A.0) = BX6) = P
Thus, the semantics of the next-time operators follows boetfst— andmust™ tran-
sitions (that isa’ is such thatnust ™ (a,a’) or must™ (a,a’), where the first is used
for obtaining aT 5 value and the second for obtainingravalue). To understand why
must~ transitions are suitable for falsification, let us explain the semantics fdr fhe
modality. The other cases are similar (and are detailed in the proof of Theorem 2). Con-
sider a concrete transition systeth= (AP, S¢, Ic,—¢, L¢), and an abstraction

mustT must™

forit A = (AP, Sa, Iy, =50, ™3, ™3, L ). Let p: S¢ — S, be the witness
function for the abstraction.

We argue that if(A,a) = EXp| = T3, then there is a concrete statsuch that
p(c) = aandc = EXp. By the semantics of thE X operator[(A4,a) = EXp] = T3
implies that there ia’ € S4 such thatnust™(a,a’) andLa(a’,p) 3 T3. Leté be a
concrete state with(¢) = o’ and Lo (¢,p) = T (by the definition of abstraction, at
least one such exists). Sincenust™ (a, a’), then for every concrete stateésuch that
p(c) = a’ there is a concrete statesuch thatp(c) = a ande —¢ ¢'. In particular,
there is a concrete statesuch thap(c) = a ande —¢ é. Thus,c = EXp and we are
done.
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Let « anda’ be abstract states. The (reflexive) transitive closurenakt—, de-
noted[must~]* is defined in the expected manner as follojmsust—|*(a, a”) if either
a = a” or there is an abstract statésuch thafmust—]*(a,a’) andmust™ (a’,a”).

We say that an abstract stateis onto reachabldrom an abstract state if for ev-

ery concrete state that satisfies:’, there is a concrete statethat satisfies: and ¢/

is reachable frona. Dually, we can define the transitive closurerofist™ transitions,
denotedmustt]*. Thus,[must™]*(a,a”) if eithera = a” or there is an abstract state
a’ such thatmust™ (a,a’) and [must*]*(a’,a’”). We say that an abstract stateis
total reachablefrom an abstract state if for every concrete state that satisfies:,
there is a concrete statéthat satisfies’ andc¢’ is reachable frone. The onto nature

of must™ transitions is retained by their transitive closure, and similarly for the total
nature ofmust™ transitions:must~]*(a,a’) only if «’ is onto reachable from, and
[must™]*(a,a’) only if o’ is total reachable from [Bal04].

Adding transitive closure (fixed-point) operators increases the expressive power of
PML and, by the above discussion, retains the intuitive meaning of the valdgs By
extending PML by fixed-point operators, one gets the lpgealculus [Koz83], which
subsumes the branching temporal logics CTL and TTihe 3-valued semantics of
PML can be extended to thecalculus [BGO4]. Note that in the special case of CTL
and CTL* formulas, this amounts to letting path formulas range exvey andmust™
paths [SGO03]. The fact that the “onto” naturerfist~ transitions is retained under
transition closure enables us to extend the soundness argumentfevaheed seman-
tics described above for a singkeX or AX modality to nesting of such modalities and
thus, to PML and thei-calculus.

Let us explain the extension of the 6-valued semantigs¢alculus in more detail.

A formula« can be viewed as a functiah: S, — L. Each operator of PML can be
viewed as a mapping from such a function (or two such functions, in case the operator
is binary) to a new function. For example, tfi&X operator maps the function that
corresponds to some formudao a function that corresponds to the formi& 0. As
detailed in [BGO04], every operatgt: (S4 — Lg) — (Sa — L) has a least fixed-
point, which is equal to the meet (with respect to the truth lattice) of its fixed points.
Moreover, since PML operators are monotonic, the least fixed-point can be calculated
by repeated iterations ¢f. Let fg be the valuation in which all states have valud et

¥} (fE) denote the successive application/gffrom fi until a fixed point is reached.

To obtain a 6-valued semanticsofcalculus, we extend the PML semantics above with
the following definition:

[(4,0) = pZ.41(2)] = [(A;a) = 91 (fF)]

We now state that the intuitive meaning of the six valuegdncorresponds to the
formal semantics we have described:

Theorem 2. Let C be a concrete system and létbe its abstraction according to an
abstraction functiorp. For everyu-calculus formula) and abstract state of A, the
following holds.

— If [(A,a) = 9] =T, then for all concrete statessuch thaip(c) = a, we have that

¢ E .
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If [(A,a) E ] = F, then for all concrete statessuch thaty(c) = a, we have that

c .

— If [(4,a) E 9] = T3, then there is a concrete statesuch thatp(c) = a and
cE .

