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1 Introduction
Testing is one of the most cost-intensive activities in the industrial software de-
velopment process. Not only is current testing practice laborious and expensive
but often also unsystematic, lacks engineering methodology and discipline, and
adequate tool support.

Model-based testing is one of the most promising approaches which address
these problems. At Microsoft, model-based testing technology developed by our
group Foundations of Software Engineering has been applied in the production
cycle since around 2003 [1, 2]. The second generation of our tool set, Spec
Explorer [3], which has been deployed in 2004, is now used by various product
groups inside of the company for testing features of Windows OS core compo-
nents, XML web service frameworks, and other areas. (See [4, 5] for references
which partially address Spec Explorer; a paper which gives a full overview is
currently submitted).

Although the basic concepts of Spec Explorer have proved themselves as
valid and useful, user feedback indicates that improvements are needed. This
paper reports on ongoing work on the third generation of our model-based test-
ing technology which addresses these issues. In particular, we focus on what
we call the problem of scenario control (selecting particular scenarios from the
potentially infinite set of the model’s behaviors) and the problem of model com-
position, meaning the combination of models of specific features into compound
models. In fact, we view the first problem as a special case of the second one,
and come up with a framework of composable models, where the composition
operators are those of product, conformance, and action refinement. We give a to
our knowledge novel formalization of the problem in the framework of so-called
action machines, which use symbolic constraints as the composition glue.

Our approach is implemented as a prototype in the larger framework of
XRT (eXploring Runtime), a full-fledge exploration engine for CIL (Common
Intermediate Language, the byte-code language of .NET) code, which supports
symbolic computation (a paper about XRT is currently submitted). Action
machines sit on top of XRT as one of other applications.

This paper is organized as follows. We first give a critical review of the
current Spec Explorer tool, pinpointing some of the problems users have with
the tool. We then introduce the foundation of action machines and their com-
position operators. We finally give an outline of the implementation in XRT,
which, in addition to the mentioned composition operators on action machines,
currently provides as means for modeling basic action machines abstract state
machines [6] and scenario machines [4]. The paper concludes with a discussion.

2 Review of Spec Explorer
Spec Explorer is a tool for model-based testing of reactive, object-oriented soft-
ware systems. These systems take inputs as well as provide outputs, often as
spontaneous reactions. Inputs and outputs can not only be atomic data-type
values, like integers, but are invocations of methods which take objects and
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other complex data structures as parameters and deliver them as results. We
call those methods which are relevant for the testing problem actions. We par-
tition actions in controllable actions (the “inputs” we provide to the system)
and observable actions (the “outputs” the system produces spontaneously).

Model Programs Models are given in Spec Explorer by model programs.
As the name suggests, model programs are very much like ordinary programs.
This distinguishes them from e.g. axiomatic modeling approaches like provided
by the Z notation [7]. Model programs differ from ordinary programs in their
intended use: they are not concerned about efficiency, and are formulated on
the level of abstraction which is adequate for describing the particular problem
at hand.

Spec Explorer uses the Spec# language [8] for writing model programs,
though in principle any programming language could be used. Spec# is a con-
servative extension of C#, which adds to C# high-level value data types like
sets, maps, sequences and bags with comprehension notations, universal and
existential boolean quantifiers, non-deterministic choice, contracts in form of
pre-conditions, post-conditions, and invariants, as well as the ability to enumer-
ate over all instances which have been created for a particular object type.

Exploration and Conformance Testing A model program constitutes for
Spec Explorer an abstract state machine (ASM) [6], where the states are first-
order structures capturing the program state, and the steps (transitions) be-
tween states are described by those methods which have been depicted as ac-
tions.

Spec Explorer explores a model-program in order to generate a representative
finite subset of the potential infinite behavior of the ASM [1]. The exploration
results in a state graph, where the nodes of the graph represent model states,
and the edges transitions between states which are labeled by action invocations.