— If [(A,a) E 9] = F3, then there is a concrete statesuch thatp(c) = a and
c = .

If [(4,a) E ¥] = M, then there is a pair of concrete statesand ¢’ such that

p(e) = p(c') = a,c |= v, and¢’ | o,

Proof. The proof proceeds by induction on the nesting depth of fixed-point operators in

1. The proofs of both the induction base and step proceed by induction on the structure

of v.

We start with the induction base, that is, wheras no fixed-point operators. For
the (internal) induction base, consider the case wihiere p for somep € AP. Then,
[(A,a) = p] = La(a,p), and the claim follows from the definition @4 (a, p).

Let ¢ = —);. Then, the proof follows immediately from the semantics of the
operation, and the inductive hypothesis. iLet i, A5. We have to show that the truth
table for theA operator follows the intuitive meaning of the six values. We distinguish
between the various possible valuesfiot, a) = v].

— If [(A,a) E «] = F, then, according to the truth table of one of{v1, -} eval-
uates td~. Without loss of generality, assume itis. By the inductive hypothesis
for 41, for all concrete statessuch thafp(c) = a we have that |~ ;. Thus, for
all suche, we have that £ 41 A 19, regardless of the value gf, onc.

— If [(A,a) E ¢] = F3, then one ofv, 12} evaluates td-3 or M. Without loss of
generality, assume it i8; . By the inductive hypothesis faby, in either caseR5 or
M) there exists a concrete stateuch thafp(c) = a andc }= ;. Thus, whatever
the value of, oncis, ¢ & ¥y A 1s.

—If [(4,a) = ¢] = M, then by definition ofa, either[(A,a) = 1] = M and
[(Aya) E 2] = T,0r[(4,a) E 2] = M and[(A,a) = 1] = T. Assume,
without loss of generality, that the first case holds. By the inductive hypothesis
for ¢, there exist two concrete state$,andc¢”, such thatp(c’) = p(¢’) = a,
cd | 1, andd” B 1. From the latter, it follows that” = 1y A 1o. By the
inductive hypothesis fog,, for all concrete statessuch thap(c) = a, ¢ = 5. In
particular,c’ |= -, and thereforeg’ = 11 A )s.

— If [(A,a) E o] = T3, then eithefl (4, a) = ¢¥1] = T and[(A,a) = 2] = T3, or
[(A,a) E 2] =T and[(A,a) = ¢1] = T3. Assume, without loss of generality,
that the first case holds. Sinfled, a) = 2] = T3, then, by the induction hypoth-
esis, there exists a concrete stateuch thatp(c) = a andc = . Also, since
[(A,a) E 1] = T, then, by the induction hypothesis|= ¢, as well. Therefore,
c =1 A,

— If [(A,a) E¢] =T,thenboth(4,a) = ¢1] =T and[(4,a) E ¥2] =T, and the
claim follows immediately from the induction hypothesis.

Lety = AX4. In the cases whef{A,a) E ¢] = T and[(4,a) E ¥] = F,
the arguments are similar to those of the three-valued semantics afthaperator. If
[(A,a) E 9] = F3, we argue that there is a concrete stagich thatp(c) = a and
¢ | AX6. By the definition of the semantics, there is an abstract staseich that
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must™ (a,a’), and[(A, d’) = 6] 3 F3, i.e., it can be any of the valués;,M or F. By
the inductive hypothesis fdt, in all of these three cases, there exists a concrete state
¢ such thatp(¢’) = o’ ande [~ 6. Sincemust™ (a,a’), we know that there exists a
concrete state with p(¢) = a such thatt — ¢'. Thus,c £ AX6. Note that theA X
case is reflected in the fact that the transitive closureoft~ transitions preserve the
“onto” nature ofmust ™ transitions.

We now move to the induction step. That is, assume that the claim holds for formulas
of nesting deptfh and prove it for a formula) of nesting deptti + 1. The cases where
Y isp, —h1, 11 Ahg, Or AX )y are as in the induction base. Let= nZ.1)1 (Z). Again
theT andF cases are as in the three-valued casgAfa) |= ¢] = T3, we argue that
there exists a concrete stateuch thap(c) = a andc |= ¢. According to the semantics
for 1, we have((4, a) = ¢;(fg)] = T3. Letk be such that*(fg) = ¢F(fg), where
’L/Jlf(flz) denotes the operator defined bysuccessive applications of the operatqr
starting from fg. Thus,[(A4,a) = w{“(flz)] = T3. The nesting depth of fixed-point
operators in the formulﬁz’f(f,:) is [, so the induction hypothesis applies to it. Hence,
there exists a concrete statsuch thatp(c) = a ande = ¥{(fg). Thus,c |= . The
proof for the other truth values is similar.