The exploration algorithm roughly works as follows: in a given model state,
figure out those invocations (action-parameter combinations) which are enabled
in that state. Enabledness is determined by the pre-condition of the method, or
by the absence of particular exceptions thrown when the method is executed.
The parameters used for the invocations are provided by user defined parameter
generators, where some default generators are selected automatically (for exam-
ple, for objects the default parameter generator delivers the set of all instances
created for that object type in a given state). Spec Explorer then computes
the successor states of all enabled invocations and continues exploration from
there. The search can be pruned in various ways: if a state is visited which is
equivalent to a state which has been already visited it will not be visited again
(where equivalence comes from state identity or from a user-defined equivalence
relation); filters on state are applied; upper bounds on the number of transitions
and states are evaluated, and so on. The overall process is very similar to an
explicit state model-checker; however, whereas a model-checker makes an exis-
tential search looking for some path which violates a condition, exploration for
testing aims to produce a set of paths which constitute a finite, representative
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subset of the model.
Note that for models with infinite state spaces (common for models of object-

oriented programs) the extraction of a complete finite, representative scenario
is indeed not decidable (see [1] for a formal analysis), where completeness here
means complete coverage of the model. For that reason, Spec Explorer provides
powerful means for the test engineer to analyze the result of exploration, for
example by visualization. In general, Spec Explorer’s methodology is based on
a feedback loop between user-configuration for exploration, automatic explo-
ration, and user-analysis of the exploration result.

The actual conformance testing of an implementation now happens either
offline or online (“on-the-fly”) in Spec Explorer. For offline testing, the finite
state graph is traversed using standard graph traversals to produce a test suite
which is persisted as a stand-alone program. The test suite encodes the complete
oracle as provided by the model. For online testing, model exploration and
conformance testing are merged into one algorithm. If the system-under-test
is a .NET program, then all test harnessing will be provided automatically.
In other cases, the user has to write a wrapper in a .NET language which
encapsulates the actual implementation, using .NET’s interoperability features.

Sample We look at a sample to demonstrate the basic concepts. The
publisher-subscriber design pattern is commonly used in object-oriented soft-
ware systems. In this pattern, various subscriber objects can register at a pub-
lisher object to receive asynchronous notification callbacks when information is
published via the publisher object. Thus this example both includes objects
and infinite state space, as well as reactive behavior.

Excerpts of the model are given in Fig. 1, omitting methods for construction
of publisher and subscriber objects and for registration and unregistration. The
state of the model is given by the instances of a publisher. A publisher has as
instance fields the set of registered subscribers, data which is currently delivered
to subscribers (or null if no data is delivered), and the set of recipients of the
data. The Publish method is only enabled if currently no data is delivered.
This is a controllable action, which we provide as input to the system-under-
test. The Handle method has a more complex pre-condition. It is enabled
whenever there exists a publisher such that this subscriber is currently in the
delivery set and the current data of the publisher matches the parameter of the
Handle method. Note that the Handle method is an observable action, which
comes as spontaneous output from the system under test.

Fig 1 also shows an excerpt from the state graph generated by Spec Explorer
from this model. In this excerpt, one publisher and two subscribers are config-
ured (the state graph omits the configuration phase). From state S6, a Publish
invocation is fired, leading to state S7, which is an observation state where the
outgoing transitions are observable actions. The meaning of an observation state
is that the system under test has a choice to do any of the outgoing transitions,
as opposed to a control state (S6) where it has to accept all of the outgoing
transitions. Thus, effectively, our model gives freedom to an implementation to
process the subscribers of a publisher in any given order.
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class Publisher {
Set<Subscriber> subscriptions = Set{};
object currentData = null;
Set<Subscriber> deliveries = Set{};
void Publish(object data)

requires currentData == null && data != null;
{

currentData = data; deliveries = subscriptions;
}

}
class Subscriber {

void Handle(object data)
let pub =

Choose{p in enumof(Publisher),
this in p.deliveries;

p; default null};
requires pub != null

&& data.Equals(pub.currentData);
{

pub.deliveries -= Set{this};
if (pub.deliveries == Set{})

pub.currentData = null;
}

}

Figure 1: Publisher-Subscriber Model

In order to generate the state graph, we had to annotate the model in Spec
Explorer with various information: we specified the parameter passed to the
Publish method (here, "foo"), and restricted the number of publishers and
subscribers created, and the order of how creation and registration happens.
The problem area of providing this kind of configuration information is called
scenario control.

Criticism Though Spec Explorer is successfully used at Microsoft for model-
ing and testing non-trivial features on a daily base, user feedback indicates that
major improvements are necessary to use this technology more productively.

Scenario control is the major issue. Currently, scenario control is realized by
parameter generators, state filters, additional pre-condition to actions which dis-
able those actions in states where they should not be tested, and so on. Besides
messing up the model with information belonging not into the actual model but
rather in a separate test purpose description, complex scenario control problems
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could require non-trivial extensions of the model, maintaining additional state
variables and such. A further problem is the need to provide explicit values for
parameters (like the "foo" value for the data parameter of the Publish method
in Fig. 1). Conceptually, it would be sufficient to use an abstract symbolic value
– it doesn’t matter which data is published, but only that the published data
equals to the handled data. Finally, the way how scenario control is usually
achieved in the current Spec Explorer tool spreads fragments of the scenario
control information over various places in the model source and configuration
dialog settings, making it hard to understand which scenarios are captured. It
would be desirable to centralize all scenario control related information as one
“aspect” in a single document, which can be reviewed in isolation.

Another important issue identified by our users is model composition. At
Microsoft, as often in the industry, product groups are usually organized in
small feature teams, where often one developer and one tester are responsible
for a particular feature. It must be possible to model, explore and test features
independently. However, for integration testing, the features also need to be
tested together. To that end, Spec Explorer users would like to be able to
compose compound models from existing models.

3 Action Machines

We address the problems identified in the previous section by an improved ex-
ploration framework which underlies the forthcoming next generation of Spec
Explorer. This framework emphasizes model composition and symbolic explo-
ration.

Model composition in combination with symbolic exploration adequately
solves the scenario control problem. The basic idea is to give a model for scenario
control and compose it with the model of the feature. This is in principle not a
new idea and has been applied also in the context of finite state machine based
testing [9], where the scenario control model is called a test purpose. However,
the power of this approach in our setup comes from the availability of symbolic
exploration, together with a new modeling style which we introduce: namely
scenario models, which capture descriptions of behavior in a use-case oriented
style, similar as outlined in [4].

In this section, we will give the formal definition of our framework, which is
based on the new notion of action machines. We will return to the application
of action machines for the scenario control problem in a later section.

3.1 Basic Definitions

We assume an abstract universe of terms, t ∈ T. Terms capture values of
the domain of our modeling and implementation languages. Since we are in
a symbolic computation world, terms also capture logical variables and term
constructors for symbolic operations, e.g. the addition of two symbolic values,
or the selection of a field from a symbolic object and a term which represents
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the state of that symbolic object. The actual structure of terms does not matter
for our purposes here.

Over terms, we assume a universe of constraints, c ∈ C. Again, the structure
of constraints does not matter here: it can be simple equality constraints or the
full predicate calculus. However, we assume that C has tautologies true and false
and is closed under conjunction and implication (written as c ∧ c′ and c ⇒ c′,
respectively), which adhere to the usual laws of boolean algebras. To distinguish
the operators of our constraint language from the operators of the meta-logic of
our formalization, we use, where necessary, the notation [[c ∧ c′]] and [[c ⇒ c′]].
Our constraint universe comes with a decision procedure for checking satisfia-
bility, which is sound (i.e. supports monotonic reasoning) but not necessarily
complete. We write SAT c ∈ V , where V = {false, true, unknown} is called the
verdict.

Let A be an abstract universe of action names, a ∈ A. Actions are
partitioned into controlled actions AC and observed actions AO , such that
A = AC ∪ AO and AC ∩ AO = ∅. Let α ∈ I = A × T × T be an action
invocation, denoted as α = a(t)/t ′, where t is the input parameter, and t ′ is
the result parameter. For reasons of simplicity, we assume that missing and
multiple parameters and results are represented by according terms (e.g. tuples
for multiple parameters, and a special term for representing a void result).

An action machine is a given as a tuple

M = (S ,T , s)

where S is a set of states, T ⊆ S×C×I×S is a transition relation, and s ∈ S is
the initial state. Note that we have no assumptions about the internal structure
of states. We write SM, TM, sM for the projections onto components of M, and
s c·α−→ s ′ for a transition (s, c, α, s ′) ∈ T . A transition indicates that in state s
the machine can make a step with invocation α to state s ′ provided that the
constraint c is satisfied.