We note that whef(A,a) = ] = L, itis possible to use the same techniques as
in the verification setting [SG03], witmust ™ transitions replacingaust™ transitions
in order to refine the TMTS.

3 Weak Reachability

When reasoning about paths in the abstract system, one can often manage with an even
weaker type of reachability (than transitive closure ouerst— transitions): we say that
an abstract state’ is weakly reachablérom an abstract state if there is a concrete
statec’ that satisfies:’, there is a concrete statethat satisfies:, and¢’ is reachable
from c. The combination ofnust™ andmust™ transitions turn out to be especially
powerful when reasoning about weak reachability.

If there are three abstract statgs a», andas such thatz, is onto reachable from
a1 andas is total reachable from,, thenas is weakly reachable from,. Hence, weak
reachability can be concluded from the existence of a sequenca.f transitions
followed immediately by a sequencesmfust™ transitions:

Theorem 3. [Bal04] If [must™]*(a1,az2) and [must™]*(az, az), thenasz is weakly
reachable fromu; .

In this section, we show how reasoning about weak reachability can be made tighter
in the context of predicate abstraction. In Section 4, we show applications of weak
reachability for falsification of LTL properties and for generating testing goals for a
concrete system by reasoning about its abstraction.

Remark 1.The argument that a sequencenofst— transitions followed by a sequence

of must™ transitions is a sufficient condition for weak reachability can be generalized
in order to obtain a more precise 6-valued semantics fopthalculus (more precise

in the sense that formulas may be evaluated to greater values in the information lattice).
For this purpose, one can attribute the truth values to a formula in whi¥hand
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AX modalities are nested by a mode flag from the{set+}. A — flag indicates that
only must~ transitions have been taken in the evaluation of the formula, andiag
indicates that the sequencerafist~ transitions is followed by a sequencermfist™
transitions. As long as the truth value is attributed-hyevaluation of thev X andAX
modalities can proceed along eithetst™— transitions (leaving the flag unchanged) or
must™ transitions (updating the flag tp). Once the attribution is-, evaluation should
proceed only alongnust™ transitions. This guarantees that the path generated in the
abstract system corresponds to a real path in the concrete system.

3.1 Weak Reachability in Predicate Abstraction

We now focus on the case where the concrete system is a program, and its abstraction
is obtained by predicate abstraction. We then show that weak reachability can be made
tighter by parameterizing the abstract transitions by predicates. The predicates used
in these transitions may be (and usually are) different from the predicates used for
predicate abstraction.

Consider a progran®. Let X be the set of variables appearing in the program and
variables that encode the program location, andlée the domain of all variables (for
technical simplicity, we assume that all variables are over the same domain). We model
P by a concrete transition system in which each state is labeled by a valuati®h.in
Let® = {¢1, ¢o,..., 0, be a set of predicates (quantifier-free formulas of first-order
logic) on X. For a setz C @ and an assignment € DX, we say that satisfiesa
iff ¢ satisfies all the predicates in The satisfaction relation induces a total and onto
functionp : DX — 2%, wherep(c) = a for the uniquea for which ¢ satisfiesa. An
abstraction of the prograrR that is based o® is a TMTS with state spacz?, thus
each state is associated (and is labeled by) the set of predicates that hold in it. For a
detailed description of predicate abstraction see [GS97,BMMRO0L1].

Note that all the transitions of the concrete system in which only the variables that
encode the program location are changed (all transitions associated with statements that
are not assignments, c.f., conditional branches, skip, etc.) aresboth™ andmust—
transitions, assuming thdt includes all conditional expressions in the program. We
call such transitionsilenttransitions. The identification of silent transitions makes our
reasoning tighter: ifu ﬂf‘j a’ we can replace the transition framo o’ with transitions
from a’s predecessors t@. The type of a new transition is the same as the type of the
transitions leading ta. ° Such elimination of silent transitions result in an abstract
system in which each transition is associated with an assignment statement.

For simplicity of exposition, we first present a toy example. (We later present a more
realistic example.) Consider the progrdfrappearing in Figure 2.

When describing an abstract system, it is convenient to describe an abstract state in
S 4 as a pair of program location and a Boolean vector describing which of the program
predicates b hold. Let¢; = (x < 6) and¢s = (z > 7). The abstraction oP that
corresponds to the two predicates is described in the left-hand side of Figure 3. In the
right-hand side, we eliminate the silent transitions.

9 A transition froma’ may also be silent, in which case we continue until the chain of silent

transitions either reaches an end state or reaches an assignment statement. If the chain reaches
an end state, we can maken end state.
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L0 ifz < 6then

L1 r:=x+ 3;
L2 if x > 7then
L3 rx:=x—3;
L4 end

Fig. 2. The programP.

X<6 x>7 (x=6)v(x=7)

Fig. 3. The abstract transition system of the progr&rfrom Figure 2.

We now turn to study weak reachability in the abstract system. By Theorem 3, if
[must™]*(a1,az) and[must™]*(az, as), thenas is weakly reachable from;. While
Theorem 3 is sound, it is not complete, in the sense that it is possible to have two
abstract states anda’ such that’ is weakly reachable from and still no sequence
of transitions as specified in Theorem 3 exists in the abstract system. As an example,
consider the abstract states= (L1: TF) anda’ = (L4 : TF). While o’ is weakly
reachable fronu; c.f., ¢ =(L4:x = 5) is reachable frona =(L0:z = 5), the only path
from a to o’ in the abstraction contains tweay transitions, so Theorem 3 cannot be
applied. In fact, the status of the abstract states (L4:FT) and (L4:FF) also is not clear,
as the paths from to these states do not follow the sequence specified in Theorem 3.
Accordingly, Theorem 3 does not help us determining whether there is anirngut
to P such that the execution @ on z would reach location L4 witkr that is strictly
bigger tharn7 or with z that is equal t@ or 7. Our goal is to tighten Theorem 3, so that
we end up with fewer such undetermined cases.

3.2 Parameterized Must Transitions

Recall that each abstract state is associated with a location of the program, and thus
it is also associated with a statement. For a statement a predicate over X, the
weakest preconditiofVP (s, e) and thestrongest postconditioBP (s, e) are defined as
follows [Dij76]:
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— The execution ok from every state that satisfi8§P (s, e) results in a state that
satisfiese, andWP(s, e) is the weakest predicate for which the above holds. For
an assignment statement= v, we have thaWWP(z := v,e) = e[z /v] (that is,e
with all occurrences aof replaced by).

— The execution of from a state that satisfiesesults in a state that satisfieB(s, ¢),
andSP(s, e) is the strongest predicate for which the above holds. For an assignment
statement := v, we have thaSP(x := v,e) = 3z’ .(e[x /2] Az = v).

For example, in the prograii, we haveWP(zx ==z + 3,2 > 7) =z > 4, SP(z :=
r+3,r<6)=x<9, WPz :=2-3,2<6)=x<9,andSP(z .=z — 3,2 >
7 =x>4.

Let 0 be a predicate ovek. We parameterizerust™ andmust ™~ transitions by)
as follows:

— mustt(6)(a,a’) only if for every concrete state that satisfies: A 6, there is a
concrete state’ that satisfies’ andc —¢ ¢'.

— must~ (6)(a,a’) only if for every concrete staté that satisfies’ A 6, there is a
concrete state that satisfies andc —¢ ¢'.

Thus, amust™ () transition is total from all states that satigfyand amust™(6)
transition is onto all states that satigfyNote that wher® = T, we get usualnust™
andmust~ transitions. Parameterized transitions can be generated automatically (us-
ing WP and SP) while building the TMTS without changing the complexity of the
abstraction algorithm.

Theorem 4. Let ¢ and o’ be two abstract states, andthe statement executed dn
Then,must™ (WP (s,a’))(a,a’) andmust™ (SP(s,a))(a,a’).

Proof. Consider a concrete stat¢hat satisfiea AWP (s, a’). Sincec satisfieSWP (s, a’),
the execution of from c results in a state that satisfies. Thus, every suchhas a con-
crete successor statéthat satisfies/’; thusmust ™ (WP(s,a’))(a,a’).

Consider a concrete staté that satisfies’ A SP(s, a). Sincec’ satisfiesSP(s, a),
it is obtained by executingin a state that satisfies. Thus, every suct has a concrete
predecessor staiethat satisfies:; thusmust™ (SP(s, a))(a, a’).

The good news about Theorem 4 is that it is complete in the sense that for all
predicated, if there is anust™ (6) transition froma to a’, thena = (0 = WP(s,d’)),
and similarly formust~ transitions, as formalized below.

Lemma 1. Leta anda’ be two abstract states, andhe statement executeddn

— If there is amust™ () transition froma to a’, thena = (0 = WP(s,d")).
— If there is amust~ () transition froma to o/, thena’ = (6 = SP(s, a)).

Proof. Letf be such that there is must™ () transition froma to a’. Then, for every
that satisfie® A a, the execution of from ¢ results inc’ that satisfies’. By definition,
WP(s,a’) contains exactly all states from which the execution aésults in a state
that satisfies’. Hence,(§ A a) = WP(s,a’), or equivalentlyg = (0 = WP(s,d’)).