We lift the transition relation to so-called environment stepping. An envi-
ronment is a constraint. We denote environments with the symbol Γ, Γ ∈ C. In
order to deal with the incompleteness of our constraint decision procedure, we
distinguish two kinds of environment steps, namely may steps and will steps,
and denote these kinds by k ∈ K = {!, ?}, where k =? represents a may-step
and k =! a will-step. On step kinds, we have a join operator, written as k1 u k2,
which results ! if k1 = k2 =!, and ? otherwise. The fact that an action machine
M makes a step of the kind k in the environment Γ is denoted by

Γ ∧ c `kM s α−→ s ′

which holds iff s c·α−→ s ′ ∈ TM and SAT[[Γ ∧ c]] ∈ V where V = {true} if k =!
and V = {true, unknown} if k =?. Note that, obviously, the will-step relation is
subsumed by the may-step relation.
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3.2 Composing Action Machines

Basic action machines can result from a variety of sources. They may be con-
structed from an abstract state machine consisting of guarded update rules, as
is the case for Spec Explorer, from a scenario machine, a use case, statechart,
temporal logic formula, and even from an actual program. In section 4 we will
sketch the basic action machines which we intend to use for the next generation
of Spec Explorer.

Whatever the source of a basic action machine is, by adhering to a shared
constraint domain and environment as a glue between the machines, we can
formalize (and implement!) the composition of those diverse machines. The
basic compositions we define in this paper are product machines, conformance
machines, and action refinement machines.

Product Machine The product of two action machines results in a machine
which steps when both machines step with the same invocation in the same
environment. A typical use for product machines is scenario control, where one
machine represents the actual model, and the other machine a scenario to which
the model shall be restricted.

Let M1 ×M2 = (S ,T , s) denote the product of two action machines, then
S = SM1 × SM2 , s = (sM1 , sM2), and T is a transition relation such that the
following rule holds for environment stepping:

P1
Γ ∧ c1 `k1

M1
s1

α−→ s ′1 Γ ∧ c2 `k2
M2

s2
α−→ s ′2

Γ ∧ c1 ∧ c2 `k1uk2
M1×M2

(s1, s2)
α−→ (s ′1, s

′
2)

Note that for simplification of presentation, we assume in this and in the follow-
ing rules that invocations of composed machines match each other. Any kind
of unification necessary to achieve this is represented in the constraints.

Conformance Machine The conformance machine represents the behavior
of two action machines where the second machine simulates the behavior of the
first machine regarding controllable action invocations, and the first machine
simulates the second machine regarding observable action invocations. If the
alternating simulation is not possible, this machine steps into an error state, in-
dicating a conformance failure. The conformance machine resembles the notion
of conformance checking as present in the current Spec Explorer tool, which is
closely related to the notion of alternating refinement as defined for interface au-
tomata in [10]. Typically, the second machine in this composition represents an
implementation; however, we can also think of building chains of conformance
of multiple model machines.

Let error denote a distinct state for representing conformance failure. M1 ;

M2 = (S ,T , s) denotes the conformance machine, where S = (SM1 × SM2) ∪
{error}, s = (sM1 , sM2), and T is a transition relation such that the following
rules hold for environment stepping (where for all rules, α = a(t)/t ′ and (i , j ) =
if a ∈ AC then (1, 2) else (2, 1)):
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C1

Γ ∧ ci `kMi
si

α−→ s ′i Γ ∧ cj `!
Mj

sj
α−→ s ′j

SAT[[Γ ∧ ci ⇒ cj ]] = true

Γ ∧ ci `kM1;M2
(s1, s2)

α−→ (s ′1, s
′
2)

C2

Γ ∧ ci `kMi
si

α−→ s ′i
¬ ∃ cj , s ′j : (Γ ∧ cj `!

Mj
sj

α−→ s ′j ∧
SAT[[Γ ∧ ci ⇒ cj ]] = true)

Γ ∧ ci `!
M1;M2

(s1, s2)
α−→ error

We call the machine Mi the master machine which demands a step, and the
machine Mj the slave machine which must be able to simulate the master’s
step. Roles of master and slave alternate depending on whether we look at
controllable or observable actions. Rule C1 describes a successful conformance
step: if the master may or will make a step, then the slave will be able to do
that step. In addition, the constraint cj of the slave machine must be implied
by the environment and the constraint ci of the master. Rule C2 describes the
failure case: if there does not exist a constraint cj with which the slave will
step and which is implied by the environment and the master’s constraint, the
composed machine steps into the error state.

To understand the intuition behind the requirement that the slave’s con-
straint must be implied by the master’s constraint, let us consider an exam-
ple. Suppose our constraint system is built from interval constraints, such that
x ∈ l . . u denotes that the variable x ranges between a lower bound l and an
upper bound u. Let ci = [[x ∈ 1 . . 2]] and cj = [[x ∈ 1 . . 1]], and α = a(x ).
Suppose that the master may do the step Γ ∧ ci `?

Mi
si

α−→ s ′i , and the slave
can do the only step Γ ∧ cj `!

Mj
sj

α−→ s ′j . The composition of these two ma-
chines steps via rule C2 into the error state, since Γ ∧ ci ⇒ cj is not satisfiable.
Now compare this with the explicit expansion of the range constraint on the
parameter x to the action a. Then Mi can do controllable invocations a(1) and
a(2), whereas Mj can only do a(1), which obviously is a conformance failure.
Compare this also with the product machine, M1 ×M2. In that machine, the
constraints ci and cj would be conjuncted, yielding a machine which can do just
the invocation a(1).

Note that our definition of conformance is conservative regarding the treat-
ment of inconclusive solver queries. We require that the slave machine will
simulate the master machine for steps even if these steps may be only possible
in the master. This reflects in the rules in the use of the will-step relation for the
slave. As a result, we can have so-called “false negatives”, that is conformance
failures which are not actually ones, but no “false positives”, that is confor-
mance success which is not true. To that end, we are sound but not complete,
and have a similar effect as the so-called over-approximation in model-checking.
One can also imagine having a less conservative definition of conformance, but
this requires further investigation.
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Action Refinement Machine The action refinement machine represents the
substitution of all invocations of a particular action in one machine (called the
super-machine) by the behavior of another machine (called the sub-machine).
The gluing is defined by specifying the action which should be substituted in
the super-machine and begin and end actions in the sub-machine. Parameters
are passed from the action in the super-machine to the begin action in the sub-
machine, and the result of the end action is passed back to the super-machine.
In the resulting traces of the composed machine, the action of the super-machine
will not appear. Action refinement machines are intended to aid the construction
of machines which combine models of individual features.

We denote an action refinement machine as M1[as ←ae
ab

M2] = (S ,T , s),
where as is the substituted action of the super-machine M1, and ab and ae are
the begin and end actions of the sub-machine M2, respectively. Let susp↓(s, t)
represent the suspension of the super-machine in some state s, waiting for the
result t , and let susp↑(s) represent the suspension of the sub-machine, waiting
to be called by the super-machine. The state space of the composed machine is
constructed as S = S1 × S2 where S1 = SM1 ∪ {susp↓(s, t) : s ∈ SM1 , t ∈ T} and
S2 = SM2 ∪ {susp↑(s) : s ∈ SM2}.

The initial state of the action refinement machine is given as s =
(sM1 , susp↑(sM2)), i.e. the sub-machine is initially suspended. The transition
relation T is implied by the following rules for environment stepping, where we
abbreviate the action refinement machine with M = M1[as ←ae

ab
M2]:

R1
α = a(t)/t1 a 6= as Γ ∧ c1 `kM1

s1
α−→ s ′1

Γ ∧ c1 `kM (s1, susp↑(s2))
α−→ (s ′1, susp↑(s2))

R2

α1 = as(t)/t1 Γ ∧ c1 `k1
M1

s1
α1−→ s ′1

α2 = ab(t)/t2 Γ ∧ c2 `k2
M2

s2
α2−→ s ′2

Γ ∧ c1 ∧ c2 `k1uk2
M (s1, susp↑(s2))

α2−→ (susp↓(s ′1, t1), s ′2)

R3
α = a(t)/t2 a 6= ae Γ ∧ c2 `kM2

s2
α−→ s ′2

Γ ∧ c2 `kM (susp↓(s1, t1), s2)
α−→ (susp↓(s1, t1), s ′2)

R4
α = ae(t)/t1 Γ ∧ c2 `kM2

s2
α−→ s ′2

Γ ∧ c2 `kM (susp↓(s1, t1), s2)
α−→ (s1, susp↑(s ′2))

Here, rule R1 represents stepping of the super machine where the submachine
is suspended. Rule R2 represents the call of the sub-machine from the super-
machine, where the input parameters of the substituted action are passed as the
input parameters of the begin action of the sub-machine. The result parameter
of the super-machine, t1, is remembered in its suspension in the resulting state of
the composed step. Rule R3 describes the case where the sub-machine performs
it steps. Finally, rule R4 describes the case when the sub-machine returns; here,
the result parameter of the sub-machines invocation of ae must be the stored
result t1 of the result of the substituted step of the super-machine.
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3.3 Exploring Action Machines

Action machines can be explored by various means for various purposes. Here
we present a class of explorers which do exhaustive exploration using a notion
of state subsumption to prune the search. This kind of explorer is also the one
which has been experimentally implemented in the XRT framework.