Let# be such that there is aust~ (#) transition froma to a’. Then, every’ that
satisfie¥) Ad’ is obtained by executingin a state that satisfies By definitionSP (s, a)
contains exactly all states obtained by executinig a state that satisfies. Hence,
(0 A a) = SP(s,a), or equivalentlya = (6 = SP(s, a)).
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Thus, the pre and post conditions, which can be generated automatically, are the
strongest predicates that can be used. Note that using Theorem 4, itis possible to replace
all may transitions by parameterizedust~ andmust™ transitions.

It is easy to see how parameterized transitions can help when we consider weak
reachability. Indeed, ifnust=(01)(a, a’), must™(02)(a’,a’), andd; A Oz A a’ is satis-
fiable, theru” is weakly reachable from, as formalized by the following lemma.

Lemma 2. If must™(61)(a,a’), must™(02)(a’, a’”), andf; A3 Ad’ is safistiable, then
there are concrete statesand¢” such that(c), a”’(¢””), andc” is reachable fron.

Proof. We show that there are concrete statemnd ¢” for which there is a concrete
statec’ such thatt —¢ ¢ and¢’ —¢ ¢”. We choose’ as a satisfying assignment
for 6, AOx Ad'. Sincemust™(01)(a,a’) andc’ satisfied); Aa’, there is a concrete state
¢ such thate —¢ ¢’. Simlarly, sincenust™(6;)(a’,a”) and¢’ satisfiess A o, there
is a concrete state’ such thatt’ — ¢”.

The completeness of Theorem 4 implies that whers weakly reachable from
via two transitions, this always can be detected by taking= SP(s,a) andf, =
WP(s',a’), wheres ands’ are the statements executed in the two transitions.

In our example, we have seen that the transitions from (L1:TF) to (L3:FT) and from
(L3:FT) to (L4:TF) are bothnay transitions, and thus Theorem 3 cannot be applied.
However, the fact that the first transition also isnast~ (x < 9) transition and the
second also is must™ (z < 9), together with the fact that > 7 Az < 9 is satisfiable,
guarantee that there is a concrete state that corresponds to (L1:TF) and from which
a concrete state that corresponds to (L4:TF) is reachable. Indeed, as we noted earlier,
(L4:2 = 5) is reachable from (LQ: = 5).

Whena anda’ are of distance greater than two transitions, parameterization is use-
ful for composing the sequence ofust™ transitions with the sequence ofust™
transitions:

Theorem 5. If [must™|* (a1, az), must™(61)(az, as), must™ (02)(as, as), [mustt]|*(aq, as),
andas A 61 A 05 is satisfiable, thems is weakly reachable froma; .

Proof. Immediate from Theorem 3 and Lemma 2.

Again, the predicate8; andf; are induced by the pre and postconditions of the
statement leading to the abstract state in which the two sequences are composed.

The transitive closure of the parameterized st transitions does not retain the
reachability properties of a single transition and requires reasoning in an assume-guarantee
fashion, where two predicates are associated with each transition.

3.3 Assume-guarantee Must Transitions

Leta anda’ be abstract states, and teandd’ be predicates ovex.

— (0)ymust™(0')(a,a’) only if for every concrete statethat satisfies A 6, there is a
concrete state that satisfi@sn 6’ andec —¢ ¢'.

— (0ymust=(0")(a, a’) only if for every concrete staté that satisfiea’ A ¢, there is
a concrete state that satisfies 0’ andc —¢ ¢'.

17



So, a{f)must™(#') transition is total from all states that satigfyand it is guar-
anteed that the transition from such states result in states that gétiSimilarly, a
(0ymust—(#') transition is onto all states that satigfy and is from states that satisfy
6. We can now define the transitive closure of the relations.aL@hd«” be abstract
states, and let; andés be predicates.

— [(81)mustt(05)]*(a,a”) if eithera = a” or there is an abstract staté and a
predicated, such thaf(0;)must ™ (6;)]* (a,a’) and(f2)mustt(63)(a’, a’”).

— [(61ymust=(03)]*(a,a’) if either a = o or there is an abstract staté and a
predicated, such that{f, )ymust= (62)(a,a’) and[(02)must—(03)]*(a’, a”).

The transitive closure retains the reachability properties of a single transition:

Theorem 6.

— [(8)ymust™{(0")]* (a,a’) only if for every concrete staiethat satisfies: A 6, there
is a concrete state that satisfies’ A 6’ andc’ is reachable fronz.

— [(@)must=(0')]*(a, a’) only if for every concrete staté that satisfies/’ A ¢’, there
is a concrete state that satisfies: A 8 andc’ is reachable frome.

We can now use Theorem 6 for automatic reasoning about weak reachability:

Theorem 7. Consider a pathr = a1, ao, ..., a, inthe TMTS. Let; be the statement
executed along the transition fromy to a;1. Letd; = a4, & = a,, and for all
1< <n—-1, Iet9i+1 = a;41 N SP(Si, 9l>, andfi = a; /\WP(Si,fi+1). Then, for all
1<i<n-1,we haV€<9i>mUSt_ <9i+1>(ai,ai+1) and <§i>m1Lst+ <§i+1>(ai, ai+1).
Also, the following are equivalent:

1. a, is weakly reachable from, via .

2. Forall1 <i <n,we have thal; A &; is satisfiable.

3. Thereisl <1 < nforwhich; A &; is satisfiable.

Proof. First, we show that (1) implies (3). Weak reachability ¥ianeans that there
exist concrete states, ..., ¢, that satisfya, ..., a,, respectively, such that,; is
obtained by executing the statemepton ¢;, for 1 < ¢ < n — 1. Sincec; satisfies
a1 = 04, ¢; satisfies,; for 1 < i < n — 1, in particular ¢,, satisfiesd,,. From the fact
thatc, satisfiess,, = &, we conclude that,, satisfied,, A &,.

Second, we show that (3) implies (2). For the sake of contradiction, assume that
there exist such thaty; A ¢; is satisfiable, and (without loss of generality) assume that
0;1+1 is unsatisfiable. Let be a concrete state that satisfiesA &;. By definition of
&;, c satisfiesSW P(s;, &:41), that is, there exists a concrete stofethat satisfiesy;
(because; ,; is implied bya; 1) and that is reachable fromusings;. Sincec satisfies
0;, ¢’ satisfiesS P(s;, 0;), thusc’ satisfie®; 1 = a;4+1ASP(s;,0;), and a contradiction
is obtained.

Finally, we can show that (2) implies (1) using Theorem 6 and the fact that there is
a {61 A& )ymustt (0, A E,)]* transition froma, to ay,.

The reasoning in Theorem 7 is similar to known methods where the iterative appli-
cation of pre- and post-conditions are applied in order to test reachability [HIMMO4].
The new feature of our approach is the fact we allow reasoning in both forward and
backwards directions, and we intersect the intermediate predicates with the current
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abstract state of. That way, we can reason not only abaut being weakly reach-

able fromaq, but abouta,, being weakly reachable froms, alongnw. As we discuss

in Section 4, this is useful when studying path coverage in the abstract system or in
counterexample-guided abstraction refinement, when the feasibility of a path needs to
be checked. Note that, being intersected with the intermediate abstract states, the pred-
icates we get are tighter than these obtained by only iterating pre and post conditions.
Thus, they can also be used for a finer partition of states in case one wishes to eliminate
infeasible paths from the abstraction [C®B,HIMMO04].

Remark 2.Several refinement techniques are based on partitioning an abstract state
to two abstract states A § anda A =6 [CGJT03]. Our parameterization method, on

the other hand, aims at answering weak reachability queries, and parameterization of a
must™ transition froma (or amust™ transition toa) with § essentially replaces by

a A 0 and ignores: A 6. Also, 6 is local, depends on the transition to/frenand is
induced by the pre- and post-condition of the statement executed along this transition.
Reachinga with several different transitions leads to different parameters, which are
independent of each other. Most importantly, our parameterization method provides a
way to refine the abstraction without increasing the number of state, thus preventing
state-space explosion as a result of refinement.

4 Applications

This section describes application of weak reachability for linear-time falsification and
for abstraction-guided test generation.

4.1 Linear-time Falsification

In linear-time model checkingve check whether all the computations of a given pro-
gram P satisfy a specification), say an LTL formula. In the automata-theoretic ap-
proach to model checking [Kur94,VW94], one constructs an automdton for the
negation ofy. The automatond_,,;, is usually a nondeterministic (Bhi automaton,
where a run is accepting iff it visits a set of designated states infinitely often. The pro-
gramP is faulty with respect ta if the product ofA4-,, with the program contains a fair
path — one that visits the set of designated states infinitely often. The produdct,of
with an abstraction of” may contain fair paths that do not correspond to computations
of P, thus again there is a need to check for weak reachability.

Let &,,.. be the set of predicates induced by the LTL formula. For example, if
Y = G((x > 4) = F(z = 0)), thend,,ee = { > 4,2 = 0}, and letA; =
<2©SPEC3 Qa Qina 65 Oé>. AISO! letPA - <q§p7‘og ngspeca SAa IA7 M}%a mﬂ)t;a TLW)tA 5 LA>|
be the abstraction dP according to the union @b, with @,,... We define the prod-
uct of Py with A_, as a TMTSP = (0,54 x Q, 14 X Qup, ™2, must” must” 1y
where for ally € {may, mustt, must~}, we have thata, q) — (a’,¢) iff a —54
a’ andq’ € 6(q, La(a) N Pgpec). Thus, the product TMTS contains behaviors that are
joined toP4 and.A-,,. When reasoning about concrete systems, emptiness of the prod-

uct automaton can be reduced to a search for an accepting state that is reachable from
both an initial state and itself. In the context of abstraction, we should make sure that
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the path from the accepting state to itself can be repeated, thus weak reachability is too
weak heré®, and instead we need the following.