Let M = (S ,T , s) be an action machine. We define state subsumption as
a partial ordering on pairs of environments and states, written as (Γ1, s1) v
(Γ2, s2), which has the following properties: SAT[[Γ2 ⇒ Γ1]] = true, and for
all constraints c1, c2 and and invocations α, if Γ2 ∧ c2 `kM s2

α−→ s, then also
Γ1 ∧ c1 `kM s1

α−→ s. That means if M can do a step in Γ2 and s2 then it can
do the same step in Γ1 and s1.

Subsumption helps us to prune exploration since when we encounter an
environment-state pair (Γ, s) which is subsumed by another pair which has been
already explored, we do not need to continue exploring (Γ, s) because we have
already captured its outgoing transitions.

let Γ0 = [[true]]

var frontier = {(Γ0, sM)}
var explored = ∅
var transitions = ∅
while frontier 6= ∅

let (Γ, s) ∈ frontier

frontier := frontier \ {(Γ, s)}
explored := explored ∪ {(Γ, s)}
foreach Γ ∧ c `?

M s
α−→ s ′

transitions := transitions ∪ {s, c, α, s ′}
if ¬ ∃(Γ′′, s ′′) ∈ explored | (Γ′′, s ′′) v ([[Γ ∧ c]], s ′)

frontier := frontier ∪ {([[Γ ∧ c]], s ′)}

Figure 2: Subsumption Explorer for Action Machines

Figure 2 shows the algorithm for exploration in the presence of state sub-
sumption. The algorithm maintains as its state a frontier of environments and
states which still need to be explored. Initially, the frontier contains the envi-
ronment representing the tautology constraint true and the initial state of the
action machine. The algorithm furthermore has a state variable explored which
captures those environments and states which have been encountered during
exploration, and a variable transitions which holds the set of transitions it has
found so far.

As long as there are elements in the frontier, the algorithm continues ex-
ploration, selecting one pair of environment and state from the frontier, and
removing it. The choice of which pair is selected governs the search strategy
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(depth-first, breadth-first, or some priority search), which is kept open here.
The algorithm then tries all steps which are possible from the given environ-
ment Γ and state s. If a step is possible, then it is added to the set of found
transitions. We then check whether the resulting environment and state is sub-
sumed by any of the environments and states which have been explored so far.
Only if that is not the case, we add the resulting environment Γ ∧ c and state
s ′ to the frontier.

Theorem 1 Let M = M1 ; M2 be a conformance machine. If the subsumption
explorer terminates on M, it discovered all conformance failures.

Proof (sketch): We need to show that if we stop exploration at p2 = (Γ2, s2)
since we have already explored p1 = (Γ1, s1) and p1 v p2 holds, then p2 does
not reveal any new conformance failures which are not already discovered by
exploring p1. If the failure directly happens by stepping from p2, this imme-
diately follows from the construction of the subsumption relation, which en-
sures that any step possible in p2 is also possible in p1. Now suppose a failure
happens after a number of steps starting from p2, say in p′2 = (Γ′

2, s), with
Γ′

2 ∧ c `!
M s α−→ error. Since the environment in p2 is stronger than the en-

vironment in p1, and all steps in p2 are also possible in p1, yielding the same
target states, there must exist also a sequence of steps from p1 which leads as
to p′1 = (Γ′

1, s). The question now reduces to the problem whether, under the
assumption that Γ′

2 is stronger then Γ′
1, Γ′

1 ∧ c `!
M s α−→ error holds. Accord-

ing to rule C2, this is the case if (a) Γ′
1 ∧ c `kMi

s α−→ si (b) no constraint
cj exists such that Γ′

1 ∧ cj `!
Mj

s α−→ sj and SAT[[Γ′
1 ∧ c ⇒ cj ]]. Both follow

obviously since Γ′
2 is stronger then Γ′

1: (a) Mi can do under Γ′
1 at least the steps

it can do under Γ′
2, and (b) if there does not exist a step under the stronger

environment which satisfies the constraint, then it also does not exist in the
weaker environment.