Theorem 8. If there are abstract states;,,;; € 14 X Q;, anda,.. € S4 x a such that
aqcc 1S ONto reachable from;,,;; and from itself, o, .. is weakly reachable froma;,,;;
and total reachable from itself, thef violatesi).

4.2 Testing

Falsification methods are relatedtésting where the system is actually executed. The
infeasible task of executing the system with respect to all inputs is replaced by checking

a test suite consisting of a finite subset of inputs. It is very important to measure the
exhaustiveness of the test suite, and indeed, there has been an extensive research in the
testing community oigoverage metrigavhich provide such a measure [CKKVO01].

Some coverage metrics are defined with respect to an abstraction of the system. For
example, inpredicate-complete testin@al04], the goal is to cover all the reachable
observable states (evaluation of the system’s predicates under all reachable states), and
reachability is studied in an abstract system whose state space consists of an overap-
proximation of the reachable observable states. The observable states we want our test
suite to cover are abstract states that are weakly reachable.

The fundamental question in this setting is how to determine which abstract states
are weakly reachable. As we have seen, TMTS provide a sufficient condition for deter-
mining weak reachability (via a sequencenf.st— transitions followed by a sequence
of must™ transitions). The parameterization method makes this condition tighter, and
its combination with an assume-guarantee reasoning makes it complete. In Section 4.3
we demonstrate the usefulness of our approach: we manage to identify all the weakly
reachable states in a non-trivial example.

4.3 Example

In this section we demonstrate the usefulness of our parameterization method with re-
spect to a more interesting function. The function we consider is from [Bal04], where it
is used to demonstrate hawust ™ transitions improve reasoning about weak reachabil-
ity. Still, some of the weakly reachable abstract states in the example cannot be detected
using the techniques in [Bal04], where the problem of making the technique tighter is
left open. We show that our parameterization method can identify all the weakly reach-
able states in this example. Also, it can show that certain paths are infeasible in the
concrete system, thus one need not worry about the fact they are not covered by the test
suite.

Figure 4(a) presents a (buggy) example of the QuickSpartition function, a
classic example that has been used to study test generation. The goal of the function is
to permute the elements of the input array so that the resulting array has two parts: the
values in the first part are less than or equal to the chosen pivot afillie; the values
in the second part are greater than the pivot value.

12 When is a safety propertyd-., is an automaton accepting finite bad prefixes [KV01], and
weak reachability is sufficient.
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void partition(int a[], int n) {

assume(n>2);
int p := ao];
int lo = 1;
int hi ;= n-1;
LO: while (lo <= hi) {
L2: while (a[lo] <= p) {
L3: lo:=lo+1;
}
L5: while (a[hi] > p) {
L6: hi:=hi-1;
}
if (lo < hi) {
L9: swap(a,lo,hi);
}
}
LC: ;
}
(a)

Fiﬁ. 4.(a) Thepartition function and (b) its TMTS after removing silent transitions.
There'is an array bound check missing in the code that can'lead to an array bounds

error: the check at thehile loop at labeL2 should bglo<=hi && a[lo]<=p) At
This error only can be uncovered by executing the statementl6+1; " at label
L3 at least twice.

We consider the TMTS generated by predicate abstraction with respect to the four
predicates that appear in the conditional guards of the fundtmrhi) |, (lo<=hi)
(a[lo]<=p) , and(afhi]>p) . An observed state thus is a bit vector of length four
(1t, le, al, ah), wherelt corresponds tglo<hi) , le corresponds tglo<=hi) , al
corresponds t@a[lo]J<=p) , andah corresponds téa[hi]>p) . There only are ten

1 The loop alL5 cannot decremethii to take a value less than zero because the value of variable
p is fixed to be the value &f[0] . One could argue that one would want to put a bounds check

in anyway.



feasible valuations for this vector, as six are infeasible because of correlations between
the predicates.

Figure 4(b) shows the TMTS of thaartition function with respect to the four
observed predicates. We have removed silent transitions, thus only states associated
with locations in assignment statements appear in the TMTS. The initial states are de-
noted by double-lined ovals. The sole final state is denoted with underlined text. All
the transitions in the TMTS armay transitions (solid lines), except for the one from
(L9:TTFF) to (L3:TTTT), which is bothnust~ andmust™ (as such, we could have
regarded it as a silent transition and removed it as well; we kept it as L9 is associated
with an assignment). This transition is denoted by a bold line in the figure.

Due to the preponderance ofay transitions in the TMTS, no weak reachabil-
ity information follows from Theorem 3, except for the initial states. However, pa-
rameterized transitions can be used in order to conclude that all the states are weakly

may

reachable. Let us consider theay-transition (L3:TTTF)—"4 (L3:FTTF). By The-
orem 4, this transition can also be viewed as a parameterized— (6,) transition
with the predicate); defined bySP(lo:=lo+1, TTTF), where TTTF denotes the for-
mula (lo < hi) A (lo < hi) A (a[lo] < p) A =(alhi] > P). Thus,8; is (lo — 1 <
hi) A (a[lo — 1] < p) A =(alhi] > p).

Consider now thenay transition (L3:FTTF)%, (L3:FFTF). By Theorem 4, this
transition can also be viewed as a parameterizedt™ (65) transition with the predi-
cated, defined byWP (lo:=lo+1, FFTF). That is,0; is (lo + 1 > hi) A (aflo + 1] <
p) A (afhi] < p).

By Theorem 5, the state (L3: FFTF) is weakly reachable from (L3:TTTF) through
the state (L3:FTTF) ity A 02 A FTTF is satisfiable. This condition can be simplified
into the equivalent formulélo = hi) A (a[lo] < p) A (a[lo—1] < p) A (allo+ 1] < p)
which is indeed satisfiable. A test that observes this state will cause an array bounds
violation (by incrementing the variable until lo > hi without decrementing: and
then accessingllo]).

Similarly, it can be shown that the state (LC:FFFF) is weakly reachable from (L3:TTTF)
through (L3:FTTF). First, there is a parameterizedst ™ (03) transition from (L3:FTTF)
to (LC:FFFF), wherds is WP (lo:=lo+1, FFFP), that is(lo + 1 > hi) A (a[lo + 1] >
p) A (alhi] < p). Then, it can be shown th&t A 65 A FTTF is equivalent tdlo =
hi) A (allo] < p) A (allo + 1] > p) A (aflo — 1] < p), which is satisfiable.

It remains to be shown that the state (L6:FFFT) is weakly reachable from one of
the initial states. Consider the path from (L3:TTTT) to (L6:FFFT) through (L6:FTFT).
By Theorem 4, there isaust™ (SP(lo := lo+ 1, TTTT)) transition from (L3:TTTT)
to (L6:FTFT) and amustt(WP(hi := hi — 1,FFFT)) transition from (L6:FTFT)
to (L6:FFFT). However, we cannot apply Theorem 5S&lo := lo + 1, TTTT) A
WP(hi := hi — 1,FFFT) A FTFT implies that[lo — 1] > p A alo — 1] < p, which is
unsatisfiable. In fact, since everyust—(0)(a, a’) transition is also da)must= (0 Aa’)
transition, and everyust ™ () (a’, a”) transition is also 89 Aa’)must™ (a’’) transition,
Theorem 7 it can be used to show that this path is infeasible. Weak reachability of the
state (L6:FFFT) can then be proved via another path, and indeed it can be shown using
Theorem 5 that (L6:FFFT) is weakly reachable from another initial state (L6:TTFT)
through the state (L6:FTFT).
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5 Conclusion

The notions ofmust™ transitions and weak reachability, which were introduced in
[Bal04], where elaborated and extended in the present paper. We described an abstrac-
tion framework that containgiust™ transitions, the backwards versionsef.st tran-
sitions, and showed howust™ transitions enable reasoning about past-time modal-
ities as well as future-time modalities in a six-valued semantics, which is suitable for
both verification and falsification. We showed that the falsification setting allows for
a stronger type of abstraction and described applications in falsification of temporal
properties and testing.

A general idea in our work is that by replacingust™ by must~ transitions, ab-
straction frameworks that are sound for verification become abstraction frameworks
that are sound (and more precise) for falsification. We demonstrated it with model
checking and refinement, and we believe that several other ideas in verification can
be lifted to falsification in the same way. This includes generalized model checking
[GJ02], making the framework complete [DNO5], and its augmentation with hyper-
transitions [LX90,SG04]. Another interesting direction is to usest™ transitions in
order to strengthen abstractions in the verification setting: the ability to move both for-
ward and backwards across the transition relation has proven helpful in the concrete
setting (c.f. , [INH96,BGS00]). Usinghust~ transitions, this also can be done in the
abstraction setting. Finally, the sequential TMTS model can be extended to a concurrent
one. Beyond the usual compositionality questions in the concurrent setting, there is a
need to define and reason about the compositions of models that have different types of
under-approximating transitions.
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