4 Implementation

We have implemented action machines in the framework of the Exploring Run-
time, XRT, realizing basic action machines for abstract state machines and
scenario machines, the composition operators on action machines, and the sub-
sumption explorer. In this section we give a glance of this work.

4.1 XRT

XRT is an exploration framework for CIL, the byte-code language of .NET.
Processing arbitrary .NET managed assemblies, it provides functionality for in-
trospection of the program, rewriting the program, and executing the rewritten
program in an environment similar to an explicit state model-checker, where
many states of the program can co-exist and are stored in an efficient way for
exploration.
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In addition to that, XRT provides an extension for symbolic execution, using
terms to represent symbolic values, and connecting to an underlying constraint
solver (currently Simplify [11], a theorem prover, but the architecture is generic
such that other solvers can be attached as well). Symbolic execution roughly
works as follows. The user – or a program rewriter – can create free logical
variables for representing any value in the .NET type hierarchy. A standard
rewriter on the program now substitutes certain primitive instructions – like
addition on numbers – by a special handler that creates terms when the inputs
are terms instead of actually performing the computation. For example, if the
program contains the fragment int x = Symbolic.Create<int>(); return x
+ 1, then the return value will be the term x + 1 instead of a concrete value.

At certain points of execution with symbolic values, their interpretation is
required for continuing execution, for example, if the program branches over a
boolean value which is symbolic. In the case of the branch, the solver will be
queried whether the boolean value is true in the current environment. If solver’s
verdict is true or false, the according branch will be taken; if it is unknown, a
choice point for exploration is created, representing both branches as a possible
program execution, and extending the environment by the assumption that the
boolean value is true in the one branch and false in the other.

XRT provides symbolic representation of the full program state, including
objects, arrays which can be symbolic themselves and accessed with symbolic
indices, and type polymorphism, whose discussion goes behind the scope of this
paper. For reasons of efficiency, a major design aspect of XRT is to represent
state hybrid, with a concrete state part and a symbolic state part, where in-
formation is synchronized automatically between both representations. This is
very close to the design of action machines, where we have an underlying ab-
stract state (the concrete state part) and the environment (the symbolic state
part).

4.2 Action Machines in XRT

The implementation of action machines in XRT uses an abstraction which
closely resembles the foundations presented in the previous section. Each action
machine implements an interface which provides a method to enumerate its pos-
sible steps. For efficiency reasons, the demanded step of a composition context
is passed into that enumerator: this way, the action machine implementation
can use the demand to prune the search for its step immediately. Figure 3 gives
an excerpt of the interfaces and, for illustration of the principles, parts of the
implementation of the product machine’s state (note the use of C# 2.0 iter-
ators with the yield keyword). The step enumerator of the product machine
enumerates the steps of the first machine under the given step demand, and
then enumerates the steps of the second machine using as the demanded the
generated step of the first machine. The resulting step object combines the step
both machines can do together under the constraint of the demanded step. The
Commit method on a step produces the resulting state from that step, propa-
gating the environment which resulted from the final composition of steps in a
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interface IActionMachine {
IMachineState InitialState { get; }

}
interface IMachineState {

IEnumerable<IStep> GetSteps(IStep demand);
}
interface IStep {

Action Action { get; }
ISymbolicState Environment { get; }
IMachineState Commit(ISymbolicState unifiedEnv);

}
class ProductMachineState : IMachineState {

IMachineState state1,state2;
public IEnumerable<IStep> GetSteps(IStep demand){

foreach (IStep step1 in state1.GetSteps(demand)
foreach (IStep step2 in state2.GetSteps(step1)

yield return new ProductStep(step1,step2);
}
class Step : IStep {

IStep step1, step2;
public Action Action { get { return step2.Action; } }
public ISymbolicState Environment { get { return step2.Environment; } }
public IMachineState Commit(ISymbolicSTate unifiedEnv) {

return new ProductMachineState(
step1.Commit(unifiedEnv), step2.Commit(unifiedEnv));

}
}

Figure 3: Action Machine Implementation in XRT

larger context down to each individual step.
We have currently implemented abstract state machines and scenario ma-

chines as basic action machines. Abstract state machines are constructed from
model programs in a very similar way as in Spec Explorer: in each state, all
enabled actions are tried to produce successor states. However, the parame-
ter generation mechanism is more flexible: parameters can be free symbolic
variables, with and without domain restrictions, and the constraints of the step
results from pre-conditions as well as branching on symbolic values in the actual
method body.

Scenario machines are a new addition and follow the ideas developed in [4].
Basically, the scenario is given as a normal program which contains invocations
of the actions being modeled. However, these methods are not actually executed,
but substituted by an XRT code rewriter to suspend execution and yield a new
step of the scenario machine. Thereby, for any output of the invocation, a new
symbolic variable is created, representing the (for the scenario machine itself)
unknown result. The modeler can add axioms over these results if desired by
according assume and assert statements. A simple sample of a scenario machine
for our publisher-subscriber model as given in Figure 1 looks as follows:

void PubSubScenario(){
Publisher p = CreatePublisher();
Subscriber c1 = CreadSubscriber();
Subscriber c2 = CreadSubscriber();
p.Register(c1); p.Register(c2);
while (_){

if (_) p.Publish(_); else _.Handle(_);
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}
}

Here, the keyword “ ” of Spec# denotes the creation of a free, anonymous sym-
bolic variable. This scenario effectively constraints our model, if composed as a
product machine, to creating one publisher, two subscribers, let them register,
and then – for an arbitrary number of times – publish and handle data. Note
that the independent exploration of this machine by the subsumption explorer
yields a small state graph which expresses exactly the control flow of the sce-
nario. The state graph is finite because of state subsumption, such that the
while-loop will be actually represented as a cycle in the graph.

5 Conclusion

We presented a framework which supports model composition and exploration,
addressing practical problems derived from the feedback of applying our model-
based testing technology in the daily production process at Microsoft. Our
approach is implemented on top of the exploring runtime XRT, and will become
the core of the next generation of the Spec Explorer tool.

Related Work The approach of using model composition for scenario control
is not new. The TGV tool [9], for example, uses finite automatons for describ-
ing so-called test purposes which are combined with models given in IOLTS.
The TorX tool [12] has a customized description language which serves similar
purposes in the ioco context. Our approach generalizes from those by allow-
ing composition of arbitrary models in the product machine for the purpose of
scenario control.

Our notion of conformance is closely related to alternating refinement in the
context of interface automata, which was first introduced in [10], and studied in
the context of game theory in [13]. To the best of our knowledge, we are the first
which generalize alternating refinement to the symbolic case. A symbolic version
of ioco theory has recently been proposed in [14]. This work does not deal with
the level of detail we presented here, for example with the incompleteness of a
constraint solver.

Using a hybrid explicit/symbolic state representation for exploration is not
new. In [15] such a framework is introduced in the context of the Java Pathfinder
model checker. XRT is similar to this extension of Java Pathfinder for symbolic
execution, but goes beyond it by supporting symbolic execution for the full
managed CIL, including symbolic structures, objects, and type polymorphism.
More important for the context of this paper is the application of the symbolic
state part as the glue for composition, which is new to the best of our knowledge.

Future Work This work is still at an early stage. One line of future work –
which is rather implementation oriented – will be to make symbolic exploration
accessible to our end customers. How do we represent the failing satisfiablity
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check of a constraint to the user such that she can understand it? Obviously,
for reasons of accessibility, we want to reduce the amount of symbolic state to
an essential minimum. One way to do so is to force enumeration of symbolic
values earlier than actually required for the symbolic exploration, thereby still
avoiding state explosion. We are looking at heuristics how to do that.

Another line of future work is extending our means of representing scenar-
ios. Currently, scenario machines are given entirely programmatically, using
symbolic values to create choice points, and procedural abstraction for scenario
composition. We might want to adapt more declarative means of describing
scenarios and their compositions.

In this paper, we only discussed some basic compositions of action machines.
But there are more, which need further investigation. One essential among those
are morphisms on the vocabulary of action machines. For example, one action
machine might “implement” the actions of another machine using different types
and methods. This is in fact a standard situation in conformance testing. We
have an experimental implemetation for this composition, but it requires further
analysis.
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